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Weyl Formula for Quasi-Elliptic
Pseudo-Differential Operators.

F. NICOLA (*)

1. Introduction.

This paper is devoted to the asymptotic behaviour for large A of the
counting function associated with quasi-elliptic anisotropic pseudo-
differential operators on compact manifolds.

Anisotropic operators are defined locally as standard, by imposing
different weight to derivatives with respect to different groups of varia-
bles. Precisely, in an open subset ,S~ of Rn, the symbols classes S Ii, q (Q x
x Rn) (whereu is a real number and q is a given n-tuple of rational num-
bers &#x3E; 1) are defined by the inequalities:

for x in a fixed compact subset K c S~ and ~ in Rn. Here the weight fun-

is defined by and (~, .) denotes the inner pro-
duct in RB The related calculus is due originally to Hunt, Piriou [10],
[11], whereas the invariance of these operators with respect to certain
classes of diffeomorphisms has been investigated in Parenti [15], where
it is also shown that the definition of anisotropic operators can be tran-
sferred to a foliated manifold M, provided the foliation preserves the
previous groups of variables. Our work looks as a continuation of [15] in
the new direction of the spectral theory.

We begin by seeing that the quasi-homogeneous principal symbol of
an anisotropic operator takes invariant meaning on a new vector bundle

(*) Indirizzo dell’A.: Via S. Pellico 7, 10067 Vigone (TO), Italy; e-mail:

nicolafab@tiscalinet.it
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Tq M which replaces the cotangent bundle T * M of the homogeneous ca-
se. Attention is here fixed on a self-adjoint quasi-elliptic operator A on a
compact Riemannian manifold M . In order to reach the so-called Weyl’s
formula, we shall use the heat method (cf. Gilkey [3], Maniccia, Panarese
[12], Grubb [4], Grubb, Seeley [5], Melrose [13], Gil [2], Taylor [18]).

In general one can associate several interesting operator-functions F
with a quasi-elliptic operator A, such that F(A) is trace class. In particu-
lar, the following have been studied for elliptic operators: the resolvent
(A - A) - 1 (when A has order &#x3E; dim M), the power operator A - s for Re s
sufficiently large, and the heat operator for t &#x3E; 0 (see for example
Grubb [4] for relations between these three functions). It is well-known
that in any case the asymptotic behaviour of N(~, ) can be investigated
studying the trace Tr F(A) of F(A ) and therefore studying its kernel KF :

1 is the sequence of the eigenvalues of A , and then applying
Tauberian theorems to deduce the asymptotic behaviour of 

Now, usually one is able to obtain an explicit enough expression for
KF(x, x) (for instance, using pseudo-differential techniques), and there-
fore direct estimates on KF yield the sought informations.

The heat method develops this program for the heat operator in

this way we shall find a formula with remainder for the trace Tr e - IA as
t ~ 0 + , from which, by Karamata’s Tauberian Theorem, the Weyl’s for-
mula will follow. Namely

with I ; and

where ale is the quasi-homogeneous principal symbol of A and dx dç is the
canonical volume density in Tq M .

As an example, we shall consider the differential operator P = 

- a e 2 on the flat foliated torus T2 = 
Let us observe that the spectrum of quasi-elliptic operators in has

been studied in Helffer, Robert [7], Mohamed [14], Boggiatto, Buzano,
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Rodino [1], using other methods, cf. H6rmander [9], and obtaining preci-
se estimates of the remainder in the Weyl’s formula. In our case, similar
sharp remainders will be, hopefully, obtained by using the anisotropic
Fourier integral operators of Parenti, Segala [16]; we leave to the future
the full development of these ideas.

Finally, I thank Professor L. Rodino who suggested the argument of
the research and guided the work.

2. Anisotropic operators.

In this section we recall in short the definition and the main proper-
ties of the anisotropic operators; for more details we refer to Parenti
[15].

Let Q, X be open subsets of W and R~, respectively. Let

(m1, ..., mn) be a given n-tuple of integer numbers; we set m =

DEFINITION 2.1. Let ,u be a real number; we shall denote by
SI1, q(X X Rn) the space of all functions ~( x , ~ ) E COO (X x Rn) satisfying
the following condition: for every multi-index a , ~3 and for every com-
pact subset K c X there exists Ca, p, K &#x3E; 0 such that

for every x E K, ~ E=- W, where

DEFINITION 2.2. If X S~ X Rn), the pseudo-differential
operator A = Op (a) with amplitude a is defined for feCoOO(Q) by

where the integral is understood as an oscillatory integral. We shall de-
note by L ~‘ ~ the space of all operators of this form.

If A E L ~‘ ~ q (Q) is defined by an amplitude a(x , ;) independent of y
(i.e. a symbol), we write A = a(x, D). Moreover one easily sees that
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L- oo, q(Q) : = n L 11, q (Q) is exactly the space of all regularizing opera-
03BC

tors, namely having kernel in x Q).
We remark that the image of the q) consists of

the (non-negative) integer multiplies of the rational number

where m ’ = m.c.m. ~ ml , ... , and Observe

again that 0  0 - 1 and 0 = 1 if and only if mj divide m for every j =

= 1, ..., n . This number 0 arises in the asymptotic formulas of the symbo-
lic calculus; for instance, the product of two operators p(x , D) 
and q(x, D) one of the them properly supported, with sym-
bols ~) and q(x, ~) respectively, is in and, up to regula-
rizing operators, it has a symbol

DEFINITION 2.3. We say that P = D) E LIl, has quasi-ho-
mogeneous principal symbol if there exists Pll,q(x,;) eCOO(Q X
x (R")(0))) quasi-homogeneous of degree ,u with respect to ; (i. e.

..., t qn ç n) = t Il P q, Il (x, ;) for every t &#x3E; 0, x E ,5~, e
such that p(x, + 00,

uniformly for x in compact subsets of Q and for some E &#x3E; 0.

DEFINITION 2.4. An operator P = D) with quasi-
homogeneous principal symbol Pu, q(x,;) is called quasi-elliptic if
Py, q (X, ç) all xeQ, ;eRn.

Let us come now to study the behaviour of these operators as it con-
cerns the changes of variables.

DEFINITION 2.5. Suppose that the (ml , ... , mn ) satisfies
the following condition: there exist positive integer numbers r1, ... , rv
such that
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Then, denoted by GL(n, R) the Lie group of the invertible real n x n
matrices, we write GLq(n, R) for the subgroup of all matrices of the
form (in block matrix notation) A = (Aij)i, j =1, 2, ..., v ~ where Aij is a ri x

In other words, the matrix
I i, f and onLy if a~k = 0 when m~ &#x3E; mk .

From now on we shall assume

satisfy the assumptions of Definition

THEOREM 2.6. Let S~ , ,~ ’ be open subsets of Rn; let 0 : S~ -~ SZ ’ be a
diffeomorphism, and (p’ its Jacobian matrix. Then, if t 0’ E-=

I for every A E Lfl, q (Q), the operator A ø defined for

Definition 2.5 and Theorem 2.6 were in Parenti [15]; one can easily
establish the following result, concerning the corresponding quasi-ho-
mogeneous principal symbols.

THEOREM 2.7. Let 0 : be a diffeomorphism with 
= (Aij )i, j = 1, ... , v 

E Coo ( S~ , GLq ( n , IE~ ) ) (in block matrix notation). Let P E
with quasi-homogeneous principal symbol ~ro~ (x, ~). Then the

operator A 9, defined in (2.6), has quasi-homogeneous principal symbol
p; (y, r~ ) given by
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Theorem 2.6 allows us to define our operators on those foliated mani-
folds (cf. Haefliger [6]) with the following property: each leaf must again
have a structure of foliated manifold and so on, until the vth foliation on
which any condition is not given.

DEFINITION 2.8. (i) Let M be a n-dimensional Coo manifold. We
say that M is a q-manifold if it has a (maximal) atlas a = (C~2 , sati-

sfying the following condition: for every i , j , t(o 1 ) ~ E C 00 n

n C~~ ), GLq (n, R)).
(ii) Let M be a q-manifold, and let A be a continuous linear map

A : Co (M) -~ Coo (M). We say that A is a pseudo-differential operator
in if, , given any local chart (O, X), the transfer A6
= (X -1)* 0 X * : Co (x(~‘~) ) ~ C 00 (x((~) ) is a pseudo-differential opera-
tor in L ~‘ ~ q (x((~) ), where Að denotes the composition of the extension
Co (.9) - Co (M), of the operator A and of the restriction C 00 (M) -
~C 00 (.9).

(iii) We say that A eLIi’ q(M) has quasi-homogeneous principal
symbol if, given any local chart (O, X), the transfer A6 has quasi-homo-
geneous principal symbol according to Definition 2.3.

Observe that by Theorem 2.7 the quasi-homogeneous principal sym-
bol cannot have invariant meaning on the cotangent bundle T * M . This
justifies the following construction of a new vector bundle on a q-mani-
fold M.

PROPOSITION 2.9. On any q-manifold M there is a particular C 00
vector bundle Tq* M, see the next proof for the precise definition, such
that the quasi-homogeneous principal symbol of an operator P E

q (M) can be interpreted as a function in Coo (Tq* MBO).

PROOF. Let us argue in the case of two groups of variables, i.e. v = 2
with the notations of Definition 2.5. As a consequence of the given folia-
tion two particular vector bundles are defined on M . In fact, this folia-
tion defines a (completely integrable) field F of (n - r1)-planes (that are
the tangent spaces to leaves). Then we consider the vector bundle N*,’-f’
on M, that is a sub-bundle of T * M, with fiber at x E M given by the po-
lar, or orthogonal, in Tx M of the tangent space at x to the leaf containing
x; similarly we can consider the vector bundle T * F on M with fiber at x
given by the cotangent space at x to leaf containing x . By Theorem 2.7, if
we assume on N * M and T * M fiber coordinates induced by the ones in
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T * M, it is straightforward to convince ourselves that in the complement
of the null section (Withney sum) the quasi-ho-
mogeneous principal symbol can be invariantly defined. In the general
case, using inductive arguments, we shall set with obvious notations

In the following, to integrate functions defined in Tq* M, we shall re-
fer to canonicaL volume density defined (invariantly and locally) by

~B ... ... .

DEFINITION 2.10. Let M be a q-manifold and with

quasi-homogeneous principal symboL p~ . We say that P is quasi-ellip-
tic in Tq MB0.

Finally, we need introduce a scale of weighted Sobolev spaces.

DEFINITION 2.11. Let denote by the space of all
distributions ue such that ( 1 + 1;1~)s/2û(ç) 

As usual, one defines the spaces and the Hilbert

spaces HS’ q(M) if M is a compact q-manifold. Then an operator A E
can be regarded as continuous map 

-~ H s -,~’ q (M).

3. The heat semigroup e - ~.

Let M be a compact Riemannian q-manifold. A quasi-elliptic operator
A &#x3E; 0, can be regarded as a closed unbounded operator on
L 2 (M) with dense domain 7~’~(M). Standard arguments (cf. Shubin
[17]) show that its resolvent is compact, and therefore, if A is formally
self-adjoint, it has a spectrum made of real of finite
multiplicity, clustering at infinity. Studying the asymptotic behaviour of
the spectrum, we assume A satisfies the following properties:

(3.1) with quasi-homogeneous principal symbol

In particular, for any chart (9, x), called a(x, ~) a symbol for the transfe
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A 0 1, this means that

uniformly for x in compact subsets and for some e &#x3E; 0. This num-

which might depend on the local chart, will be assumed

constant.

By the positivity of the principal symbol, A is semi-bounded from be-
low and so the sequence of eigenvalues is definitively positive. Moreover,
denoted by ~A~, ~ the spectral resolution of A, for t ~ 0 is well defined

as one-parameter semigroup of bounded operators
L 2 (M) ~ L 2 (M) or, more generally, for any inte-

ger s (this follows from the fact that if A ~ c , then e ~" commutes with
(A - c + 1)8 for any s and the H s norm of u is equivalent to the L 2 norm
of (A - c + 1 )S u).

Our purpose is to determine the singularities of the heat kernel

H( t , x , y ) of e ~" for small t .

THEOREM 3.1. For t E [0, + 00) one can represent e -tA in the form
of a sum of an operator with kernel smooth in t , x , y and a pseudo-dif-
ferential operator U(t). In any local chart ð, U(t) has a symbol
u( t , x, ç) smooth in t and satisfying the following condition: for any
compact subset K c ð, E Z+, T E (0, + oo) there exists C &#x3E; 0
such that

for all t E [ 0, T], ~ ERn and x E K. In particular, U(t) and therefore e - IA
are regularizing for t &#x3E; 0.

PROOF. Following a standard pattern, see for example Taylor [18],
we limit ourselves here to the main lines. Let us construct the pseudo-
differential operator U(t), which approximates e - ~ , as solution of the
problem

More precisely, the left side of the first equation in (3.3) will also be a
smooth function of t for t ~ 0, with values in L - 00 (M). The linearity of
the problem allows a reduction, using a partition of unity, to the case of
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constructing the symbol u(t , x, ~) of U(t) in a local chart 0. We assume
the given volume density in C9 agrees with the Lebesgue measure and
we choose a properly supported representative a(x, D) of A in 0. It is
natural to look for u( t , x , ~ ) with asymptotic expansion

!f) - E E ,S -ej ((~ x R") (where 8 is defined in (2.3)).
j &#x3E; 0

By (2.4) we can write the problem (3.3) in terms of symbols; regrouping
the terms of the same order, we deduce the following transport equation,
coupled with the respective initial conditions:

By inductive arguments it is easily proved that

where ,S k stands for a function in 
In order to make this formal construction meaningful and prove the

regularity properties with respect to the variable t , we observe that from
(3.5) we have for every j ~ 0, a, f3 e Z + ,

where s * ( a , ~3 , L , j ) ~ 0 . It readily follows from the positivity of the
principal symbol that for every compact subset K c ð, T E (0, + 00 ), N E
e Z+ , there exists a constant C &#x3E; 0 such that

for all t E [ o , T ], Now, it is a standard procedure to con-
satisfying the estimates

for all
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The regularity properties of . with respect to t
follow from the ones of u( t , x , ~ ). B at I

Then it suffices to observe that by (3.3) it follows that

as an equality between operators from C °° (M) in itself. Since e -’ defi-
nes a continuous map we conclude that
e 4- U(t) has kernel in Coo ([0, + 00) x M x M)..

4. Heat trace asymptotics.

Let M be a compact Riemannian q-manifold and let A be an operator
satisfying (3.1 ). This section is directed to study the asymptotic beha-
viour of the counting function N(A) := 2: 1 associated with A . By Theo-

Aj  A
rem 3.1, is regularizing for t &#x3E; 0, therefore trace class. The study of
Tr e -’, which we are going to carry out, will therefore provide, by
means of Karamata’s Tauberian Theorem, the Weyl’s estimate for 
we are seeking.

Denote by T the Euler’s Gamma Function.

THEOREM 4.1. Let M be a compact Riemannian q-manifold and Let
A be an operatori satisfying (3.1). Then the trace of the corresponding
heat semigroup e -tA can be estimate by

where 0 and E are defined in (2.3) and (3.2) respectively,
and

where dx d~ is the canonical volume density in Tq* M.

We need some technical lemmas. We begin by considering the fun-

ction where m are the integer
numbers defining the n-tuple q (cf. the beginning of Section 2). Observe
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that a is continuous and (7~B{o}~=C~(R"B{0}). Then we denote bY f q
the manifold of equation = 1.

REMARK 4.2. It is readily seen that for

all ; E Rn. Hence, R &#x3E; 0 , the weight functions ~( ~), ~ ~ ~ q and
1 + [ 1 q are all equivalent.

LEMMA 4.3. Let Q c W be x (R’l )( 0 ) )) and let us
suppose there exists 1 &#x3E; 0 such ... , 

= 

for all (x, E) E Q x (Rn B f 0 1) and t &#x3E; 0 . For any fixed k &#x3E; - I , define

, then for any fixed x e S2 we

where dO is a suitable volume density defined as in the subse-
quent proof.

PROOF. We begin by defining the anisotropic polar coordinates a,
0 = (el, ..., en_1&#x3E; by

where stands for (working with such coordinates we
leave out the points of the coordinate planes). Denoted by 0) the Ja-
cobian determinant of this transformation, we have 9 ) =
= 0, lql - ~( 1, 0). Moreover, the manifold has ( 4 . 4 ) with a = 1 as para-
metric equations. we assume ~( 1, 0) d81 1 A ... A de n -1 1 ~ 1 as volu-

me density; in short it will be denoted by d0. Let us switch to such coor-

dinates and let us put 9 ) for Ø(x, ~( 1, 0)),
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the left-hand side of (4.3) becomes

This concludes the proof.

LEMMA 4.4. For any fixed x, the following formula holds:

PROOF. Switching to the anisotropic polar coordinates ( a~, 0) given
by (4.4), we have

where the positive real number d(O) is defined by the condition

all (x, 0), ..., 0)) = 1.
By the quasi-homogeneity of all’ we get d( 8 ) = all ( x , 8 ) -1~~‘ . Substitu-

ting this expression for d(O) in (4.6), we obtain (4.5). o

LEMMA 4.5. Let be a coordinate open subset, o E S k, 
x Rn) and let a and all be respectively the symbol and the quasi-homoge-
neous principal symbol of A in C~. Then

- , , I 

as t - 0 + , uniformly for x in compact subsets of C~.

PROOF. Let K be an arbitrary compact subset of ð and x E K. In this
proof each asymptotic formula is meant uniformly for x in K. Define
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It is clear that

for any fixed r &#x3E; 0. Now we distinguish two I + k and
E &#x3E; |q| + k.

In the first case, let us verify that

as t ~ 0 + . Switching to the anisotropic polar coordinates ( a~, 8 ) given by
(4.4) and putting , the expression in (4.7) turns into

with g(t, x, e, 0) = ç(a, 0)) - a(x, ç(a, 0))) (we recall that a is
function of (2, t, x, 0) and (fi(t, x, ~o, 0) = O(x, 0)). By (3.2) and Re-
mark 4.2 there exists a constant C &#x3E; 0 such that

for r large enough. Hence in the integration domain we have

x , e, S) 1/ Q ~ 8 ) ~ C ’ r - f for a suitable constant C’ &#x3E;

&#x3E; 0 . So, for a fixed E o E ( o , 1 ), we can find r so large to have

x , Q, 0) ~ E o o . Taking this fact into account, an application of the
Mac Laurin expansion for the exponential function yields
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Hence, in view of (4.9), we get

As it concerns the function ~ ( t , x , o , 8 ), again on the integration do-
main, by Remark 4.2, we have

for a suitable constant C" &#x3E; 0. We return now to the integrals which ap-
pear in the right-hand side of (4.8). The most internal integral can be re-

+ m

placed by an integral f if one multiplies the function under the integral
0

sign by the characteristic function of 0), +00). So, granted
(4.10) and (4.11), the new function to integrate is dominated by

which is clearly integrable with respect to O, B. This concludes the proof
in the case I + k.

IVhen E &#x3E; q ~ I + k, we must prove that

In fact, in this case we have ~) - a~ (x, ~) = 0( ~ ~ ~ q - ~’ ) as q +
+ oo , with I + k . Therefore it follows from the first part of the proof
that ( 4 . 8 ) holds with E replaced by E’, which is our thesis. The lemma is
proved.

PROOF OF THEOREM 4.1. With the notations of the proof of Theorem
3.1, by (3.7) we have Tr e -tA - Tr U(t) = as t --~ 0 + . Hence, it suffices
to prove that (4.1) holds with Tr replaced by Tr U( t ). On the other
hand, by the well-known formula for the kernel of a pseudo-differential

operator, for t &#x3E; 0 we can write Tr U( t ) = j a(t, x ) dx where, for any fi-
M

xed integer N ~ 1, a(t, x) can be expressed in a local chart O as sum of
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the terms

with

Now we establish asymptotic formulas as t - 0+ for 11,12,13, which
hold uniformly for x in an arbitrarily fixed compact subset K of ð.

If we take N = ill + 1, by (3.6) we see at once that I3 ( t , x ) is 0(l) as
0

t ~ 0 + (we have used the fact that the function a( f,)k is integrable in
I f, I &#x3E;R &#x3E; 0 if 1~  - 

Concerning I2 (t, x), it can be written, by the expression for uj givenInl I
in (3.5), as sum over , and h = 2, ..., 2j of the terms

In view of Lemma 4.5 with = h,u - Sj, we have

with

On the other hand, there exists a constant C &#x3E; 0 such that for x E K

We stress that and therefore Lemma 4.5 ensures the

estimates . Hence, for every j

= 2, ..., 2j we get h (t) 
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As far as h is concerned, again by Lemma 4.5 with 0 = 1 we have

Taking Lemma 4.3 and (4.5) into account and adding together the contri-
butions given by every chart by a partition of unity, we obtain

(4.1).

THEOREM 4.6. (Weyl’s Formula) Let M be a compact Riemannian
q-manifold and let A be an operator satisfying (3.1). Then the corre-
sponding counting function N(A) can be estimate as follows:

where C is defined in (4.2).

PROOF. Taking Theorem 4.1 into account, apply the Karamata’s
Theorem ([18], pg. 89).

EXAMPLE 4.7. Consider the differential operator P = a e 1 - on

the flat foliated torus T2 = with leaves given by the cir-
cumferences of equation 9 2 = const .; we have P E L 4’ ~ 1, 2 ) ( ~2 ). Its quasi-
homogeneous principal symbol is given by ~ro( ~ 1, ~ 2 ) + ~ 2 , and the-
refore P is quasi-elliptic. Moreover P is self-adjoint; in fact it can be
written as P = Q * Q = QQ * where Q = ae 2 - 2) (T2) is the heat
operator in two variables. Now, one sees at once that Pe’(n, 0 1 + n2 02)
= n2 ) e i(nl ()I + ~()2) for all ( n1, 0 Z, giving all the eigenvalues
of P , hence a direct calculus of the integral in the Weyl’s formula shows
that
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