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An Ill Posed Cauchy Problem
for a Hyperbolic System in Two Space Dimensions.

ALBERTO BRESSAN (*)

1. Introduction.

The theory of weak solutions for nonlinear conservation laws is now
well developed in the case of scalar equations [3] and for one-dimension-
al hyperbolic systems [1, 2]. For systems in several space dimensions,
however, even the global existence of solutions to the Cauchy problem
remains a challenging open question. In this note we construct a con-
terexample showing that, even for a simple class of hyperbolic systems,
in two space dimensions the Cauchy problem can be ill posed.

The systems on Rm that we consider take the special form

¯

¯t
ui 1 !

a41

m ¯

¯xa

(fa (NuN) ui) 40 i41, R , n .(1.1)

For physical motivations, see [2] or [6]. Given a sufficiently regular in-
itial condition

u(0 , x) 4 u(x) ,(1.2)

the solution of the Cauchy problem can be constructed as follows.

1. Set r u NuN and solve the Cauchy problem for a scalar conservation
law

r t 1 !
a41

m

( fa (r) r)xa
40 , r(0 , x) 4Nu(x)N .(1.3)

This will provide the absolute value of the solution.

(*) Indirizzo dell’A.: S.I.S.S.A. - Via Beirut 4, Trieste 34014, Italy.
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2. To find the angular component u u u/NuN , consider the O.D.E.

x
.
4 f (r(t , x))(1.4)

with f4 ( f1 , R , fm ). Assuming that (1.4) has a unique solution for almost
every initial data x(0) 4y , denote by t O x(t) u F t y the corresponding
trajectory.

3. Given tD0 and x�Rm , call y u F2t x be the (unique) point such
that F t y4x . Assuming that the measurable maps F2t are well defined
(up to sets of zero measure), the angular component of the solution of
(1.1)-(1.2) is then obtained as

u(t , x) 4 u(F2t x) ,(1.5)

where u u u /NuN .
If the solution r4r(t , x) of the scalar conservation law (1.3) remains

smooth (or piecewise smooth), it is easy to check that the above proce-
dure actually yields a weak solution u to the Cauchy problem (1.1)-(1.2).
In general however, even if the initial data r(0 , Q) is smooth, regularity
may be lost in finite time. It is thus interesting to understand what kind
of assumptions can provide the existence of entropy weak solutions. A
natural set of conditions is the following:

(A1) The flux function F(r) u f (r) r is Lipschitz continuous.

(A2) The initial data is bounded, measurable, and bounded away
from zero, i.e.

u �LQ , 0 EaGNu(x)NGb for a.e. x�Rm .

In the case of one space dimension, the above assumptions yield the
global existence of a unique entropy weak solution to the Cauchy prob-
lem. Indeed, by the fundamental theorem of Kruzhkov [3], the equation
(1.3) admits a unique entropy weak solution r4r(t , x), satisfying

aGr(t , x) Gb .(1.6)

Let x1 (t) Ex2 (t) be any two solutions of (1.4). For every tD0 the conser-
vation equation implies

�
x1 (t)

x2 (t)

r(t , x) dx4 �
x1 (0)

x2 (0)

r(0 , x) dx .
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By (1.6) this yields

a

b
(x2 (0)2x1 (0)) Gx2 (t)2x1 (t) G

b

a
(x2 (0)2x1 (0)) .

Hence the maps

(t , y) O F t y , (t , x) O F2t x

are both well defined and Lipschitz continuous. It is now clear that (1.5)
yields the desired solution.

The example constructed below will show that, under exactly the
same assumptions (A1)-(A2) which provide the existence and uniqueness
of solutions in the one-dimensional case, in two space dimensions the
Cauchy problem (1.1)-(1.2) is not well posed. The reason is that, although
the scalar conservation law (1.3) always admits a unique entropy sol-
ution, the corresponding O.D.E. in (1.4) has discontinuous right hand
side. For a given time tD0, the flux function y O F t y may not admit a
well defined inverse, because of oscillation phenomena.

A detailed analysis of these systems in one space dimension can be
found in [5].

2. A counterexample.

Call e1 4 (1 , 0 ), e2 4 (0 , 1 ) the canonical basis on R2 . Consider the
Lipschitz (piecewise affine) flux function

F(r) u

.
`
/
`
´

0

(12r) e1

(r23) e1

(r23) e2

if rG1 ,

if 1 GrG2 ,

if 2 GrG3 ,

if 3 Gr .

(2.1)

Observe that

F 8 (r) 4

.
/
´

0

2e1

e1

e2

if rG1 ,

if 1 GrG2 ,

if 2 GrG3 ,

if 3 Gr .

(2.2)
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We can write F(r) 4 f (r) r , with

f (r) u

.
`
/
`
´

0

r21 (12r) e1

r21 (r23) e1

r21 (r23) e2

if rG1 ,

if 1 GrG2 ,

if 2 GrG3 ,

if 3 Gr .

(2.3)

In particular,

f (2) 42
1

2
e1 , f (3) 40 , f (4) 4

1

4
e2 .(2.4)

We now look at the O.D.E.

x
.
4 f (r(t , x))(2.5)

in connection with special types of solutions r4r(t , x) of the conserva-
tion law

r t 1˜x QF(r) 40 .(2.6)

For a given set Q%R2 , we consider three entropy weak solutions of (2.6),
namely

r l l–– (t , x) u 3 ,

r l--l(t , x) u

.
/
´

4

3

if x2 te2 �Q ,

otherwise ,
(2.7)

r Y (t , x) u

.
/
´

2

3

if x2 te1 �Q ,

otherwise .
(2.8)

We begin by studying what happens to the corresponding trajecto-
ries of (2.5) in the special case where Q is a rectangle:

Q u [0 , a]3 [0 , b] %R2 .

1. In the case r4r l l–– , we trivially have

x
.
40 F l l––

t y4y .



An ill posed Cauchy problem etc. 107

Figure 1

2. When r4r l--l, we have (fig. 1)

x
.
4

.
/
´

e2 /4

0

if x1 � [0 , a], x2 2 t� [0 , b] ,

otherwise .

Points on the vertical strip

G a u ](x1 , x2 ) ; x1 � [0 , a](

are eventually shifted to the right by an amount be1 /3 , while all other
points do not move. More precisely:

F l--l
t y2y4

.
/
´

be1 /3

0

if y1 � [0 , a], y2 Fb , tF (y2 2b)14b/3 ,

otherwise .

This is illustrated in fig. 1. One has r44 on Q and r43 outside. The rec-
tangle Q moves upward with unit speed. At any given time t , points which
lie inside the rectangle move with speed x

.
4e2 /4. The points which initially

lie on the segment g are eventually displaced onto the set F l--lg .

3. When r4r Y , we have

x
.
4

.
/
´

2e1 /2

0

if x1 2 t� [0 , a], x2 � [0 , b],

otherwise .
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Points on the horizontal strip

G b u ](x1 , x2 ) ; x2 � [0 , b](

are eventually shifted to the left by an amount 2ae1 /3 , while all other
points do not move. More precisely:

F Y
t y2y4

.
/
´

2ae1 /3

0

if y2 � [0 , b], y1 Fa , tF (y1 2a)12a/3 ,

otherwise .

Starting with these elementary solutions, we can construct more
complex ones. For example, in (2.7) can take

Q4Q l--l
u 0

k even
[k , k11]3 [k , k13] .

In the corresponding equation (2.5), this generates the shift

F l--ly2y4
.
/
´

e2

0

if [[y1 ] ] is even,

if [[y1 ] ] is odd.

On the other hand, in (2.8) we can take

Q4Q Y
u 0

k even
[k , k13]3 [k , k11]

In the corresponding equation (2.5), this generates the shift

F Y y2y4
.
/
´

2e1

0

if [[y2 ] ] is even,

if [[y2 ] ] is odd,

where [[s] ] denotes the largest integer Gs .
In the following, we write the coordinates of a point x4 (x1 , x2 ) �R2

in binary digits, say

x1 4!
k

a k 22k , x2 4!
k

b k 22k .(2.9)

with a k , b k � ]0, 1(. For every k , the previous analysis shows that one
can construct sets Q l--l

k , Q Y
k , QA l--l

k contained inside disjoint strips

Q l--l
k ’ ](x1 , x2 ) ; x2 1x1 �22k [28 , 32]( ,

Q Y
k ’ ](x1 , x2 ) ; x2 1x1 �22k [22 , 27]( ,(2.10)

QA l--l
k ’ ](x1 , x2 ) ; x2 1x1 �22k [16 , 21]( ,

and such that the following holds.
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(i) Given the solution

r k
l--l(t , x) u

.
/
´

4

3

if x2 te2 �Q l--l
k ,

otherwise ,

the corresponding equation (2.5) generates the shift

F l--ly2y4
.
/
´

22k e2

0

if a k 40,

if a k 41.

(ii) Given the solution

r k
Y (t , x) u

.
/
´

2

3

if x1 te1 �Q Y
k ,

otherwise ,

the corresponding equation (2.5) generates the shift

F Y y2y4
.
/
´

222k e1

0

if b k 4b k11 ,

if b k 4b k11 .

(iii) Given the solution

rAk
l--l(t , x) u

.
/
´

4

3

if x2 te2 � Q
A l--l

k ,

otherwise ,

the corresponding equation (2.5) generates the shift

F
A l--ly2y4

.
/
´

22k21 e2

0

if a k 40,

if a k 41.

As shown in fig. 2, the set Qk
l--l consists of an array of (gray) rectangles

of size 22k 33 Q22k , the set Qk
Y consists of an array of (black) rectangles

of size 212k 322k , while the set QAk
l--l consists of an array of (gray) rectan-

gles of size 22k 33 Q212k . Moving the gray rectangles upward with unit
speed and moving the black ones to the right with unit speed, the three
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Figure 2

arrays will never overlap. We can thus consider the composite solution

r k (t , x) u

.
/
´

4

2

3

if x2 te2 �Q l--l
k NQ

A l--l
k ,

if x2 te1 �Q Y
k ,

otherwise .

(2.11)

The differential equation

x
.
4 f (r k (t , x))
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Figure 3

will eventually shift points on the plane, according to the composition

C k u F
A l--l

k i F Y
k i F l--l

k .(2.12)

This is illustrated in fig. 3. Each square here has sides of length
22k21 . In all four pictures, the asterisque marks the samepoint in the
plane. Performing first the upward shift F l--l

k , then the leftward shift F k
Y

and finally the upward shift F
A l--l

k , one obtains a measure-preserving
transformation C k whose main property is the following. In connection
with the dyadic decomposition (2.9), define

Xj u ](x1 , x2 ); b j 40( , X 8j u ](x1 , x2 ); b j 41( .
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Figure 4

Then, up to sets of measure zero, one has

C k (Xk ) 4Xk11 , C k (X 8k ) 4X 8k11 .(2.13)

Intuitively, one can think at the moving sets Q l--l
k , Q Y

k , QA l--l
k as a comb, mov-

ing in the north-east direction. The effect of its passage is to displace
points on the set Xk onto the set Xk11 . Putting an arbitrarily large num-
ber of these combs one next to the other (fig. 4), we now construct a se-
quence of solutions un where the initial data converge strongly in L1

loc but
at a later time t the corresponding solutions have no strong limit. Hence
the limiting Cauchy problem cannot be well posed.

Define a solution of (1.3) by setting

r n (t , x) u

.
/
´

4

2

3

if x2 te2 � 0
0GkGn

(Q l--l
k NQA l--l

k
) ,

if x2 te1 � 0
0GkGn

Q Y
k ,

otherwise .

(2.14)

Consider the Cauchy problem (1.1)-(1.2) with f given at (2.3). We choose
an initial value un of the form

un (x) 4r n (0 , x) Q (cos u(x) , sin u(x))(2.15)
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with

u(x) u

.
/
´

b

2b

if [[x2 ] ] is even ,

if [[x2 ] ] is odd ,

for a fixed angle b�]0, p/2[. We claim that the sequence of weak solu-
tions un has no limit in L1

loc as nKQ . Indeed, for 32Ex11x2Et one has

un (t , x) 43(cos u n (t , x) , sin u n (t , x)) ,

with x4 (x1 , x2 ) and

u n (t , x) 4
.
/
´

b

2b

if [[2n x2 ] ] is even ,

if [[2n x2 ] ] is odd .

As a result, when nKQ , the un do not converge in L1
loc and the Cauchy

problem is not well posed.
On the other hand, still in the range where 32 Ex1 1x2 E t , one can

compute the weak limit of the sequence ]un (, given by

u(t , x) 4 (3 cos b , 0 ) .

To check whether this weak limit provides a distributions solution to the
system (1.1), (2.3), it suffices to examine what happens in a neighborhood
of the line x1 1x2 4 t . Computing the time derivative

d

dt
�

V(t)

u(t , x) dx

for a set of the form

V(t) u ](x1 , x2 ), x2 � [a , b], x1 � [t2x2 222k , t2x2 122k ]( ,

one checks that the conservation equations are satisfied provided that
F(3 cos b) 4F(3) 40. In other words:

– If cos bG1/3 , then the weak limit u provides a weak solution to
the system of conservation laws. This yields a curious example where en-
tropy is dissipated by a linearly degenerate field.

– If cos bD1/3 , then the weak limit u is not weak solution. In this
case, it is not even clear whether any solution exists at all.
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3. – Concluding remarks.

1. All systems of the form (1.1) are hyperbolic, but in a certain way
pathological. In one space dimension, the system

ut 1 ( f (NuN) u)x 40(3.1)

takes the quasilinear form

ut 1A(u) ux 40 , A(u) 4 f (NuN) I1 f 8 (NuN) u7u .

At a given point uc0, the Jacobian matrix A(u) has the 1-dimensional
eigenspace E u Ru spanned by the vector u , corresponding to the eigen-
value l4 f (NuN)1 f 8 (NuN)NuN . Moreover, one finds a second eigenvalue
l* u f (NuN) of multiplicity n21, corresponding to the orthogonal
eigenspace E » (fig. 5).

Figure 5
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Even in one space dimension the Riemann problem can have multiple
solutions, all obtained as vanishing viscosity limits. For example,
consider

ut 1 (Nu 2 Nu)x 40 u�R2 ,(3.2)

u(0 , x) 4
.
/
´

e1

2e1

if xE0,

if xD0.

An entropic solution is provided by

u(t , x) 4r(t , x) e1 ,

where r is the entropy weak solution of the corresponding scalar
problem

r t 1 (r 3 )x 40 r(0 , x) 4
.
/
´

1

21

if xE0 ,

if xD0 .

This is clearly a limit of vanishing viscosity approximations [3].
In addition, there is the second admissible solution

u(t , x) 4
.
/
´

e1

2e1

if xE t ,

if xD t .
(3.3)

Indeed, consider any smooth function u : R O [0 , p] such that

u(s) 4
.
/
´

0

p

if xG0 ,

if xF1 .

Then the Cauchy problem for (3.2) with initial data

un (0 , x) 4 (cos u(nx) , sin u(nx))

has a unique smooth solution, namely un (t , x) 4u(0 , x2 t). This is also a
limit of vanishing viscosity approximations. Letting nKQ , these sol-
utions converge to (3.3).

We remark, however, that our counterexample is not related to the
presence of a singularity at the origin. Indeed, the initial data at (2.14)-
(2.15) are contained in a bounded domain whose convex closure does not
contain the origin.

2. The flux function is not smooth but only Lipschitz continuous. The
oscillations in the solution of the scalar conservation law (1.3) are not
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damped, because of the linear degeneracy of the flux. This indeed leaves
open the possibility that, with a smooth flux, such a pathological behavior
will not be observed.

We recall that, in the one dimensional case, it is common to replace a
general flux F by a polygonal approximation Fn . This is indeed the basis
for the method of front-tracking approximations. In one space dimen-
sion, the Cauchy problems related to all polygonal fluxes are well posed
[1]. Taking a limit, one thus obtains a proof of well posedness for the
original Cauchy problem. The multidimensional case is thus completely
different.

3. What our example points out is that, to get well posedness, the in-
itial data should be chosen in a space of functions smaller than LQ . In
view of the one-dimensional theory, it is natural to conjecture that a
global weak solution should exist for initial data u with bounded varia-
tion. A proof of this conjecture could rely on a compactness property for
fluxes generated by O.D.E’s with right hand side in BV. More precisely,
consider a sequence of smooth maps fn : [0 , T]3Rm O Rm such that

Nfn (t , x)NGC1 ,(3.4)

V fn VBV u�
0

T

�
Rm

N ¯

¯t
fnN1 !

i41

m

N ¯

¯xi

fnNdx dtGC2 .(3.5)

Call t O x(t) u Fn
t (y) the solution of

x
.
4 fn (t , x) , x(0) 4y .

Moreover, assume that the fluxes F t
n are all nearly incompressible, so

that, for every bounded set A%Rm ,

1

C3

meas (A) Gmeas (F t
n (A)) GC3 meas (A) ,(3.6)

for some constant C3 and all t� [0 , T], nF1.
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CONJECTURE. By possibly exstracting a subsequence, one has the
convergence

FnKF in L1
loc

for some measurable flux F , also satisfying (3.6).
Notice that, by a well known compactness theorem, for some f�LQ

we certainly have

fnK f in L1
loc .

The existence of a limit flux F would provide a new existence result con-
cerning the Cauchy problem for the discontinuous O.D.E.

x
.
4 f (t , x) , x(0) 4y(3.7)

valid for a.e. initial data y�Rm , somewhat extending the result in [3].
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