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Homogenization of Some Contact Problems
for the System of Elasticity in Perforated Domains.

G. A. YOSIFIAN (*)

ABSTRACT - Some unilateral problems for the system of linear elasticity are consi-
dered in a perforated domain with an E-periodic structure. Boundary condi-
tions characterizing friction are imposed on the surface of the cavities (or
channels), while the body is clamped along the outer portion of its boundary.
We investigate the asymptotic behavior of solutions to such boundary value
problems for variational inequalities as E ~ 0 and construct the limit problem,
according to the form of the friction forces and their dependence on the par-
ameter E . In some cases, this dependence results in additional restrictions on
the set of admissible displacements in the homogenized problem which has
the form of a variational inequality over a certain closed convex cone in a So-
bolev space. This cone is described in terms of the functions involved in the
nonlinear boundary conditions on the perforation and may depend on its geo-
metry. A homogenization theorem is also proved for some unilateral problems
with boundary conditions of Signorini type for the system of elasticity in a
partially perforated domain.

1. A problem with boundary conditions of friction type.

Let gf be a perforated domain in with an E-periodic structure:
= Q n Ew, where Q is a fixed bounded domain, E is a small positive

parameter, cv is an unbounded 1-periodic domain. Thus, cv is invariant

under the shifts by all vectors with integer components; ew is its

homothetic contraction with ratio E , and is the cell of

periodicity, where D = ]0, 1[B It is assumed that Q, Q’ and úJ 0 are

(*) Indirizzo dell’A.: Institute for Problems in Mechanics, Russian Academy
of Sciences, Prospekt Vernadskogo 101, Moscow, Russia, 117526.
E-mail: yosifian@ipmnet.ru
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domains (i.e., connected open sets) with Lipschitz continuous boun-

daries.

The set represents a perforation of ,S~ . This perforation may be
formed by small cavities cut out of S~ , or by small channels penetrating S~ .

For an elastic body occupying the stress tensor at a point x =

- (xl , ... , xn ) is an (n x n) matrix df(x) e(uf). Here uf = uf(x) is
the displacement identified with the column vector t (u1, ... , un ), e(uE) is
the linearized strain tensor, i.e., the matrix with the elements =

= 2 -1 ( aui /ax~ a, (x) is the elasticity tensor identified with a li-
near transformation of the space of real (n x n) matrices. This tensor
has the form

The coefficients are 1-periodic functions which satisfy
the usual conditions of symmetry and positive definiteness:

for all real symmetric matrices {bij} E Sn and all E, where x1, x2 =
= const &#x3E; 0. Here and in what follows, we assume summation over repea-
ted indices from 1 to n , unless indicated otherwise; boldface letters de-
note matrices and column vectors.

By p : q = ~2~ qij we denote the scalar product of two matrices p ,
and by ~ ~ r~ _ ~ i r~ i the scalar product of two column vectors ),
For a matrix valued function p(x) = divp is the column

vector with the components ( div p )i = 
For a bounded Lipschitz domain Q, the Sobolev space H 1 ( ~ ) is the

completion of C’(Q) with respect to the norm 

+ and Ho (Q) is its subspace formed by all u E H 1 (~) with zero
trace on As usual, A is the closure of a set aA is its

boundary.
Inside Q f, the displacements are supposed to satisfy the usual equa-

tions of static equilibrium with external body forces
F E (L 2 ( S~ ) )n . On the outer portion of the boundary of denoted by
T, = n the body is clamped: = 0, whereas on the surface of
the cavities inside S~ , denoted by S E = n Q, we impose nonlinear
boundary conditions, such as those expressing the CouLornb law of con-
tact with friction, or the conditions of normal displacement with fric-
tion (see [DL] and Examples 1 and 2 below). In accordance with [DL],
we formulate such boundary value problems in terms of variational ine-
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qualities involving convex nondifferentiable functionals, in other words,
we consider weak solutions of these problems. Formal (i.e., regardless of
regularity) equivalence of weak and «classical» solutions of problems
with friction is discussed in [DL]. The existence and the uniqueness of
weak solutions to variational inequalities considered in this section fol-
low from the general results to be found, for instance, in [ET] and [L]
(see also [DL]).

The present paper continues the studies started in [Y1 ], [Y2], where
some other homogenization problems with nonlinear boundary condi-
tions have been considered. In order to avoid too many auxiliary proposi-
tions, we will use readily available ones from [OSY], [Y1], [Y2], which
makes us to assume the coefficients and the boundaries acv sufficien-

tly smooth, and to impose an additional assumption on the structure of
the perforation: the set as well as the intersection of 0Bw with a 6-
neighborhood of consists of finitely many Lipschitz domains separa-
ted from one another and from the (n - 2 )-dimensional edges of the cube
D by a positive distance. However, with the help of the results from [Y3],
it would not be very difficult to reduce these assumptions to the case of
bounded measurable coefficients and ,S~ , S~ ~ , being Lipschitz
domains.

We are going to study the asymptotic behavior (as ~ -~ 0) of solutions
of the following problem for a variational inequality:

Find the displacement uf E such that for any v E
E (H10(QE, TE))n

Here Hol (92’, is the closure in 

of its subspace consisting of the functions that vanish in a neighborhood
of are convex continuous (nondifferentiable, in general) fun-
ctionals on specifying the boundary conditions on and defi-

ned in terms of the following two classes of functions:

Class lB1 consists of real valued functions y~( r~, ~) on W x 1-peri-
odic and measurable in ~ for and satisfying the condi-
tions :
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Class Bo consists of ~) E B1 with the additional properties:

Consider two fixed Lipschitz subdomains S~ o, and denote the
surface of the cavities inside these by ,So = n S~ o , Sf n The
convex continuous functional Jf(V) in (1) may be chosen to specify diffe-
rent boundary conditions on ,So , Sf (see Examples 1 and 2 below) and has
the form

where ,u o ( E ) ~ 0, ,u 1 ( E ) ~ 0 are real parameters such that

Suppose also that one of the following two conditions holds:

where = I aD w I -1 is the mean value of ~)
over 3o), = 80 f1 [ o , and int A is the set of interior points of A c
c R" in the topology of Rn.

In the trivial case of Jf(V) = 0, the variational inequality (1) reduces
to the usual integral identity for the solution of the following problem for
the system of elasticity with zero Neumann conditions on 

... , v n ) is the outward unit normal to A detailed
examination of this problem can be found, for instance, in [OSY], where
it is shown that for small E the solution M~ is in some sense close to the
solution uo of the Dirichlet problem

where is the so-called homogenized elasticity tensor with
constant coefficients âi1h, which can be expressed in terms of solutions of
certain periodic boundary value problems in o (see, for instance, [OSY],
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Ch.II, § 1). Equivalently, this tensor can be defined as follows (see
[JKO], [Y2]).

For a vector field v(1) = t(v1 (~), ... , vn (~)), by we denote the

matrix with the elements = 2 ~ ~ ( 8vi /81 ~ + 
Let be the space of smooth 1-periodic functions in w . Denote

by the completion of with respect to the wD 
in

= I 1 f ~ o v( ~) d; is the mean value over the domain (o. Consider the
following periodic problem on the cell cv o :

Given a constant matrix p find Vp ( ~) E such
that

This problem has a unique solution by the Riesz theorem, since the
bilinear form ~e~ ( v ) : may be regarded as a scalar product
in by virtue of the Korn inequality for the elements of

([OSY], Ch. I, Theorem 2.8).
Clearly, the solution Vp of problem (7) linearly depends on 

Let us define a linear mapping fl : by

It can be verified directly that a coincides with the homogenized ten-
sor from (6), as defined in [OSY], and has similar properties of symmetry
and positive definiteness on symmetric matrices as the tensor 
namely,

where tp is the transpose matrix of p E Moreover, this tensor admits
the representation:

where V can be any of the spaces i

Our aim is to show that under the assumptions (3) and (4) on JE (v),
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the homogenized problem for (1) has the form of a variational inequality
with the tensor fl defined by (8) and, in general, additional restrictions
on the set of admissible displacements:

Find the displacement
in Q a } such that for any

where the functional J has the form

Thus, the jo ( v ) of the functional Jf(V) determines the set
of admissible displacements Wo of the limit problem, whereas the term

makes a contribution to the variational inequality.
Let us formulate the main homogenization theorem for problem (1).

As usual, for the displacements M~ the generalized gradients are defined
by

By P~ : we denote continuous linear extension

operators from the domain to a fixed domain Q:) Q. According to
Theorem 4.3, Ch. I, [OSY], these operators can be constructed in such a
way that and = 0 for almost all such that

E

dist (x, dQ) &#x3E; 4 VnE. The symbols «-» and «-» denote, respectively,
strong and weak convergence in a specified Hilbert space.

THEOREM 1. Under the assumptions (3) and (4), let uf and UO be the
solutions of problems (1) and (10), respectively. Then, as E -~ 0, we
have
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The proof of this homogenization theorem is based on the following
lemmas.

First of all we need the following estimate for the L 2 (S f) norm, de-
noted by 11.110, s ~ , of traces of functions in on the surface of cavities

’

LEMMA 1. For any vEH1(Q) the inequality 
holds with a constant C independent of E.

This estimate is proved in Lemma 2 of [Y1].
In order to pass to the limit in the variational inequality ( 1 ) as E - 0

and construct the set of admissible displacements for the homogenized
problem, we need the following result about asymptotic behavior of tra-
ces of nonlinear functions of the displacements.

LEMMA 2. Let ç) E [81 and let Q’ be a subdomain of Q with
Lipschitz continuous boundary. Then for any sequence u~E E 
such that w’- wo in (H 1 ( S~ ) )n , we have

This result is obtained by an obvious modification of the proof of
Lemma 4 in [Yl].

LEMMA 3. If
- 

~ 0 as E - 0 for some V o , cp 0 E L 2 ( ,SZ ), then for any 1-peiiodic
F( ~ ) E L 00 ( cv ), we have

This convergence is established in Corollary 1.7, Ch. 1, [OSY].
The next result is a modification of a standard argument used in the

homogenization theory. Its proof is given in [Y2] (Lemma 9).

LEMMA 4. Let a sequence such that in

~-~0. Set F’(x)= a(.--’ x) e(w’(x)) in S2’, r’M = 0 out-
side ~2~ and let Q’ be an arbitrary Lipschitz subdomain Then the
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condition

valid for any 1
convergence

where d is the elasticity tensor (8).

The following lemma has an important role in the homogenization
theory and generalizes a well-known property of F-convergence to the
case of elasticity tensors in perforated domains. Its proof is given in [Y2]
(Lemma 8) and utilizes some ideas from Sects. 3.1 and 5.1 of [JKO].

for any Lipschitz subdomain Q, where a is the elasticity tensor
(8).

Our homogenization result for problem (1) and the description of the
set of admissiblee displacements for the limit problem as E ~ 0 rely on
the following properties of class So, which can be easily deduced from
the conditions (i)-(iv) in the definition of that class (cf. Lemma 5 in [Y2]).
As above, y~( r~) stands for the mean value of ~) 

LEMMA 6. Let ç) E mo, i. e., the conditions (i)-(iv) hold.
Then:

closed convex cones in 
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convex cone in (H 1 ( S~ ) )n , which coincides with

PROOF OF THEOREM 1. By C, Cj we denote positive constants that
do not depend on e; the same symbol may be used to denote different
constants in different places.

First of all, for the solution M~ of problem (1) we establish an estimate,
which is uniform with respect to E . Setting v = 0 in (1), we get

Since and

(by Lemma 1 applied to the extension PfUf), we find that

where we have also used the property (i) of ~) in the definition of
class B1. Thus, from (17) and the Korn inequality for the elements of

rem 4.5) we obtain the estimate

Therefore, the are bounded uniformly with respect to E.
Due to the weak compactness of a ball in Hilbert space, the compactness
of the imbedding H 1 ( S~ ) c L 2 (,S~ ), and the properties of the operators P,,
there exist and such that
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a and

for a subsequence We are going to show that uo is a solution of
problem (10) and I w 0 

Let us multiply (18) by and pass to the limit as E - 0 over the

said subsequence. Since by (3), Lemma 2 yields
and therefore, Wo by Lemma 6 (viii).

In order to show that , let us apply Lemma 4. Ob-
viously, it suffices to verify the convergence (14) for ,S~’ = Q, M~ =
= PEuE.

Consider the first alternative in (4), i.e., the case - 0. Fixing an
arbitrary V(;) E and taking i
with y e Co (Q), y &#x3E; 0 , we get

where V = V( E -1 x ), the product for a vector
valued function u(x) is the matrix with the elements 
= ui in which case + u Q9 ~x 1jJ.

Clearly, the second term on the left-hand side of (20) and the first
term on its right-hand side tend to zero as E ~ 0 . By the Lipschitz condi-
tion (i) in the definition of class we have

Therefore, the first term on the left-hand side of (20) also tends to zero,
and thus the convergence (14) is proved.

Consider the case ,u o ( ~ ) ~ 0 . Then the cone =

=0} has interior points in the topology of by assumption. Therefore,
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for any fixed V( ~) E there is q° E N such that q° ± V(~) E -W
for any ~ E 3(t), since the values of V(i) range within a bounded set. Con-
sequently, by Lemma 6 (vi),

Let us take

~ ~ 0. Then

where V = V(E -1 x ), tl/ = x ). As above, we find that the second
term on the left-hand side of this inequality, as well as the first and the
third terms on its right-hand side, tends to zero as E - 0.

Consider the second term on the right-hand side of (23). The proper-
ties (ii) and (iii) of class So guarantee that

Therefore,

with the right-hand side being equal to zero, because of (22) and the pro-
perty (iii) of ~). Consequently, the second term on the right-hand
side of (23) is always non-negative. Thus, the first term on the left-hand
side of (23) tends to zero and we again have the convergence (14). There-
fore, by Lemma 4.

Finally, let us show that u° is a solution of problem (10). We introduce
the bilinear forms
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Let v be an arbitrary element of Wo. By Lemmas 2, 5 and 6, we
have

where J is the functional (11). Therefore,

which shows that uo is indeed a solution of problem (10). Since this pro-
blem can have only one solution, the above arguments applied to any
subsequence of M~ again bring us to u° .

REMARK 1. It should be observed that condition (4) is essential in
our proof of Theorem 1. The case of p o (E) + 0 and at the same time the

~° ( r~) = 0} having no interior points in (i.e., its dimen-
sion being  n) requires further investigation and will be treated else-
where. As suggested by examples in [Y2], in this case, too, the homogeni-
zed tensor is likely to depend on the boundary conditions on S~.

REMARK 2. It can be easily seen from the proof of Theorem 1 that
instead of the functional J £ (v ) of the form (2) in problem (1) we can take
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a more general functional, in particular,

where

Suppose also that (cf. (4))

Then the homogenized problem for (1) has the form (10) with the
functional

(cf. (11)) and the set of admissible displacements

2. Examples of problems with friction.

In this section we apply Theorem 1 to concrete contact problems of
elasticity and, in some cases, indicate how the limit set of admissible di-
splacements depends on the original boundary conditions and the geo-
metry of the contact region.

Let 3ow be a non-empty 1-periodic subset of 3a), open in the

topology induced from Rn. The corresponding subset of S £ is denoted
by E’,,,,t = and it is on this set T’,,,,t that the body occupying
the domain may be subject to contact zuith friction. We are

going to consider some boundary conditions of friction on c described
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in [DL] in terms of certain convex continuous functionals J E in

problem (1).
For the normal and the tangential components of the displacements

and stresses on we use the following formal (i.e., regardless of regu-
larity) notations:

where v~ is the unit outward normal to

EXAMPLE 1. Coulomb’s law of two-sided contact with friction. Con-
sider the problem:

for the following implications hold:

Here are nonnegative parameters specified below; the
scalar 1-periodic functions characterize normal stresses,
while describe friction forces, and we assume that

A mechanical interpretation of such problems in terms of two-sided
contact with friction on EEcont described by the Coulomb law is given in
[DL], together with the justification and the definition of weak solutions
considered here.

Let us introduce a convex continuous functional Jf(V) on 
(in general, nondifferentiable), setting

According to [DL], the weak solution of problem (24) is the displacement
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u E in that satisfies the variational inequality (1) with the
functional (25).

In order to apply Theorem 1, let us consider more closely the functio-
nal (25). Clearly,

with

where v(~) is the unit outward normal to 3(o. Then the functions

are, respectively, the mean values of ~), 80.

Obviously,

Consider two qualitatively different cases:

1 ) ~ -1,u( E ) ~ b , ~ -1,u 1 ( ~ ) ~ a . Then, according to Remark 2, the
homogenized problem for (1), (25) coincides with (10), where 

2, the

homogenized problem for (1), (25) coincides with (10), where

Then by Theorem 1, the homoge-
nized problem has the form (10) with

provided that either - 0 or the set has interior
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points in RB In order to illustrate the influence of the geometry of ao ú)
on the set of admissible displacements Wo, consider the case n = 3. Sin-
ce 1jJ(ç) Ko &#x3E; 0 by assumption, the relation = 0 means

that

If the set 80 cv n contains three planar regions on which v(~) takes
three linearly independent values a2 , a3 , then, obviously, the impli-
cation holds O ° ( r~ ) = 0 ~ r~ = 0, and therefore, Wo = (0 ). If n 

consists of two planar regions with linearly independent normals a2 ,
then

If 3o a) n consists of parallel planar regions on which v(~) takes
only two values a1 1 then

where a2 , a3 form an orthonormal basis in IE~3 . In this case

EXAMPLE 2. NormaL displacement with friction. Consider the

problem

for the following implications hold:

Here # j (C) ~ 0 are real parameters, 0 ( j = 1, 2 ) are 1-periodic
functions in characterizing friction forces. We are going to stu-
dy weak solutions of this problem, as defined in [DL].
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Let us introduce a convex continuous functional 

setting

where a + = 01, 
According to [DL], the weak solution of problem (26) is the displace-

ment M~ E (HJ(Qf, TE))n that satisfies the inequality (1) with the functio-
nal (27).

The functional (27) has the form

where

are functions of class Bo with the mean values

Consider three qualitatively different cases:

1 ) If E - l,u 1-~ a1  ~ , E -1,u 2 ( E ) --~ a,2  ~ , then by Theorem 1 and
Remark 2, the homogenized problem for (26) (in terms of (1), (28)) has
the form of the variational inequality (10) with
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2) If E - l,u 1-~ a1  ~ , ~ - l,u 2 (E) ~ 00 , then the homogenized pro-
blem is (10) with

provided that either the =0} has interior points in
Or’ #2(ê)~0.

3) If ê -1 #1 ~ 00, E -1 ~l,l 2 ( E ) -~ ~ , then the homogenized problem
is (10) with

provided that either the =0} has interior
points in ,u 2 ( c ) --~ 0 .

Note that the limit set of admissible displacements depends on the
geometry of -7 E cont - · Consider, for instance, W0 = {v E

= 0 ) and assume that g2 ( ~) &#x3E; 0 on Then the

condition = 0 means that 0 a.e. Thus, if consists

of plane mutually parallel regions on which v(~) does not change direc-
tion, say v 1 =1, then Wo = ~ v : if v(~) changes direction, say

± 1, then 
It is easy to indicate various other instances of the dependence of Wo

on the geometry of ao and also to give other examples of mechanical
problems that fit into the framework of Theorem 1.

3. Problems with boundary conditions of Signorini type in partially
perforated domains.

For perforated domains n EW as in the previous sections, homoge-
nization of some unilateral elasticity problems with nonlinear boundary
conditions, in particular, of Signorini type, has been considered in [Y2],
Sect. 4. Here we extend these results to the case of partially perforated
domains and somewhat more general boundary conditions.

Let Q o c be bounded Lipschitz domains, and let cv c be a 1-

periodic domain of the type considered in Sect. 1, with the cell of periodi-
city cv o = cv n D . In the perforated domain Q n ccv let us fill up all cells
of the form E(z + z E zn, which lie outside Q o or have a nonempty
intersection with the layer of width cE near As a result, from Sd n
n Ecv we obtain a domain Q f with a perforated part in Q o . Formally, such a
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domain can be defined as follows. Let 7g be the subset of Z’ consi-
sting of all z such that E(z + D) c dist (E(z + D), aS~ o ) ; cE . Let

It is assumed that Q% Q~ n 8úJ, and Q f are Lipschitz domains. The boun-
dary is the union of and the surface of cavities Só = Qc

cQo.
Consider an elastic body occupying the domain Q f with the elasticity

tensor

where is 1-periodic in E and has the same structure as the tensor
in Sect. 1, whereas a1 (x) is another elasticity tensor independent

of E, defined for all x E and satisfying the usual conditions of symme-
try and positive definiteness on S’ with constants k 1, K2 &#x3E; 0 .

The class of problems studied in this section includes the following
model problem of one-sided contact without friction (see [DL], [F]) on a

namely,

where EEcont = T U (So n fao w), T is a measurable subset of and ao o is
a nonempty 1-periodic open subset on 3(o. The above relations on EEcont
are called the Signorini boundary conditions.

It is well known (see, for instance, [F], [DL]) that problems of this
type can be formulated in terms of variational inequalities on certain clo-
sed convex sets of admissible displacements in In particular,
the weak solution of the above problem is the displacement uf E =

satisfying the inequality

which means that the boundary conditions on EEcont have the form v. vE 
~ 0. We are going to consider somewhat more general sets of admissible
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displacements, namely,

where W( q , ~) is a function of class So defined in Sect. 1, while x) is
a function on W x measurable in r e 8Q for any q, and satisfying
the conditions:

Obviously, the boundary condition v Vf 0 can be defined in
terms of (30) with g( r~, x) = x r(x)( ~’ v(x» + ~ ~’( ~1 ~ ~) = x ao ~ ( ~)( r~ . "
~ v( ~) ) + , where v(x) and v(~) are the unit outward normals to and am,
respectively; and are the characteristic functions of the

sets r and ao co.
In order to formulate the homogenized problem for (29), (30), we de-

fine in the domain the elasticity tensor

where GLo is the homogenized tensor (8) corresponding to a(E) = ao(i),
and x G (x) is the characteristic function of the set G . We also introduce
the set of admissible displacements

where W( q) is the mean value of ~) in ~ With the help of Lem-
ma 6 it is easy to show that and to defined by (30) and (32) are clo-
sed convex cones in and (H 1 ( S~ ) )n , respectively.

Our aim is to establish closeness of the solutions uE E of problem
(29), (30) to the solution u’,E Wo of the homogenized problem
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with the tensor (31), provided that

where
We also impose some additional conditions which ensure the solvabi-

lity of problems (29), (30) and (33). In particular, under the coerciveness
conditions, which in our case amount to the inequalities of Korn’s

type

Cl , C2 = const &#x3E; 0, each of the said problems admits one and only one
solution (see [F], [DL], [L]). Note that the inequalities (34), (35) hold if
there is a nonempty open (in the induced topology) set y c 3Q and

x) = . Then the condition g(v , x) ap = 0 implies that v Y = 0
and the Korn inequality holds for v (see [OSY], Ch. I). Note that the
boundary conditions we want to consider on 8Q may be other than those
of the Dirichlet type: for x) = 0 we have zero Neumann condition on
cM2, whereas for g(q, x) Xy (x)( r~ ~ v(x)) + the boundary condition on y is
of Signorini type (here v(x) is the unit outward normal to 8Q). Thus, the-
re may be no coerciveness in the sense of (34), (35). To ensure the solva-
bility of the above problems in the absence of coerciveness, it suffices to
make the following assumptions.

In the space of rigid displacements at consider the subspaces

where

Then, according to the results of [F], Part II, the conditions

guarantee the solvability of problems (29), (30) and (33), respectively.
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Moreover, the solution is unique to within rigid displacements: if M~ is a
solution of problem (29), (30), then any other its solution has the form
M~ + ~0~, where e’ E ~, ,~E 

= 0, uE + e -’ E W~. A similar unique-
ness result holds for solutions of problem (33).

In what follows, we need extension operators and Korn’s inequalities
in partially perforated domains 

LEMMA 7. There exist linear extension operators 
- (H1(Q))n such that and

f

second Korn inequality

holds with a constant C independent of E, where
the operator of orthogonal projection.

This lemma follows from Theorems 3.9 and 3.11 of [Y3]. It can also be
obtained by slightly modifying the corresponding results of [OSY], Ch. 1,
§ 4.

Let be the generalized gradients of the solutions u~ :

and let P, be the extension operators from Lemma 7. The following ho-
mogenization theorem establishes closeness of the solutions of problems
(29), (30) and (33).

THEOREM 2. Suppose that the set f q E Rn: = 0 ~ has internal
points in the topology of W.

(i) If the solvability conditions (36), (37) hold and dim Otf =
= dim Oto, then for any sequence of solutions u’ of problem (29), (30) there
exist rigid displacements ’f such that for E - 0 we have
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where u0 is a solution of problem (33) and is the elasticity tensor
(31).

(ii) Under the coerciveness conditions (34), (35), with C1 indepen-
dent of E, the relations (38), (39) hold with ~’=0.

PROOF. An analogue of this result has been established in Theorem
1 for problems with friction in a perforated domain Q I = ,~ n EO). In that
case we have used uniform (with respect to E) estimates of the solutions
in ensured by the Dirichlet conditions on the outer part of the
boundary rf. In the present case of a partially perforated domain 
the boundary conditions x) 13Q = 0 may not guarantee such estima-
tes, in general, and we will use another approach based on the ideas
from [F].

For u E by 17 ’ u (resp., we denote the orthogonal
projection of u to lR (resp., Otf) with respect to the scalar product
( ~ , ~ U ) we denote the bilinear energy form
on corresponding to the tensor namely,

Consider the case (i). First of all, let us show that

Assume the contrary. Then there is a subsequence (still denoted by u~ )
such that

where I is the identity operator.
It follows from (29) with v = 0 that uE ) ~ (ff, s2,. The-

refore, using the Korn inequality from Lemma 7 and the assumption
we find that

where c &#x3E; 0 is a constant independent of E . For M?~ = s£ 1 uE, dividing (42)



60

by s£ , using (41) and the fact that is a cone, we get

It is easy to see that

Thus, (77~ 2013 wE is a sequence of rigid displacements which is boun-
ded in (L 2 ( S~ ) )n . Since 9t is a finite dimensional space, there exists 
E 9t such that 11 over a subsequence
(again denoted by E). Now, from (43), (44) and Lemma 3, we see
that

and thus, for the extensions from Lemma 7, we have the convergen-
ce

Let us show that O° e WOe Since Wf is a cone, we have (I - wE E

e W, and therefore, M?~ = wf satisfies the conditions

Hence, by Lemma 2

and by the trace theorem, we have

Since dim Otf = dim 1Ro by assumption, we may also assume that in
the finite-dimensional spaces Otf and So their respective bases eEJ and eY ,
j = 1, ... , ko, have been chosen in such a way that in as

E -~ 0 over a subsequence. Therefore, passing to the limit in the relations
( (I - II fRE) 2E 

= 0 and taking into account (45) and Lemma 3, we
get for j = 1, ..., 1~°. Hence, 
E (Wo n Dividing (42) by s~ , using Lemma 3 and the condition of



61

solvability (37) with p= f! 0, we find that

This contradiction proves the validity of (40).
In view of the weak compactness of a ball in Hilbert space and the

compactness of the imbedding there exist uo E 
and rO(x) E (L 2 ( S~ ) )n 2 such that for a subsequence of E - 0 we have

Clearly, relations (46) hold for wf = Therefore, Lemma 2
yields

and by the trace theorem for we have g(u°, x) = 0. It follows that

u0 E=- Wo.
Let us show that

To that end, as in the proof of Theorem 1, we apply Lemma 4 to the ten-
sor and verify the convergence (14) for

Since the set P(,,) = 0} has interior points in by as-
sumption, it can be easily shown with the help of Lemma 6 that there
exists 1 such that 4



62

we find that

where the product ® is defined in the proof of Theorem 1. Hence we im-
mediately obtain the convergence

which is equivalent to (14). Now, Lemma 4 and the symmetry properties
The relation

) follows immediately from the weak convergen-

In view of Lemma 5, it may be assumed that for a subsequence
we have

Now we can pass to the limit in (29) for a fixed v E Wo, since

p by Lemma 6. We get
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which shows that u° is a solution of problem (33). Moreover, taking
v = u° in the above relations, we obtain the convergence (39).

Since the solution of problem (33) is unique to within rigid displace-
ments and the Korn inequality holds in uniformly with respect to E ,

we see that (38), (39) hold for any subsequence of while uo may be as-
sumed the same.

The statement (ii) in the coercive case is established by similar argu-
ments as (i), with due simplifications.

REMARK 3. Again it should be noted (cf. Remark 1) that the cone
In: = 0} having interior points in is an essential assumption in
our proof of Theorem 2. Otherwise, the homogenized tensor do may de-
pend on the boundary conditions on the perforated boundary, as sugge-
sted by the example in [Y2], Sect. 4.
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