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Non Existence of Bounded-Energy Solutions
for Some Semilinear Elliptic Equations

with a Large Parameter.

DANIELE CASTORINA (*) - GIANNI MANCINI (**)

ABSTRACT - Following previous work of Druet-Hebey-Vaugon, we prove that the

energy of positive solutions of the Dirichlet problem 2Du1lu4u
N12

N22 in V,
u40 in ¯V tends to infinity as lK1Q. We also prove, extending and simpli-
fying recent results, that bounded energy solutions to a mixed B.V.P. have at
least one blow-up point on the Neumann component as lK1Q.

1. Introduction.

Let V be a smooth bounded domain in RN, NF3, lF0. We consider
the problem

(D)l

.
/
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where p4
N12

N22
. In case V is starshaped (D)l has no solutions: an ob-

struction to existence is given by the well known Pohozaev identity.
However, (D)l might have solutions for any l: this is the case if V is an
annulus.

In [6], Druet-Hebey-Vaughon, investigating the role of Pohozaev
type identities in a Riemannian context, discovered that such identities
still provide some kind of obstruction to existence: if uj solve (D)l j

on
some compact (conformally flat) Riemannian manifold M and l j K1Q,
then s

M
uj

p11 K1Q (see [7] for extensions to fourth order elliptic PDE’s

and [10] for more questions). In other words, there are no positive sol-
utions with energy below some given bound, if l is too large.

This result does not carry over to manifolds with boundary under
general boundary conditions (e.g. homogeneous Neumann boundary
conditions, see [1], [2] for this non trivial fact.)

The main purpose of this note is to show that the result quoted above
is indeed true for the homogeneous Dirichlet B.V.P. (Dl); see Theorem 1
below.

Our approach is as in [6]: to show that a sequence of solutions cannot
blow-up at a finite number of points (as it should be assuming a bound on
the energy). The obstruction found in [6] is given by local L 2 2estimates.
In turn, these estimates are based on inequalities obtained localizing the
standard Pohozaev identity on balls centered at blow-up points (see (13)
below). Now, differently from [6], where there is no boundary, we have
to take into account possible blow-up at boundary points. Since Pohozaev
type inequalities on balls centered at boundary points do not hold, in
general, the main issue here is to get local L 2 estimates at boundary
points.

Notice that a more or less straightforward application of arguments
from [6] would only lead to the statement: bounded energy solutions
have to blow up at least at one boundary point, which is the (quite inter-
esting in itself) correct statement for the Neumann problem (see Th. 2
below) but which is not the result we are looking for the Dirichlet
problem.

Since it does not seem easy to rule out blow up at boundary points, we
stick to the approach in [6], but we have to deal with the new difficulty
coming from possible blow up at boundary points.

To handle this difficulty, we will establish Pohozaev-type inequalities
suitably localized at interior points (see Lemma 5 below), which, used
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in a clever way, will allow to obtain estimates up to boundary points (see
Lemma 6, which also provides a simple adaptation and a self contained
exposition of the main arguments in [6]).

This is the main technical contribution in this paper, and we believe
that such estimates might be of interest by themselves. Our first result is

THEOREM 1. Let NF3. Let uj be solutions of (D)l j
, with l j K1Q.

Then s
V

uj
p11 K1Q.

NOTE. Such a result is quite obvious if p is subcritical, i.e. pE
N12

N22
.

In this case, it holds true, in contrast with the critical case, also for the
homogeneous Neumann B.V.P. (see [11] for an explicite lower bound on
the energy of ground state solutions).

A second question we address in this note is concerned with the
mixed boundary value problem

(M)l

.
`
/
`
´

2Du1lu4u
N12

N22

uD0

u40

¯u

¯n
40

x�V

x�V

x�G 0

x�G 1

Here, ¯V4G 0 NG 1 with G i disjoint components.
As for the Neumann problem, (M)l possesses low energy solutions

for any l positive, at least if the mean curvature of G 1 is somewhere posi-
tive, and hence non existence of bounded energy solutions for l large is
false, in general. Indeed, several existence results for (bouded energy)
solutions blowing up at (one or several) boundary points are known (see
[12] for an extensive bibliography). Nothing is known, to our best knowl-
edge, about existence of solutions blowing up both at interior and at
boundary points. On the other hand, the extreme case of purely interior
blow-up has been widely investigated:

Are there solutions which blow up only at interior points?(Q)

Let us review the known results, all of them actually concerning the ho-
mogeneous Neumann problem (i.e. G 0 4¯).
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A first, negative, answer has been given in [4] for NF5:
(M)l has no solutions of the form

ul4wl1 !
j41

k

Um j
l , y j

l
, wlK0 in H 1 (V)

with m j
lK1Q , y j

l Ky j �V as l goes to infinity and y i
cy j (ic j. Here,

U(x) 4
[N(N22) ]

N22

4

(11NxN2 )
N22

2

and Um , y 4m
N22

2 U(m(x2y) ).

Now, bounded energy solutions ul (with l going to infinity) are
known to be of the form given above, apart from the property y i

cy j

(ic j, which has to be regarded as a 9 no multiple concentration at a sin-
gle point 9 assumption. Under the even more restrictive assumption k4

41, a corresponding non existence result has been proven in [8] in any di-
mension NF3.

At our best knowledge, the only result fully answering (Q), and due
to Rey [12], is limited to the dimension N43. According to Rey, 9 the
main difficulty is to eliminate the possibility of multiple interior peaks 9,
and he accomplishes this task through a very careful expansion of sol-
utions blowing up at interior points: this is the basic tool to obtain a
negative answer to (Q) in dimension N43. It is henceforth remarkable
that, as a byproduct of our L 2 estimates, we can bypass this difficulty and
easily prove

THEOREM 2. Let NF3. Let uj be solutions of (M)l j
, with l j K1Q.

If sup
j

s
V

uj
p11 EQ, then uj has at least one concentration point which

lies on the Neumann component G 1 .

Actually, we expect that solutions for the mixed problem, with a uni-
form bound on the energy, should not even exist, for l large, if the mean
curvature of the Neumann component is strictly negative. This is fairly
obvious in the case of one peak solutions, which, by the above, should
blow-up at one boundary point. However, in such a point the mean curva-
ture should be non negative (see [3], or [13]).

Acknowledgment. We wish to thank E. Hebey for bringing to our at-
tention the results in [6].
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2. L 2 global concentration.

To be self contained, we review in this section some essentially well
known facts. Let un be solutions of (D)l n

(but also homogeneous Neu-
mann, or mixed, boundary conditions might be allowed, with minor
changes, here). Multiplying the equation by un , integrating by parts and
using Sobolev inequality, we see that

�
V

N˜unN2 FS
N

2 , �
V

un
p11 FS

N

2(1)

where S denotes the best Sobolev constant. We start recalling concen-
tration properties of un , assuming un � 0 in H 1

0 .

LEMMA 3. Let un be solutions of (D)l n
. Assume un � 0 in H 1

0 . Then
there is a finite set C% V such that un K0 in H 1

loc (V 0C) and in
C 0

loc (V 0C).

PROOF. Let C :4 ]x� V : lim sup
nKQ

s
Br (x)OV

N˜unN2 D0, (rD0(.

Because of (1) and compactness of V, C cannot be empty. We claim
that

(x�C , (rD0, lim sup
nKQ

�
Br (x)OV

un
p11 FS

N

2 .(2)

To prove the claim, let W�C Q
0 (B2r (x) ), Wf1 on Br (x), 0 GWG1.

Notice that 2s
V

unW2Dun4s
V

N˜unN
2W21 i (1)4s

V
N˜unWN21 i (1) because

un � 0.
From the equation, and using Holder and Sobolev inequalities, we

get

�N˜un WN2 1 i (1) G�un

4

N22 (un W)2 G
1

S
u �

B2r (x)

un

2N

N22 v
2

N

�N˜un WN2(3)

For x�C , sN˜un WN2 is bounded away from zero along some subse-
quence, and then (2) follows by (3). Also, if x1 , R , xk �C, choosing Br (xj )
disjoint balls, and eventually passing to a subsequence, we get by (2)

kS
N

2 G!
j

�
Br (xj )OV

un
p11 G sup

n
�

V

un
p11 E1Q
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Thus C is finite. Also, from the very definition of C, it follows that ˜un K

K0 in L 2
loc (V0C), and, by Sobolev inequality, un K0 in L p11

loc (V0C) as
well.

Finally, C 0
loc (V0C) convergence will follow by standard elliptic theory

once one has proved that un K0 in L q
loc (V0C) (q. In turn, this fact readily

follows iterating the (Moser type) scheme

(4) qF2, �
B2r (x)

u p11Gg S

q
h

N

2

¨ u �
Br (x)

u sqv
1

s

G
8

Sr 2
�

B2r (x)

u q , s :4
p11

2

To prove (4), we can procede as for (3), choosing now as test function

W 2 u q21 , V˜WVQG
2

r
. We now obtain

(5) �˜u˜(u q21 W 2 ) G�u p21 (Wu
q

2 )2 G
1

S
u �

B2r (x)

u p11v
2

N

�N˜Wu
q

2 N2

On the other hand

(6) �˜u˜(u q21 W 2 ) 4�(q21) W 2 u q22 N˜uN2 12u q21 W˜u˜W

(7)
2

q
�N˜(Wu

q

2 )N24� q

2
W 2 u q22 N˜uN212u q21 W˜u˜W1

2

q
N˜WN2 u q

Substracting (6) from (7) and then using (5), we obtain

(8)
2

q
�N˜(Wu

q

2 )N2 G�˜u˜(u q21 W 2 )1
2

q
�N˜WN2 u q G

G
1

S
u �

B2r (x)

u p11v
2

N

�N˜(Wu
q

2 )N2 1
8

qr 2
�

B2r (x)

u q

Hence, using the assumption s
B2r (x)

u p11 G g S

q
h

N

2
and Sobolev inequality,
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we get (4). Now, iterating (4) with x� V 0Cd , 2rEd , u4un and using el-
liptic estimates ([9], page 194), we obtain

sup
V0Cd

un G
cN

d
N

2

u �
V0Cd/2

un
2v

1

2

K0(9)

Points in C are called 9 geometric 9 concentration points and C is the
concentration set. A crucial observation is that L 2 norm concentrates
around C (see [6]):

LEMMA 4. Let un be solutions of (D)l n
. Assume un � 0, and let

C :4 ]x1 , R , xm ( be its concentration set. Let Cd »4 0
j41

m

Bd (xj ), Bd (xj )
disjoint closed balls. Then, for n large,

�
V0Cd

un
2 G

16

d 2 l n

�
V

un
2

In particular, if l n K1Q , then

s
V0Cd

un
2

s
Cd

un
2

K0 .(10)

PROOF. Let W�C Q (RN ), 0 GWG1, Wf0 in C d

2

, Wf1 in RN 0Cd ,

V˜WVQE
4

d
. Multiplying the equation by un W 2 and integrating, we

get

�N˜unN2 W 2 12 �un W˜un ˜W1l n�un
2 W 2 4 i (1)�un

2 W 2(11)

because un
p21 (x) K0 uniformly in V0Cd/2 by Lemma. After setting

g n
2 »4

sN˜unN2 W 2

s
V0Cd/2

un
2

we get from (11) the desired inequality

l n

s
V0Cd

un
2

s
V0Cd/2

un
2

G i (1)12V˜WVQ g n 2g n
2 G i (1)1V˜WVQ

2 G
16

d 2
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3. Pohozaev identity and «reverse» L 2 concentration.

In this Section, after briefly recalling the Pohozaev identity, we first
derive suitably localized Pohozaev inequalities which will allow to get
uniform L 2-local estimates up to boundary points. These up-to-the-
boundary estimates are the main novelty with respect to [6]: combined
with the L 2 global concentration reviwed in Section 2, they will readily
imply Theorems 1 and 2.

Given any v�C 2 (V), x0 �RN, an elementary computation (see [14])
gives

ax2x0 , ˜vb Dv2
N22

2
N˜vN2 4div gax2x0 , ˜vb ˜v2

N˜vN2

2
(x2x0 )h

If in addition v�C 1
0 (V), so that ˜v(x)4 ¯v

¯n
n(x) for any x�¯V, where n(x)

is the exterior unit normal at x�¯V, an integration by parts yields

(12) �
V

ax2x0 , ˜vb Dv1
N22

2
vDv4

1

2
�

¯V

ax2x0 , n(x)bN˜vN2 ds

If furthermore 2Dv4g(x , v), g(x , t) fb(x)NtNp21 t2la(x) t, through
another integration by parts we obtain

1

N
�

V

ox2x0 , v p11 ˜b

p11
2

l

2
v 2 ˜ap2 l

N
�

V

av 24
1

2
�

¯V

ax2x0 , nbN˜vN2 ds

A straightforward and well known consequence of this identity is that v
has to be identically zero if V is starshaped with respect to some x0 and
ax2x0 , ˜bb G0 G ax2x0 , ˜ab. However, this conclusion is false, in gen-
eral. The idea, following [6], would be to localize (12) to obtain, for every
given x0 � V and some d4d x0

D0 and for all W�C Q
0 (B4d (x0 ) ), inequali-

ties of the form

�
B4d (x0 )OV

ax2x0 , ˜(Wv)b D(Wv)1
N22

2
WvD(Wv) F0 ,(13)

However, while this can be done at interior points (e.g. with 4d4

4d(x0 , ¯V)), (13) is in general false, ( d small, if x0 �¯V. So, we have to lo-
calize (12) at interior points but in a carefull way, to cover, in some sense,
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also boundary points. Our basic observation is that (13) holds true for x0

as long as d(x0 , ¯V) Fd if d is sufficiently small, and this will be enough
to get control up to the boundary. The first statement is the content of
the following simple but crucial lemma.

LEMMA 5. There is d 4 d(¯V) such that, if 0 EdG d, v�C 2 (V)O
OC 1 (V), vf0 on ¯V and x0 �V with d(x0 , ¯V) Fd , then (3.13) holds
true.

PROOF. Let d be such that, for every z�¯V, any x�¯VOB8 d (z) can
be uniquely written in the form

(i) x4z1h1g z (h) n(z), ah , n(z)b 40, with Ng z (h)NGc(¯V)NhN2 ,
for some smooth g z, with g z (0) 40, ˜g z (0) 40, NhNG8 d and some con-
stant c only depending on ¯V. We will also require

(ii) Nn(z 8 )2n(z 9 )NG
1

8
for any z 8 , z 9�¯V with Nz 82z 9NG8 d

(iii) d E
1

128c
, c4c(¯V).

Let 0 EdG d. We are going to apply (12) with V replaced by
B4d (x0 )OV and v by Wv , W�C Q

0 (B4d (x0 ) ). If d(x0 , ¯V) F4d, then equal-
ity holds in (13), so, let us assume 0 EdGd(x0 , ¯V) G4d. We can write
x0 4z2tn(z) for some z�¯V and dGtG4d. For x�B4d (x0 ) we have
Nx2zNG8d and hence, (i) holds: x4z1h1g z (h)n(z), NhNG8d. Now,
using (ii)-(iii), we see that

ax2x0 , n(x)b 4 ax2x0 , n(x)2n(z)b1

1az1h1g z (h) n(z)2 (z2tn(z) ), n(z)b F
d

2
264cd 2 F0 .

Hence the r.h.s. in (12) (with V replaced by VOB4d (x0 ) and v by Wv) is
nonnegative and the Lemma is proved. r

In the Lemma below we will show how Pohozaev inequalities lead to
«reverse L 2-concentration» of solutions at any blow up point. We will
adapt arguments from [6], where, however, it is made a crucial use of the
validity of (13) at any point, which is not the case here. Still, a clever use
of Lemma 5, i.e. of (13) limited to points which are d-away from the
boundary, will unable to get the desired estimates up to boundary
points.
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LEMMA 6. There is a constant c4cN , only depending on N , such
that if ul is a solution of (D)l and 0 EdG d(¯V) G1, then

l �
Bd (x)

ul
2 G

c

d 3
�

B4d (x)0 Bd (x)

(ul
2 1ul

p11 ) , (x� V(14)

PROOF. We are going to apply (13) with x0 4x if d(x , ¯V) Fd, while,
if d(x , ¯V) Ed , x4z2tn(z) for some z�¯V and 0 GtEd, we will
choose x0 4z2dn(z). Let, without loss of generality, x0 40. By Lemma 5
we have

�
B4dOV

ax , ˜(Wul )b D(Wul )1
N22

2
Wul D(Wul ) F0

i.e. (dropping subscript B4dOV)

(15) � kax,˜(Wul)b1
N22

2
WullWDul12Wax,˜ulba˜W,˜ulb1R(l)F0 ,

where R(l) »4R1 (l)1R2 (l), R1 , R2 given by

R1 (l) »4�2ul ax , ˜Wba˜W , ˜ul b1 ax , ˜(Wul )b ul DW

R2 (l) »4
N22

2
�Wul [ul DW12a˜ul , ˜Wb]

In what follows we properly adapt and simplify arguments from [6].
Taking W radially symmetric and radially decreasing, we have

˜W4 o˜W , x

NxN p
x

NxN
, with a˜W(x), xb G0. In particular, a˜W(x),

˜ul (x)bax , ˜ul (x)b 4 o˜W(x), x

NxN2 p ax , ˜ul (x)b2 G0 and hence (15)
yields

R(l)1�Wax , ˜(Wul )b Dul1
N22

2
�W 2 ul DulF0(16)

Now, let us write g(t) »4lt2NtNp21 t , G(t) »4
l

2
u 2 2

u p11

p11
. We first
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rewrite, integrating by parts, the second term in (16) as follows:

(17) �Wax , ˜(Wul )b Dul4�Wax , ˜Wb ul g(ul )1!
j41

N

�W 2 xj g(ul )
¯ul

¯xj

4

4�Wax , ˜(W)b[ul g(ul )22G(ul ) ]2N�W 2 G(ul ) 4

42
2

N
�Wul

p11 2N�W 2 G(ul )

because 2G(u)2ug(u) 42
2

N
u p11 . Since NG(ul )2

N22

2
ul g(ul ) 42

2lul
2 , (16) gives

R(l)2
2

N
�ax , ˜Wb Wul

p11 F2l�ul
2(18)

Let us now transform, integrating by parts, R(l) as an integral against
ul

2 dx.

R1 (l) 4� !
j41

N yax , ˜Wb
¯W

¯xj

1
1

2
xj WDWz ¯ 2 ul

2

¯xj
2

1 ax , ˜Wb ul
2 DW4

42�ul
2!

j41

N yax, ˜Wb
¯ 2W

¯xj
2

1
¯

¯xj

ax, ˜Wb
¯W

¯xj

1
1

2
WDW1

1

2
xj

¯

¯xj

(WDW)z1

1ul
2 ax, ˜Wb DW42�ul

2ka˜W, ˜(ax, ˜Wb)b1
N

2
WDW1

1

2
ax, ˜(WDW)bl .

R2 (l) 4
N22

2
k�ul

2 WDW2
1

2
�ul

2 DW 2l42
N22

2
�ul

2 N˜WN2

and thus

R(l)42�ul
2 ka˜W, ˜ax, ˜Wbb1

N

2
WDW1

1

2
ax, ˜(WDW)b1

N22

2
N˜WN2l .

Now, assuming Wf1 on B2d , Wf0 outside B3d , we obtain

R(l) G
c

d 3
�

B3d 0 B2d

ul
2
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for some c4c(N), and hence, by (18),

l �
B2d

ul
2 G

c

d 3
�

B3d 0B2d

ul
2 1ul

p11

Since Bd (x) %B2d and B3d 0B2d%B4d (x)0Bd (x), the Lemma is proved.

PROOF OF THEOREM 1. Lemma 4 and 6 provide the tools for the
proof, which, at this stage, goes like in [6]. We briefly sketch the
argument.

We have to prove that if un are solutions of (D)l n
with sup

n
sun

p11E1Q,

then sup
n

l n E1Q. This is clear if un has a non zero weak limit, so we can

assume un � 0.
According to Lemma 3, there are x1 , R , xk � V such that un K0 in

Cloc
0 (RN 0C) with Cf ]x1 , R , xk (. Let 0 EdE min ]d(¯V), 1

8
d(xi , xj ),

ic j(, so that (3.14) in Lemma 6 holds for all xj �C:

l n �
Bd (xj )

un
2 G

2cN

d 3
�

B4d (xj )0Bd (xj )

un
2 (xj �C

Since the balls B4d (xj ) are taken disjoint, we get

l n�
Cd

un
2 G

2c

d 3
�

V0Cd

un
2(19)

which, jointly with (10), implies l n remains bounded.

PROOF OF THEOREM 2. The proof is by contradiction: we assume
that there is a sequence ul of bounded energy solutions with lK1Q ,
and no blow-up points on G 1 . Hence, for this sequence, (14) holds true at
any blow-up point. In addition, Lemma 4 holds true for the problem
(M)l . In fact, arguments in the proof of Lemma 4 are not affected by the
presence of Neumann boundary conditions, and the concentration be-
haviour assumed therein follows by a simple adjustment in the proof of

Lemma 3: in (2) the term S
N

2 becomes
S

N

2

2
as it follows by replacing in

(3), the Sobolev inequality with the Cherrier inequality (see [5]) for any
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dD0 there exists C(d) D0 such that for any u�H 1 (V)

u S

2
2

N

2dv u �
V

NuNp11v
2

p11

G�
V

N˜uN2 1C(d)�
V

u 2

and hence Lemma 3 holds for (M)l as well, thanks to this inequality, to
the fact that s

V
un

2 K0 (so that C(d)Nun N2
2 4 i (1)) and since, because of

the null boundary conditions, there are no boundary contributions in the
estimates. We use Cherrier inequality also in the Moser-type scheme to
obtain Cloc

0 (V0C) convergence.
Since (10) and (14) are satisfied, the same argument as in the proof of

Theorem 1 applies, giving a contradiction.
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