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p-adic Completions and Automorphisms
of Nilpotent Groups.

RÜDIGER GÖBEL (*) - AGNES T. PARAS (**)

ABSTRACT - Given a group G, a new construction of a torsion-free, nilpotent group
H of class two is given such that Aut H/ Stab H = G. When G = ~ e ~, it is sho-
wn that Aut H = Inn H .

1. Introduction.

It was shown in [4] that any group G is the outer automorphism
group Aut H/ Inn H of some torsion-free metabelian group H . If the

given group G has infinite cardinality  2xo, then we may also assume
that G ~ I (see [5]). It is natural to ask whether this result can be

strengthened to nilpotent groups of class two.
In [2] and [3], two different constructions of a group H are presented,

wherein H is a torsion-free nilpotent group of class two and

Aut H/ Stab H is a prescribed group. (If K is any group, the group Stab K
is defined in this paper to be

where Z(K) denotes the center of K. Clearly, Inn H c Stab H, if H is nil-
potent of class two.) The first one made use of Zalesskii’s construction of
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a torsion-free nilpotent group of class 2, with rank 3 but having no outer
automorphisms. The second involved the creation of a 2-divisible, tor-
sion-free abelian group X admitting an alternating bilinear map.

In this paper we consider the p-adic completion N of a free nilpotent
group N and construct a group H such that N  H  N and
Aut H/ Stab H is a prescribed group. It is hoped that the given proof, ba-
sed entirely on group theory, will give more insight into this replace-
ment of Inn H by Stab H. The construction is very canonical and we can
also show that in this setting we can replace Stab H by Inn H if and only
if the given group G = I e I. Section 2 gives a description of the p-adic
completion N of a free nilpotent group N of class two and its elements.
Section 3 contains a characterization of the elements of Inn N and
Stab N and the main theorem.

2. p-adic completion of a free nilpotent group of class two.

If N is a nilpotent group and p is a prime, a topology on N, called the
p-adic topology on N, can be defined by taking the 
base of open sets about {1}, with p-adic completion N defined to be

where is defined to be = aNPz (i  j). If
we take N to be free nilpotent of class two with free generating set

i E I ~, then the given base of open sets determines a Hausdorff topo-
logy on N and N embeds in N, where x E N is identified with E

E N. Moreover N is also nilpotent of class two, N’ = N’ and N/N’ = N/N’
(see [7], p. 55). If N is free nilpotent, every element g E N can be repre-
sented as

where only finitely e Z are non-zero. The E 7} is
a free set of generators for the free abelian group N/N’ . If, in addition, I
is a linearly ordered set, then I[xi, xj]: i  j ~ is a free set of generators
for the free abelian group N’ and every element g can be uniquely repre-
sented as
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where il  ...  in and only finitely many kij are non-zero (see [6],
p. 165).

If x E N and ~ = ( gi + Jp is a p-adic integer, we let x ~ deno-
te the element where If x , yeN, then

since Let denote the infini-

te product It is easy to see that every element of N can be
written (not necessarily uniquely) in the form

where ~ i , ç jk E J p with only countably many ~ k and ç jk non-zero and for
all divides all but finitely many Ek and ç jk.

3. Prescribing automorphism groups.

In this section we show how a given group can be realized as the au-
tomorphism group of a torsion-free nilpotent group of class two modulo
its stabilizer. We begin by defining some preliminary notions which have
appeared in [1] and [4] within the framework of modules, but which are
now formulated in the context of nilpotent groups.

Let A be a regular cardinal such that I a 2x°, and define the tree T =
= w &#x3E; A to be the set of all functions r : n - I (n  oi). If 6 and r are two fun-
ctions in T, define J S r if a c i. Let G be any group such that 
and e be the identity of G. Define NG to be the free nilpotent group of
class 2 with free generating set Ig,: g E G, Note that G acts on

NG via

and G embeds in Aut NG . Moreover the same action makes NG IN6 a
Z[G]-module. Let p be an odd prime and NG be the p-adic completion of
NG . If y E NG , then

where countably are non-zero p-adic integers, and, for all
divides all but finitely and Define
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the T-support of y to be

Hence [ y ] is the smallest subset S of T such that y E (g7:: 
Define the norm of y to be

A branch v of T is defined to be a linearly ordered sequence v =  w ,

where vn : n - I ~+1. Note that v and v r n = vn . If X c T ,
the set of all branches of T contained in X will be denoted by Br(X). If v
is a branch of T and v is an ordinal such that v  A, define the part of v to
the right of v to be

If v = is a branch of T , define

If H is a group such that N  H  N, define the off
in N to be

If p is an odd prime and x , y e N such that E H, then we obtain
2k 2k 2k k k p2k - 1

the equation = Thus it is clear that H * is

a subgroup of N, if p is an odd prime. Moreover, if p is an odd prime and
N is any nilpotent group of class two, then if x and y are p-th powers in
N, then so is xy . Define a canonical subgroup P of NG to be a subgroup
of the form

for some countable subset To of T . We identify each í E T with the ele-
ment e, of N.

DEFINITION 3.1. A trap ( f, P, cp) is a triple, where f :~’’ T is a

tree embedding, P is a canonical subgroup of and cp E Aut P such
that

(i) ImfcP,
(ii) [P] g P, where [P] is a subtree of T,
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We state without proof the following theorem (see [1]), which holds in
ordinary set theory ZFC.

THEOREM 3.2 (The Black Box). For some ordinal A* of cardinality
A, there exists a transfinite sequence of traps ( fa , P,,, cp a ) ( a  À. * ) such
that for a , ~3  ~, * ,

(iv) for all X c N with No and for all cp E Aut N, there exists
a  A * such that

We now describe the construction of the torsion-free nilpotent group,
which will possess the desired automorphism group. Let ~x G ~ denote the
subgroup generated by the 

Choose a transfinite sequence ( fa , satisfying the conclu-
sion of the Black Box. Let Ho = N. * and assume we have found

an ascending continuous chain of G-invariant subgroups

of NG such that the following hold inductively:

If (t) does not occur, take Ha + 1= Ha . If u is a limit ordinal, take H, =

The next, by now standard, argument shows that ( * ) can be arran-
ged, while (t) depends on the choice of cP a. Hence we will always choose
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ga as above with ( * ) and, whenever possible, with (t). The latter case is
called the strong case in [1]. The following theorem shows that condition
( * ) holds for every ordinal a .

THEOREM 3.3. Suppose Ha is defined as above. Then there exists a
branch such that satisfies (*), where
ga = v1.

PROOF. Suppose that the above conclusion does not hold, i.e., if v E
and Hv = ~Ha , (v 1 )G ~,~ , there exists  a such that
Then for some integer s , the element is a product of

elements and elements from NG . Using commutators, there exist
integers sv , ni (not all zero), n , and such
that g!Pps is equal to 

Let v  Since v [v] is an infinite subset of v and not all ni’s are zero,
an infinite subset of v is contained in c [P~ ]. This means that [v] c
c [P~] and so v E Br n Br ( [P,~ ] ). By condition (iii) of the Black Box,
a  ~3 + 2xo. Hence if v E Br (Im fa ), there exist  a; n , uZk E NG ; hvi e
E Ha; hi E G and integers sv, n2 (not all zero) such that  a  f3( v) + 2"°
and

Hence there exist distinct branches v, such that 
, Then

are both in Ha . Taking the p’--th power of (3.2) and the pSv-th power of
(3.3), we obtain
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Multiplying (3.5) on the right by the inverse of (3.4), we have

which is an element of Ha . By the definition of the supports of the ele-
ments of Ha , an infinite subset of v is contained in w or an infinite subset
of w is contained in v . This gives a contradiction, since v and w have finite
intersection.

Recall from equation (3.1) that G embeds in Aut NG. By continuity, G
also embeds in Aut NG . Since the intersection G n Stab NG contains only
the identity map and Stab NG is a normal subgroup of Aut NG , then the
semi-direct product Stab G also embeds in Aut NG . The following
theorem describes the automorphisms which do not extend to the purifi-
cation of every G-invariant extension of Ha .

THEOREM 3.4. If cp E Aut NG B(Stab G), then there exists

x E NG such that x cP fI. ~NG, a~* , where the are defined
as in Theorem 3.3.

PROOF. Let Ha = ~NG , gj: f3  a)* and suppose that x ~ e (Ha, 
for all x E NG. Let T and 6 be distinct elements of T and 1, £, Q E Jp be al-
gebraically independent over Z. Then there exists A;eZ such that

for some i Since , we have
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Since the elements
are independent in NG/Nb and

1, ~, Q are algebraically independent over Z, we have that

Hence

Applying once more the algebraic independence of 1, over Z and

the independence modulo to the preceding
congruence, we obtain ba = dz = 0 , = e/6 = ya ,

Suppose now that

tion (3.1 ). Similarly, we obtain

for some and for some

where and But
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Now equation (3.8) can be rewritten as

Equations (3.9) and (3.10) yield

Taking the p -th power of equation (3.11) and collecting the commuta-
tors with we use equations (3.6) and (3.7) to get

Since the i , j = 1, ... , n ~ form a linearly
independent set in Ni, I combine like commutators to get the equa-
tions

Equation (3.13) implies that either Wi = 0 or E quations (3.14)
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and (3.15) imply that = 0 for all i , j . Since cp is assumed to be an au-
tomorphism, there is an i such that wi = p  . Thus it follows that n =pk h
for some h E G and

Hence there exists h E G such that for all r e T and for all x E G, 
- i.e., cp induces h on Since NG is nilpotent of class
two, [x,, (xh),, ( yh)d ] _ [xz, Thus cp also induces h on Nb,
and so cp E Stab G .

Let cp = Cp gh be the automorphism defined for all x E NG to be
= x[ h , x 9 ], for some fixed g E G and h E NG . Clearly is conjuga-

tion by h .

COROLLARY 3.5. If * and g is any element of G, then
* and extends to any extension of which is

G-invariant.

The corollary shows that if G is non-trivial, then there exist elements
of Stab HA - which are not in Inn 

COROLLARY 3.6. Suppose G = I e I and H = (NG , g~: /3  a) is defi-
ned as in Theorem 3.3. If cp E Aut NG B Inn then there exists x E NG
such that (H, x )* .

PROOF. If G = {e}, then eT = ermod Ni for all r E T , by Theorem 3.4.
Let z and 6 be distinct elements of T. Then there exists an integer such
that and h], for some hi E H’ and 
By continuity of cp , we also have efPk hI. Thus h2 = 1 and h1=
= [er , h]. As in Theorem 3.4, we take and compare the images e~ and

to show that for any pair r, 6 of distinct elements of T, there
exist an integer and h E H such that

By taking three distinct elements T, 6,,uE T and applying the preceding
observation to the three distinct pairs of elements of T, it is easy to see
that there exist g E H and an integer k such that

Since E NGk for all r, it follows that g] E NGk for all T. Thus
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there exists 9 * E NG such that
for all z, i.e., cp E Inn NG . 1

THEOREM 3.7. Let Then Aut * =

PROOF. Let cp E Aut 7~. Then cp extends to cp E Aut Note

that

If q E Stab (NG) &#x3E;J G, then q ING/Nb = g ING/NG’ and cp INb = g, for some
Hence cp [~(~)=~ i.e., 

Suppose By Theorem 3.4, there exists
x E NG such that xCP fI- ~H~_, * , x G )* . Theorem 3.2 implies that there exists

such that x , Ilxll,  and IP. We show
that there exists and Va E such that Ilxll  and if

= (Ha,  a)* for all B  a , i

for all B  a . Let v e Br then v ;é vp for all {3  a . We show that

either or i.e., the sought
after ga is either v 1 or v 1 x . Suppose that the preceding is false. Then
there exists an integer k such that

for some integers mi , ni , gi E G and hi , hig E Ha . Then we have the follo-
wing congruences mod NG :

By choice of support and, hence, norm of v, it follows that
= 1, ...,l) and
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So

Since llxll,  Ilvll and v ~ v~ for all f3  a, it follows from equations
(3.17), (3.18), (3.19) and (3.20) that

which is an element of (Ha , (H~, * , x G ). This contradicts the assum-
ption that (H~, * , x G ~* . Therefore cp E Stab G and Aut Hi * =
= Stab (H~, * ) ~ G .

COROLLARY 3.8. If G = ~ e ~, there exists a torsion free nilpotent
group H * of class two such that Aut H * = Inn H * .

PROOF. Suppose G = f e 1. Let H (NG , g~ : /3  ~, * ) be as in Theo-
rem 3.7 and H * its purification in NG . Suppose cp E Aut H * . Then cp
extends to an automorphism of NG . Using Corollary 3.6 and the same ar-
gument as in Theorem 3.7, it follows that cp e Inn NG . Thus cp is conjuga-
tion by some element x in the normalizer of H * in NG . So
[ g , x] E H * for all 9 E H * . If z and p are distinct, there exists an integer
1~ such that [e~, X]pk and are both in H, i.e.,



205

for some hz , h~ E H. It follows from these equations that _= and

for Thus By the
choice of the supports of the elements of H, elements in H with finite

support must be in NG. Hence it must be that E03BC and Et are integers,
It follows that x E and so

Finally we show that

it suffices to show that if , then there exists g E H * and

q E NG such that By the definition of NG , for all divi-

des E i for all but finitely many E i in Jp. Now there exists an integer k
such that

for some integers ai, bi. However

divides Eij for almost does not divide then

there exists an integer nij such that I
and otherwise. Then

Hence it must equal
is an element of H * , and so

COROLLARY 3.9. Let N = (X) be a free nilpotent groups with basis X
and G a non-trivial groups such that G acts faithfully on X . If N c H c N,
H * = H and H is G-invariant, then Inn H ~ Stab H and G n Stab H =
=1.

PROOF. Let and h E HBZ(H). Define the map cp by 
= x[ h , for all x E H . Clearly cp E Stab H and q g Inn H . Since G acts
faithfully on X, the intersection G n Stab H must contain only the identi-
ty map.



206

REFERENCES

[1] A. L. S. CORNER - R. GÖBEL, Prescribing endomorphism algebras - a unified
treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479.

[2] M. DUGAS - R. GÖBEL, Torsion-free nilpotent groups and E-modules, Arch.
Math., 54 (1990), pp. 340-351.

[3] M. DUGAS - R. GÖBEL, Automorphisms of torsion-free nilpotent groups of
class 2, Trans. Amer. Math. Soc., 332 (1992), pp. 633-646.

[4] R. GÖBEL - A. T. PARAS, Outer automorphism groups of metabelian groups, J.
of Pure and Applied Algebra, 149 (2000), pp. 251-266.

[5] R. GÖBEL - A. T. PARAS, Realizing automorphism groups of metabelian
groups, Abelian Groups and Modules, Trends in Mathematics, Birkhäuser
(1999), pp. 309-317.

[6] M. HALL JR., The Theory of Groups, Macmillan, 1973.
[7] R. B. WARFIELD JR., Nilpotent Groups, Lecture Notes in Math., vol. 513,

Springer, 1976.

Manoscritto pervenuto in redazione il 28 marzo 2000.


