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On Quasi-Projective Uniserial Modules.

DMITRI ALEXEEV (*)

ABSTRACT - Let R be a valuation domain with maximal ideal P . We study quasi-
projective uniserial modules over R . By making use of the absence of «shrin-
kable» uniserial modules over R we prove our main result: a characterization
of quasi-projectivity of a uniserial module U over R in terms of lifting of endo-
morphisms of factors of U. Using this characterization allows us to describe
quasi-projective ideals of R in terms of completeness of certain localizations of
factor-rings of R . Archimedean ideals of R admit the best possible description
from this point of view. We show that a non-principal archimedean ideal of R
is quasi-projective if and only if R/K is complete in the R/K-topology for each
archimedean ideal P . Finally, we show that taking tensor products with
archimedean ideals preserves quasi-projectivity.

1. Uniserial modules.

Let us begin with necessary definitions.

DEFINITIONS. A module over a ring is called uniserial if its submo-
dules form a chain under inclusion. A commutative integral domain R is a
valuation domain if it is a uniserial module over itself.

From now on, the letter R will denote a valuation domain with maxi-

mal ideal P and quotient field Q, unless stated otherwise. We refer the
reader to Fuchs and Salce [6] for a treatment of modules over valuation
domains.

Submodules and factor modules of uniserial modules are likewise
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uniserial. The simplest examples of uniserial modules are besides the va-
luation rings themselves, their rings of quotients, their cyclic modules,
and more generally, the R-modules of the form IIJ where J  I are R-

submodules of Q. Uniserial modules of the latter kind are called stan-
dard uniserial. The existence of non-standard uniserial modules has

been first established by Shelah in [10].
Standard uniserial modules are completely classified by the following

proposition.

PROPOSITION 1.1 (Shores and Lewis [11]). Two standard uniserials

modules IIJ and I ’ /J’ over a valuation domain R are isomorphic if
and only if there exists an element 0 ~ q E Q such that I = qI ’ and
J = qJ’ .

Several properties of a uniserial module depend on its type.

DEFINITIONS. Let R be a valuation domain with the maximal ideal P .

We use the following notation from [6]. If U is a torsion uniserial and 0 ~
we set

The fractional ideal I is called the height ideal of u , and we say that U is
of type [I/J] (the isomorphy class of I/J), t( U) _ [I/J]. The type t( U) does
not depend on the choice of 0 # u E U. For a uniserial module U we defi-
ne ideals

It is easy to verify that both U = I and U = J are prime ideals of R
containing the annihilator Ann U . An ideal I of R is called archimedean
if7"=P.

It is a good time to introduce the main objects of our study: the quasi-
projective modules. In the following definition, R may be an arbitrary
ring.

DEFINITION. An R-module U is called quasi-projective if it is projec-
tive relative to all exact sequences of the form 0 -~ V -~ U ~ U/V -~ 0 ,
where V is a submodule of U and jr is the canonical projection. That is,
for every homomorphism f : U ~ U/V there exists a map f ’ : U ~ U such
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that the following diagram commutes:

For more on quasi-projective modules via relative projectivity
see [7].

As the following proposition states, possibilities of endomorphisms of
quasi-projective uniserials are limited.

PROPOSITION 1.2. A surjective endomorphism of a quasi-projective
uniserial moduLe U over any ring R is an automorphism.

PROOF. Uniserial modules are indecomposable. Fuchs and Ranga-
swamy show in [5] that if a factor U/V of a quasi-projective module U is
isomorphic to a summand of U, then V is also isomorphic to a summand
of U. Thus, if cp : U- U is a surjective endomorphism with non-trivial
kernel V, then U/V = U and V must be isomorphic to U. Since V is a pro-
per submodule of U, it has to be standard uniserial. Thus, U is standard
uniserial either. Suppose that U = IIJ for some J  Then V = h /J
for some h such that J  I,  I. By Proposition 1, there are non-zero ele-
ments p, q in Q such that

Thus, we have = J = pql1, which implies I = I1. This renders 
= U impossible, a contradiction.

The following corollary is an immediate consequence of Proposi-
tion 1.2.

COROLLARY 1.3. Let R be a valuation ring. If U is a quasi-projecti-
ve uniserials module over R, then Un. Moreover, if U is non-stan-
dard, then U = ~7~.

PROOF. Suppose that U is a quasi-projective uniserial R-module. If
r E R then multiplication by r is a surjective endomorphism of U if and
only if r f1. U a and an injective endomorphism if and only if The

first statement follows now from Proposition 1.2.

If U is non-standard quasi-projective, then every monic endomorphi-



68

sm of U has to be an isomorphism because all proper submodules of U
are standard uniserials. This implies U p ; U a and, consequently, UP =
- Up.

The following Lemma uses a result by Facchini and Salce [3]. They
call a uniserial module U over an arbitrary ring shrinkable if U = V/W
for some proper submodules 0  W  V  U. It is proved in [3] that the-
re are no shrinkable uniserial modules over commutative or Noetherian

rings. We use the result to prove a more general statement.

LEMMA 1.4. Let U and V be two Uniserial moduLes over a valua-

tion domain R. If there exist both a monomorphism f and an epimor-
phism g from U to V then at least one of f and g is an isomorphisrn. Mo-
reover, if both U, V are standard and

(a) V  then g is an isomorphism;

(b) V  then f is an isomorphism.

PROOF. There are four possibilities depending on whether U and V
are standard or not. If both U and V are non-standard, then every mono-
morphism f : U- V has to be onto. If U is standard and V is not, then no
epimorphism g : U ~ V exists. Similarly, if U is non-standard and V is
standard then no monomorphism f exists. It remains to consider the case
of standard U and V.

There is nothing to prove if f or g is an isomorphism. Suppose that f
maps monomorphically onto a proper submodule of V and 9 has a non-tri-
vial kernel. We claim that this is impossible. To prove the claim, we write
U = I/J and V = I’IJ’, with submodules J  I , J’  I ’ of Q . Then Im f *
==Ií/J’ and for appropriate J1 and I1 

t in Q. We have
isomorphisms

implying that V is shrinkable, which is impossible by [3]. This proves the
first statement.

We conclude that whenever there is a pair f, g satisfying the hypo-
theses, then either J1 = J’ or I ’ = Ii . These possibilities are defined by
the inclusions of the «sharps» of V and imply that either g is monic or f is
epic, accordingly.
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We are going to show that the quasi-projective property of uniserial
modules is closely related to the property of lifting endomorphisms. The
following definition does not require R to be a valuation domain.

DEFINITION. Let M be an R-module and N its submodule. We say
that an endomorphism h of M/N can be sifted or lifts to M, if there exists
an endomorphism h ’ of M making the following diagram commutative:

Here Jr denotes the canonical projection. If all the endomorphisms of ea-
ch factor of a module M lift, then M will be called weakly quasi-projecti-
ve. This term was introduced by Rangaswamy and Vanaja in [9].

Trivially, a quasi-projective module is weakly quasi-projective. The
converse is not true even for uniserial modules: the abelian group ~(~ °° )
is an example of a weakly quasi-projective but not quasi-projective unise-
rial module over Z. Interestingly, in case of valuation domains, the
necessary condition of weak quasi-projectivity together with is

also sufficient for U to become quasi-projective.

THEOREM 1.5. Let R be a valuation domain and U a uniserials R-
module. The following conditions are equivalent:

(a) U is weakly quasi-projective and UO.

(b) U is quasi-projective.

PROOF OF (a) =&#x3E; (b). Suppose that every h E EndR U/V, for each V 
 U, can be lifted to an element of E ndR U and U # 5 U a. Let Vbe a submo-
dule of U and f : U -~ U/V a homomorphism. Thus, we are given the solid
part of the following diagram, where ,~ 1 is the canonical projection:

If we denote the kernel of f by W, then f factors through the canonical
projection .7r 2: U ~ U/W and an inclusion i : U/V . Since U is uni-

serial, either V = W, V  W, or W  V.
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If V = W, then i e EndR U/V. It lifts to U by assumption.
If V  W, then there is canonical projection U/V- U/W . Embed-

ding it in the previous diagram results in the following:

The composition z ojrg is an endomorphism of U/V and can be lifted to a
map f ’ : U ~ U by the assumption.

If W  V, then we have the canonical epimorphism U/Tl,
and so by Lemma 1, i is an isomorphism. Fixing submodules I, J of Q
such that t( U) _ [7/J], we can write I1 /J and W= I2 /J, where J 
 12  h  I and the latter isomorphism is the restriction of the former.
Since U/V = U/W, we must have I/I1 = I/I2. By Proposition 1, there exists
a q E R such that qI = I and qI1= I2 . This means q ~ 10 = U p ; There-

fore, multiplication q by q is an automorphism of U such that q V = W. It
naturally induces an isomorphism q : U/V- U/W . In this case we have
the following diagram:

Here, g is a lifting of 4 - i. The map f ’ = is a desired lifting of f.

(b) ~ (a). This implication is trivial.

In particular, for ideals of R , weak quasi-projectivity always implies
quasi-projectivity.
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2. Endomorphisms of uniserial modules.

Since quasi-projectivity depends on the lifting property of endomor-
phisms, knowing the structure of endomorphism rings of uniserial mo-
dules will enhance our understanding of their quasi-projectivity.
If U is a uniserial module and Ann U is its annihilator ideal, then we use
the following notation from Fuchs and Salce [6]: we write Ann U = I if
there is a u E U such that Ann u = Ann U, and we write Ann U = I +
otherwise. The module U is called finitely annihilated or non-finitely
annihilated, respectively. It is known that a uniserial U of type [7/J] is
non-finitely annihilated exactly if J p I = I . See Bazzoni, Fuchs and Sal-
ce [2] for details.

Thus, there are two types of uniserial modules distinguished by the
structure of their annihilator ideals. Each type has a specific kind of the
endomorphism ring, described by the following proposition.

THEOREM 2.1 (Shores and Lewis [11]). Let R be a vaLuation ring
and U a uniserials 

(a) If Ann U = I, then UP a and U carries the natural structu-
re of an ,S-module, where S is the ring RII localized at U 0 11, and
EndRU=S.

(b) If Ann U = I + , then U and U carries the natural struc-
ture of a T-module, where T is the ring RII localized at and E ndR U
is isomorphic to the completion T of T in the T-topology.

The endomorphisms of U can be viewed as multiplications by appro-
priate elements from either ,S or T.

COROLLARY 2.2. A valuation domain R is maximal if and only if
all uniserial R-modules U zvith U ll  U a are quasi-projective.

PROOF. Theorem 3.5 of Herrmann [8] states that is maximal if all
submodules of Q are quasi-projective. This proves sufficiency of the
condition.

Conversely, if R is maximal, then R and all its factors are linearly
compact in the discrete topology. Thus all uniserial R-modules are stan-
dard. Hence, for every uniserial module U = I/J, J  I ~ Q, with 
the endomorphism ring EndR ( U) is the localization (R/Ann U) ,

which is also maximal. Therefore, endomorphisms U and its factors are
induced by multiplications by appropriate elements of RUa . Thus, every
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such U is weakly quasi-projective. The statement follows from Theo-
rem 1.5.

Corollary 2.2 for ideals is a particular case of a more general result by
Fuchs [4]. He proves that for a cardinal x a valuation domain R is K-ma-
ximal if and only if every K-generated ideal of R is quasi-projective.

We are going to show that quasi-projectivity of a uniserial module is
completely determined by its type.

THEOREM 2.3. Let R be a vaLuation domain and U be a uniserials

R-module. Suppose that t( U) = [I/J] (J  I ~ Q). Then U is quasi-pro-
jective if and only if IIJ is.

PROOF. By Theorem 1.5, the quasi-projectivity of (non-) standard
uniserial U satisfying Up (UU a = is equivalent to its weak quasi-
projectivity. The «sharp» ideals associated to U and IIJ are necessarily
the same. Thus, we have to show that the two modules are weakly quasi-
projective at the same time. Suppose that V is a (proper) submodule of
U, V ~ U. We can choose I such that t(V) = [I1/J] and 
= [I/I1 ]. On the other hand, for any given ideal I, (J ~ I) there is a
submodule V of U with type as above. Since uniserial modules of the sa-
me type have naturally isomorphic endomorphism rings, the endomor-
phisms of UIV lift to U if and only if those of I/h lift to I/J . The proof is
finished.

COROLLARY 2.4. Let U be a uniserial R-rrzodule. If Tor1 (U, KIL)
(L  K ~ Q) is quasi-projective, then Tor1(U, V) is quasi-projective for
each V of type [K/L].

PROOF. It is known (see [2]) that, for uniserial R-modules U and V
with types [7/J] and [K/L] respectively, the TorR product of U and V is
uniserial and

Thus, TorR ( U, KlL) and TorR (U, V) have the same type. A reference to
Theorem 2.3 finishes the proof.

Bazzoni, Fuchs, and Salce prove in [2] that the isomorphy classes of
torsion uniserial R-modules form a commutative semigroup under opera-



73

tion TorR. Corollary 2 implies that the orbit of a module U under the
TorR operation with uniserials of the same type consists entirely of qua-
si-projective modules if it contains at least one quasi-projective.

3. Ideals of valuation domains.

In this section we use Theorems 1.5 and 2.1 to study quasi-projectivi-
ty of ideals of a valuation domain R. We will show that quasi-projectivity
of an archimedean ideal depends on the completeness of certain localiza-
tions of factor-rings of R .

THEOREM 3.1. Let R be a valuation domain. An ideal I of R is qua-
si-projective if and only if for each ideal J  I with Ann IIJ = (J : I)+
the ring

is complete in its S-topology.

PROOF. This is a direct consequence of the Theorem 1 and Theorem

2. Since for an ideal I , 0 = I a ~ I always, the quasi-projectivity of I is
equivalent to lifting of each endomorphism of every factor IIJ to I. When
Ann IIJ = (J : 1)+ and the ring is not complete, the ring EndR I/J = S
contains elements which are not induced by elements of 
The absence of such elements is equivalent to the completeness of S (for
every such J), and the quasi-projectivity of I.

It is possible to give a more explicit characterization of quasi-projec-
tivity of archimedean ideals. There are two cases, according as P is prin-
cipal or not. If P is principal, then only the principal ideals are archime-
dean. Thus, they all are projective and, therefore, quasi-projective. To
consider the second alternative, we need a special case of Lemma 1.4
from [2]. The proof is provided for the sake of completeness.

LEMMA 3.2. Let J  I be archimedean ideals of a valuation do-
main R . Then Ann IIJ = (J : 1)+ if and only if I is not principal.

PROOF. The «only if» part is trivial. To prove the converse, let I be
an infinitely generated archimedean ideal. Assume that there is an ele-
ment i E I such that Ann iR/J = Ann I/J . Since I is not principal, we can
choose i ’ E I such that iR  i ’ I~  I . That is, i = si ’ for a non-unit s of I~ .
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Then Ann iRIJ = Ann i ’ R/J, hence i -1 J = and i , i ’ are associa-

tes. A contradiction. Hence, no such element i E I exists and Ann IIJ =

= (J : I)+. + 
. 

8

THEOREM 3.3. Let R be a valuation domain with infinitely genera-
ted maximal ideal P. A non-principal archimedean ideal I is quasi-
projective if and only if RIK is complete in the RIK-topology for each ar-
chimedean ideal K 0 P .

PROOF. By Theorem 3.1, I is quasi-projective if and only if RIK is
complete whenever Ann (IIJ) = K + for some ideal J. The ideal J has to
be archimedean by Theorem 2.1. It remains to prove that for different J,
Ann (IIJ) can be any archimedean ideal 0 P, but nothing else.

If then Ann I/IK = K + .
If K = P then K = sP for some s E R . Assume that Ann IIJ = K + for

some (archimedean) ideal J. We have IK = IsP = sI ~ J. But then

(sR)I ~ J, which means that IIJ has annihilator larger than K. Contra-
diction. Hence, ideals isomorphic to P cannot be annihilators of IIJ. This
completes the proof.

The following corollary is an immediate consequence of Theorem 3.3.

COROLLARY 3.4. Let R be a valuation domain with infinitely gene-
rated maximal ideal P . If there exists a non-principal quasi-projective
archimedean ideal, then all archimedean ideals of R are quasi-projec-
tive.

It is difficult to give a more explicit characterization of the quasi-pro-
jectivity of non-archimedean ideals beyond Theorem 3.1. However, we
show that one has a way of «producing» new quasi-projective ideals star-
ting with a quasi-projective ideal I and taking tensor products of I with
archimedean ideals. This result is in a way analogous to Theorem 3.3
from [1].

First, we need the following lemma.

LEMMA 3.5. Let R be a valuation domain with maximal ideal P .

Suppose that I is a non-principal ideal of R . If 0 ~ r E R , then the endo-
mor~phism rings of IlrR and IlrP are (naturally) isomorphic.

PROOF. This is a consequence of Theorem 2.1 and the following two
observations. Firstly, IlrR and IlrP have the same annihilator A + ,
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where A = rR : I = rP : I. For, if sI c rR (0 ~ s E A), then sI c rP since I
is not principal and rP is the maximal submodule of rR . Secondly, both
modules have the same « sharp » ideals because rR and rP are archime-
dean. By Theorem 2.1, the endomorphism rings of I/rR and IlrP are iso-
morphic to the completion of R/A in the R/A-topology. This isomorphism
is natural.

We have the following theorem.

THEOREM 3.6. Let R be a vaLuation domain with non-principal
maximal ideal P . Suppose that I is a non-principal ideal of R and J is
an archimedean ideal. Then I is quasi-projective if and only if I ®R J is.

PROOF. Over valuation domains I ®R J is naturally isomorphic to IJ .
This allows us to consider submodules of I ®R J as ideals contained in IJ
and vice-versa. For ideals of valuation domains the quasi-projectivity is
equivalent to the weak quasi-projectivity. Thus we need to prove that I is
weakly quasi-projective if and only if I ®R J is. Since the arguments in
each way are similar, we give the proof of the «if» part only. The case of
principal J is trivial.

Suppose that I ®R J is weakly quasi-projective, K  I and cp e
e EndR (I/K). If K is not principal, tensoring with J is «reversible», that is,

J) = K ®R P = K. The isomorphisms are natural. Consi-
der the following diagrams.

Taking the tensor product of the solid part of the diagram on the left
with J, one obtains the diagram on the right. Here, map f is a lifting of
cp OR 1, which exists by assumption. Maps x and x 0R 1 are canonical pro-
jections. Taking the tensor product with R : J, one returns to the left
diagram. Map f ’ is a lifting of cp , which makes the left square
commute. It remains to consider the special case of principal K.

If K = rR then K0RJ0R(R: J) * rP. By Lemma 3.5,
the endomorphism cp : I/rR -I/rR is an element of the R/Ann (I/rR )-
completion of the ring R/Ann (I/rR ). Since this ring is also the endomor-
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phism ring of I/rP , cp can be considered as an endomorphism of I/rP . As
such, it can be lifted to I using technique of the previous paragraph.
Clearly, this lifting is also a lifting of the original cp : IlrR The

proof is finished.

We conclude with the following observation. Since isomorphy classes
of archimedean ideals form a group under the tensor product operation,
application of Theorem 3.6 delivers an alternative proof of Corollary 3.4.
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