RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ALAIN M. ROBERT

The Gross-Koblitz formula revisited

Rendiconti del Seminario Matematico della Università di Padova, tome 105 (2001), p. 157-170

http://www.numdam.org/item?id=RSMUP_2001__105__157_0

© Rendiconti del Seminario Matematico della Università di Padova, 2001, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Gross-Koblitz Formula Revisited.

ALAIN M. ROBERT (*)

The formula in question gives an explicit value of Gauss sums using the *p*-adic gamma function of Morita. We give here an elementary proof of this formula (valid for all primes). Let me thank L. van Hamme who stimulated me to find such a proof, and A. Junod who helped me to understand [2], which has been my starting point.

1. Preliminary comments on numeration.

Let $q = p^f (f \ge 1)$ be a power of a prime p. Each affine map

$$x \mapsto a + qx : \mathbf{Z}_p \to \mathbf{Z}_p \qquad (a \in \mathbf{Z}_p)$$

has a unique fixed point

$$a_* = \frac{a}{1-q} = a + aq + aq^2 + \dots = a + q(\underbrace{a + aq + aq^2 + \dots}_{a_*}).$$

When a is an integer in the interval $0 \le a < q$, say with p-adic expansion

$$a = a_0 + a_1 p + ... + a_{f-1} p^{f-1}$$
 $(0 \le a_j < p),$

the fixed point of the corresponding affine transformation has a periodic p-adic expansion given by $a + aq + aq^2 + \dots$ (period of length f). Let us write

$$a_* = a_0 + p(a_1 + a_2 p + \dots + a_{f-1} p^{f-2} + a_0 p^{f-1} + \dots) = a_0 + pa'_*.$$

We recognize in a'_* the fixed point of the affine map corresponding to

$$a' = a_1 + a_2 p + ... + a_{f-1} p^{f-2} + a_0 p^{f-1},$$

(*) Indirizzo dell'A.: Institut de Mathematiques, Rue Emile Argand 11, Case Postale 2, CH-2007 Neuchâtel, Svizzera.

and we observe that a' is obtained from a by a cyclic permutation of its digits. Iterating the procedure, we can write

$$a'_* = a_1 + pa''_*, \qquad a''_* = \frac{a''}{1-q}, \ldots$$

In this way, we obtain a cycle of integers in the interval $\{0, ..., q-1\}$

$$a', a'', \ldots, a^{(f-1)}, a^{(f)} = a$$

having p-adic expansions obtained by cyclic permutations from that of a.

2. p-adic extensions of quotients of factorials.

For any prime p and $0 \le a < p$, the relation

$$(*) \quad \frac{(a+pn)!}{p^n n!} = \frac{(a+pn)!}{(p1)(p2)\dots(pn)} = (-1)^{a+pn+1} \Gamma_p(a+pn+1)$$

shows that

$$n \mapsto (-1)^{pn} \frac{(a+pn)!}{p^n n!}$$

has a continuous extension $Z_p \rightarrow Z_p^{\times} \subset Q_p$ given by

$$x \mapsto (-1)^{a+1} \Gamma_p(a+px+1).$$

This simply follows from the definition of the Γ_p -function by Morita.

Let us generalize this observation to the case of quotients $m \mapsto (a + qm)!/m!$ when $0 \le a < q = p^f$ $(f \ge 1)$.

We can introduce the p-adic expansion of a, say

$$a = a_0 + a_1 p + ... + a_{f-1} p^{f-1},$$

and write

$$a + qm = a_0 + p(\underbrace{a_1 + \ldots + a_{f-1} p^{f-2} + p^{f-1} m}).$$

Put $n_0 = a + qm = a_0 + pn_1$ and successively

$$n_0 = a_0 + a_1 p + p^2 n_2$$
, $n_1 = a_1 + p n_2$, etc.

hence with

$$n_1 = a_1 + \dots + a_{f-1} p^{f-2} + p^{f-1} m$$

= $a_1 + p(\underbrace{a_2 + \dots + a_{f-1} p^{f-3} + p^{f-2} m})$, etc.

Let us write a telescopic product $(n_0 = a + qm, n_f = m)$

$$\begin{split} \frac{(a+qm)!}{m!} &= \frac{n_0!}{n_1!} \frac{n_1!}{n_2!} \cdots \frac{n_{f-1}!}{n_f!} \\ &= \frac{(a_0+pn_1)!}{n_1!} \frac{(a_1+pn_2)!}{n_2!} \cdots \frac{(a_{f-1}+pm)!}{m!} \\ &= \pm p^{n_1} \Gamma_p(a_0+pn_1+1) \cdot p^{n_2} \Gamma_p(n_1+1) \cdots p^m \Gamma_p(n_{f-1}+1), \\ \frac{(a+qm)!}{p^{n_1+\cdots+n_f}m!} &= \pm \Gamma_p(\underbrace{a+qm}_{a_0+pn_1=n_0}+1) \Gamma_p(\underbrace{a_1+pn_2}_{n_1}+1) \cdots \Gamma_p(\underbrace{a_{f-1}+pm}_{n_{f-1}}+1) \\ &= \pm \prod_{0 \leqslant i \leqslant f} \Gamma_p(\underbrace{a_i+pn_{i+1}}_{n_i}+1) = \pm \prod_{0 \leqslant i \leqslant f} \Gamma_p(n_i+1). \end{split}$$

Recalling (*) in the form

$$\frac{(a+pn)!}{n!} = (-1)^{a+pn+1} p^n \Gamma_p(a+pn+1)$$

we see that the precise sign is $(-1)^{(n_0+1)+(n_1+1)+...+(n_{f-1}+1)}$. Moreover, the sum $\sigma=n_1+...+n_f$ may be computed as follows

$$n_{1} = \left\lfloor \frac{a}{p} \right\rfloor + p^{f-1}m$$

$$n_{2} = \left\lfloor \frac{a}{p^{2}} \right\rfloor + p^{f-2}m$$

$$\cdots = \cdots$$

$$n_{f-1} = \left\lfloor \frac{a}{p^{f-1}} \right\rfloor + pm$$

$$n_{f} = m$$

$$\sigma = \operatorname{ord}_{p} a! + \frac{q-1}{p-1} m$$

so that
$$n_0 + ... + n_{f-1} = n_0 + \sigma - n_f = a + (q-1) m + \sigma$$
. Hence

$$\frac{(a+qm)!}{p^{\sigma}m!} = (-1)^{f+(q-1)m+a+\sigma} \prod_{0 \leq i < f} \Gamma_p(n_i+1),$$

$$\frac{(a+qm)!}{(-p)^{\sigma}m!} = (-1)^{f+(q-1)m+a} \prod_{0 \leq i < f} \dot{\Gamma}_p(n_i+1).$$

THEOREM 1. For a fixed power $q = p^f(f \ge 1)$ of p, the functions

$$m \mapsto \frac{(a+qm)!}{(-p)^{\frac{q-1}{p-1}m}m!} \qquad (0 \le a < q)$$

admit continuous extensions $\mathbf{Z}_p \rightarrow \mathbf{Q}_p$ given by

$$x \mapsto (-1)^{(q-1)m+f+a} (-p)^{\operatorname{ord}_{p}a!} \prod_{0 \leqslant i < f} \Gamma_{p} \left(\underbrace{\left[\frac{a}{p^{i}} \right] + p^{f-i}x}_{n_{i}(x)} + 1 \right) = \blacksquare$$

When the prime p is odd, q-1 is even and $(-1)^{(q-1)m}=+1$. Hence this sign is relevant only if p=2 in which case it is $\varepsilon(m)=(-1)^m$: let ε denote the character sign having kernel $2\mathbb{Z}_2$

$$\varepsilon(x) = \left\{ \begin{array}{ll} +1 & \text{if } x \in 2\mathbf{Z}_2 \\ -1 & \text{if } x \in 1+2\mathbf{Z}_2. \end{array} \right.$$

We shall be interested in the *inverse* of the preceding functions. Thus we define continuous functions $G_a: \mathbb{Z}_p \to \mathbb{Q}_p$ $(0 \le a < q)$ with

$$G_a(x) = \varepsilon(x)(-1)^{f+a} / (-p)^{\operatorname{ord}_p a!} \prod_{0 \le i < f} \Gamma_p(n_i(x) + 1),$$

$$G_a(m) = (-p)^{\frac{q-1}{p-1}m} \frac{m!}{(q+qm)!} \qquad (m \ge 0)$$

($\varepsilon = 1$ if $p \neq 2$). Let us use the Legendre formula to simplify the preceding expressions. When $p \geq 3$ is odd, $\varepsilon = 1$ and

$$\frac{1}{\Gamma_p(n_i(x)+1)} = (-1)^{1+a_i} \Gamma_p(-n_i(x)).$$

Moreover $\sum a_i \equiv \sum a_i p^i = a \mod 2$, so that

$$G_a(x) = \frac{1}{(-p)^{\operatorname{ord}_p a!}} \prod_{0 \le i < f} \Gamma_p(-n_i(x)).$$

This formula is also true when p = 2, because the Legendre formula is now

$$\frac{1}{\Gamma_2(n_i(x)+1)} = (-1)^{1+a_i+a_{i+1}} \Gamma_2(-n_i(x)),$$

and the product leads to an exponent of -1 equal to

$$f + (a_0 + a_1) + (a_1 + a_2) + \dots + (a_{f-1} + x_0) \equiv f + a_0 + x_0 \mod 2$$
.

Since $\varepsilon(x) = (-1)^{x_0}$ we have $\varepsilon(x)(-1)^{f+a}(-1)^{f+a_0+x_0} = 1$ and there only remains

$$G_a(x) = rac{1}{(-2)^{\operatorname{ord}_2 a!}} \prod_{0 \le i < f} \Gamma_2(-n_i(x)).$$

3. Mahler coefficients of the functions G_a .

Let us choose a nonzero root $\pi \in C_p$ of $X + \frac{1}{p}X^p = 0$. We have

$$\pi^{p-1} = -p$$
 and $(-p)^{\text{ord}_p a!} = \pi^{a-S_p(a)}$.

so that

$$\pi^a G_a(x) = \pi^{S_p(a)} \prod_{0 \leq i < f} \Gamma_p(-n_i(x))$$

for all primes p. This expression is especially simple at the fixed point $x = a_*$ of the map $x \mapsto a + qx$, since in this case

$$n_i(x) = n_i(a_*) = a_i + a_{i+1}p + \dots = \frac{a^{(i)}}{1-q}$$

are obtained by a cyclic permutation from $a_{\,*}$

$$\pi^a G_a(a_*) = \pi^{S_p(a)} \prod_{0 \leq i < f} \Gamma_p \left(\frac{a^{(i)}}{q-1} \right).$$

It turns out that the Mahler coefficients of the functions G_a are linked to

the coefficients of the Dwork exponential

$$\Theta_q(T) = e^{\pi(T-T^q)} = \sum_{n \ge 0} A_n T^n = 1 + \pi T + T^2(\dots).$$

Theorem 2. For $0 \le a < q$, the Mahler expansion of $G_a: N \to Q \subset Q_p$ is

$$G_a(x) = \sum_{k \ge 0} \frac{A_{a+kq}}{\pi^{a+k}} k! \begin{pmatrix} x \\ k \end{pmatrix},$$

$$\widetilde{G}_a(x) = \pi^a G_a(x) = \sum_{k \ge 0} \frac{A_{a+kq}}{\pi^k} (x)_k = A_a + \frac{A_{a+q}}{\pi} x + \dots$$

The proof of this result obviously involves some formal manipulations of power series. These are made easier if we use the *Atkin operators* (*).

Let us recall their definition and formal properties. The operator U_q is defined on formal Laurent series by

$$f = \sum a_n T^n \mapsto U_q(f) = \sum a_{qn} T^n$$
.

Obviously

$$T^j U_q(f) = U_q(T^{qj}f)\,, \qquad g(T)\; U_q(f) = U_q(g(T^q)\,f)\,.$$

For example, remplacing f by $e^{\pi T}f$ and letting $g=e^{-\pi T}$, we find

$$e^{-\pi T}U_{a}(e^{\pi T}f)=U_{a}(e^{-\pi T^{q}}e^{\pi T}f)=U_{a}(\Theta_{a}(T)f).$$

This is the reason for the appearance of the Dwork exponential in this context. Observe that the action of the Atkin operator forgets all coefficients a_i having an index i not multiple of q e.g. $U_q\Big(\sum\limits_{n\geq -q}a_nT^n\Big)=U_q\Big(\sum\limits_{n\geq -q}a_nT^n\Big)$, and also

$$U_q\left(\sum_{n \ge -a} a_n T^n\right) = U_q\left(\sum_{n \ge 0} a_n T^n\right) \quad (0 \le a < q).$$

We shall use twice this observation in the next computation (and indicate it by a «!» on the concerned equality).

(*) Also called "Dwork ψ -operators" or "Hecke" operators.

PROOF OF THEOREM 2. Let us recall the *Boole relation* linking the values of a function f to its Mahler coefficients $c_k(f)$

$$e^{-T} \sum_{m \ge 0} f(m) \frac{T^m}{m!} = \sum_{k \ge 0} c_k(f) \frac{T^k}{k!}.$$

Take $f = G_a$ and remplace the indeterminate T by πT

$$e^{-\pi T} \sum_{m \ge 0} G_a(m) \frac{\pi^m T^m}{m!} = \sum_{k \ge 0} c_k(G_a) \frac{(\pi T)^k}{k!}.$$

Let us now compute the left-hand side, recalling that $(-p)^{\frac{1}{p-1}} = \pi$

$$\begin{split} & e^{-\pi T} \sum_{m \geq 0} G_a(m) \frac{\pi^m T^m}{m!} \\ & = e^{-\pi T} \sum_{m \geq 0} \frac{\pi^{(q-1)m} m!}{(a+qm)!} \frac{\pi^m T^m}{m!} = e^{-\pi T} \sum_{m \geq 0} \frac{\pi^{qm} \eta h!}{(a+qm)!} \frac{T^m}{\eta h!} \\ & = e^{-\pi T} U_q \left(\sum_{m \geq 0 \text{ or } -a} \frac{\pi^{a+m}}{(a+m)!} \frac{T^m}{\pi^a} \right) \stackrel{!}{=} e^{-\pi T} U_q \left(\sum_{n \geq 0} \frac{\pi^n}{n!} \frac{T^{n-a}}{\pi^a} \right) \\ & = e^{-\pi T} U_q \left(\sum_{n \geq 0} \frac{\pi^n T^n}{n!} \frac{T^{-a}}{\pi^a} \right) = e^{-\pi T} U_q \left(e^{\pi T} \frac{T^{-a}}{\pi^a} \right) \\ & = U_q \left(\Theta_q(T) \frac{T^{-a}}{\pi^a} \right) = U_q \left(\sum_{n \geq 0} \frac{A_n}{\pi^a} T^{n-a} \right) \\ & = U_q \left(\sum_{n \geq -a \text{ or } 0} \frac{A_{n+a}}{\pi^a} T^n \right) \stackrel{!}{=} U_q \left(\sum_{n \geq 0} \frac{A_{a+n}}{\pi^a} T^n \right) \\ & = \sum_{k \geq 0} \frac{A_{a+kq}}{\pi^a} T^k = \sum_{k \geq 0} \frac{A_{a+kq}}{\pi^{a+k}} k! \frac{(\pi T)^k}{k!} . \end{split}$$

This proves the announced formula.

Comment. Note that the coefficients A_n of the expansion of the Dwork exponential Θ_q depend on the power $q=p^f$ and the choice of root π such that $\pi^{p-1}=-p$. If we replace π by another choice $\xi\pi$ where $\xi^{p-1}=1$, the coefficient A_n is replaced by ξ^nA_n . Since $\xi=\xi^p=\ldots=\xi^q$

implies $\zeta^k = \zeta^{qk}$, we see that the coefficients $\frac{A_{a+kq}}{\pi^{a+k}}k!$ are unchanged. On the other hand, these coefficients belong to Q_p simply since they are Mahler coefficients of a Q_p -valued continuous function.

4. Gauss sums.

The Gross-Koblitz formula concerns the Gauss sums

$$-\sum_{\varepsilon^q=\varepsilon\not=0}\varepsilon^{-a}\,\Theta_q(\varepsilon)=-\sum_{\varepsilon^{q-1}=1}\varepsilon^{-a}\sum_{n\geqslant 0}A_n\,\varepsilon^n=-\sum_{n\geqslant 0}A_n\sum_{\varepsilon^{q-1}=1}\varepsilon^{n-a}$$

(the sign «-» is chosen in order to give it the value +1 when a=0). The sum on roots of unity is q-1 if n-a is a multiple of q'=q-1 and is 0 otherwise. If a=q-1=q', we have to take into account the value k=-1. Let us assume that $0 \le a < q'$, so that only the values $k \ge 0$ occur

$$-\sum_{\varepsilon^q=\varepsilon\neq 0} \varepsilon^{-a} \, \Theta_q(\varepsilon) = (1-q) \sum_{k\geqslant 0} A_{a+kq'}.$$

The above Mahler series involve the coefficients of the Dwork exponential having indices in arithmetic progressions of ratio q, whereas we are looking for a summation formula for these coefficients with indices in an arithmetic progression of ratio q' = q - 1. Here is a link between the two.

LEMMA. We have $nA_n = \pi A_{n-1}$ $(1 \le n < q)$, $nA_n = \pi (A_{n-1} - qA_{n-q})$ $(n \ge q)$.

PROOF. We differentiate the defining identity

$$\begin{split} \sum_{n \, \geq \, 0} A_n T^n &= \Theta_q(T) = e^{\pi (T - T^q)} \\ \sum_{n \, \geq \, 0} n A_n T^{n \, - \, 1} &= \Theta_q(T)' = e^{\pi (T \, - \, T^q)} (\pi - q \pi T^{q \, - \, 1}) \\ \sum_{n \, \geq \, 0 \text{ or } 1} n A_n T^{n \, - \, 1} &= \Theta_q(T) (\pi - q \pi T^{q \, - \, 1}) = \sum_{n \, \geq \, 0} A_n T^n (\pi - q \pi T^{q \, - \, 1}) \,. \end{split}$$

The identification of the coefficients of T^{n-1} leads to the result.

Let us define functions \tilde{G}_{α} for all integers $\alpha \geq 0$ by

$$\widetilde{G}_{\alpha}(x) = \sum_{k \geqslant 0} \frac{A_{\alpha + kq}}{\pi^k} (x)_k = A_{\alpha} + \frac{A_{\alpha + q}}{\pi} x + \frac{A_{\alpha + 2q}}{\pi^2} x (x - 1) + \dots$$

This definition extends the preceding one (given only for $\alpha = a < q$), but let us emphasize that when $\alpha \ge q$, these functions are not simply given by products of Γ_p as in the previous case.

THEOREM 3. For
$$\alpha \geqslant 0$$
, $\alpha_* = \frac{\alpha}{1-q}$, and $q' = q-1$ we have
$$(1-q) \sum_{0 \leqslant k < N} A_{\alpha+kq'} = \widetilde{G}_{\alpha}(\alpha_*) - \widetilde{G}_{\alpha+Nq'}(\alpha_*-N) \qquad (N \geqslant 1).$$

PROOF. The crucial case is N = 1:

$$\widetilde{G}_{\alpha}(\alpha_*) - \widetilde{G}_{\alpha+q'}(\alpha_*-1) = (1-q)A_{\alpha}.$$

To compute $\widetilde{G}_a(x) - \widetilde{G}_{a+q'}(x-1)$, we first transform its second term

$$\widetilde{G}_{\alpha+q'}(x-1) = \sum_{k\geq 0} A_{\alpha+q'+kq} \frac{(x-1)_k}{\pi^k}.$$

Since $\alpha + q' + kq = \alpha + (k+1) q - 1 = n - 1$, we can use the relation (lemma)

$$A_{n-1} = \frac{n}{\pi} A_n + q A_{n-q} \qquad (n \geqslant q),$$

to bring back the sequence of indices into arithmetic progressions of ratio q

$$\begin{split} \widetilde{G}_{\alpha+q'}(x-1) &= \sum_{k \, \geq \, 0} \left[\, \frac{\alpha + (k+1) \, q}{\pi} A_{\alpha+(k+1) \, q} + q A_{\alpha+kq} \, \right] \frac{(x-1)_k}{\pi^k} \\ &= \sum_{k \, \geq \, 1} \frac{\alpha + kq}{\pi} A_{\alpha+kq} \, \frac{(x-1)_{k-1}}{\pi^{k-1}} + \sum_{k \, \geq \, 0} q A_{\alpha+kq} \, \frac{(x-1)_k}{\pi^k} \, . \end{split}$$

Hence $\widetilde{G}_{\alpha}(x) - \widetilde{G}_{\alpha+q'}(x-1)$ is equal to

$$A_{\alpha} + \sum_{k \geq 1} A_{\alpha + kq} \frac{(x-1)_{k-1}}{\pi^k} (x - \alpha - kq) - \sum_{k \geq 0} q A_{\alpha + kq} \frac{(x-1)_{k-1}}{\pi^k} (x - k).$$

A miracle happens when x is equal to the fixed point α_* :

$$\alpha_* - \alpha - kq = q(\alpha_* - k),$$

so that all terms compensate except k=0, whence the first formula in the theorem. Summing up consecutive expressions and noting that $(\alpha + + q')_* = \alpha_* - 1$, we obtain a telescopic sum

$$\widetilde{G}_{\alpha}(\alpha_{\hspace*{1pt} *}) - \widetilde{G}_{\alpha + Nq'}(\alpha_{\hspace*{1pt} *} - N) = (1 - q) \sum_{0 \; \leqslant \; k < N} A_{\alpha + kq'}. \qquad \blacksquare$$

More generally,

$$\frac{x-\alpha-kq}{x-k}-q=\frac{x-\alpha-kq-qx+qk}{x-k}=\frac{x-(\alpha+qx)}{x-k}$$

and remembering $\alpha = (1 - q)\alpha_*$

$$\frac{x - \alpha - kq}{x - k} - q = \frac{x - \alpha_* + q\alpha_* - qx}{x - k} = (x - \alpha_*) \frac{1 - q}{x - k},$$

hence the more general formula

$$\widetilde{G}_{\alpha}(x) - \widetilde{G}_{\alpha+q'}(x-1) = (1-q)A_{\alpha} + (x-\alpha_*)\frac{1-q}{\pi} \sum_{k \geq 0} \frac{A_{\alpha+(k+1)q}}{\pi^k} (x-1)_k.$$

It is well known that the Dwork exponential converges in a ball of radius > 1, hence $A_n \rightarrow 0$ $(n \rightarrow \infty)$ so that we may go to the limit

$$(1-q)\sum_{k\geq 0}A_{a+kq'}$$
 (Gauss-Dwork sum)
$$= \widetilde{G}_a(a_*) - \lim_{N\to\infty}\widetilde{G}_{a+Nq'}(a_*-N).$$

The limit vanishes in view of the following lemma since $a_* - N \in \mathbb{Z}_p$.

LEMMA. We have $\|\widetilde{G}_a\| \to 0$ $(\alpha \to \infty)$. More precisely

$$\|\widetilde{G}_a\| \leqslant \left\{egin{array}{ll} r_p^{lpha/q} & ext{if} \ \ p \geqslant 3 \ \\ r_p^{(lpha-q)/2q} & ext{if} \ \ p=2 \ . \end{array}
ight.$$

PROOF. The norm used here is the sup norm on the unit ball, so that

$$\|\widetilde{G}_{\alpha}\| \leq \sup_{k \geq 0} \left| \frac{A_{\alpha + kq}}{\pi^k / k!} \right|$$

(the Mahler theorem states that this is in fact an equality, provided that the sup norm is taken on the unit ball of C_p). But

$$\left| \begin{array}{c} \frac{\pi^k}{k!} \end{array} \right| = rac{r_p^k}{\|p\|^{\operatorname{ord}_p k!}} = r_p^{k - (k - S_p(k))} = r_p^{S_p(k)}.$$

On the other hand, the Dwork series $\Theta_q(T) = e^{\pi(T-T^q)} = \sum_{n \ge 0} A_n T^n$ is bounded by 1 on the ball of radius $|p|^{\frac{1-p}{pq}} > 1$

$$|A_n| |p|^{n\frac{1-p}{pq}} \le 1$$
, $|A_n| \le |p|^{n\frac{p-1}{pq}} = r_p^{n\frac{(p-1)^2}{pq}}$.

This leads to

$$\left| \begin{array}{c} A_{lpha + kq} \ \overline{\pi^k/\!k!} \end{array}
ight| \leqslant rac{r_p^{(lpha + kq)rac{(p-1)^2}{pq}}}{r_p^{S_p(k)}} \, .$$

(1) Case $p \ge 3$ is odd. In this case, we use the minoration $r_p^{S_p(k)} \ge r_p^k$ of the denominator. The exponent of r_p is easily estimated

$$(\alpha + kq) \frac{(p-1)^2}{pq} - k = \alpha \frac{(p-1)^2}{pq} + k \left(\frac{(p-1)^2}{p} - 1 \right).$$

As $p \ge 3$, $\frac{p-1}{p} > \frac{1}{2}$ and

$$(\alpha + kq) \frac{(p-1)^2}{pq} - k \ge \alpha \frac{p-1}{2q} + k \frac{p-3}{2} \ge \alpha \frac{1}{q}.$$

Hence this exponent of r_p is greater or equal to α/q whence the first assertion.

(2) Case p=2. The preceding minoration of the denominator is not precise enough to lead to the result. This is why we keep

scrupulously the exponent $S_2(k)$ and have now to estimate

$$(\alpha + kq) \frac{(p-1)^2}{pq} - S_p(k) = (\alpha + kq) \frac{1}{2q} - S_2(k) = \frac{\alpha}{2q} + \frac{k}{2} - S_2(k).$$

But the following table

shows $\frac{k}{2} - S_2(k) \ge -1/2$ (it is a simple exercise to prove it formally) which finishes the proof.

Summing up, we have obtained the main result.

Theorem 4 (Gross-Koblitz). For $0 \le a < q-1$ $(q=p^f, f \ge 1)$, we have

$$-\sum_{\varepsilon^q = \varepsilon \neq 0} \varepsilon^{-a} \, \boldsymbol{\Theta}_q(\varepsilon) = \pi^{S_p(a)} \prod_{0 \leqslant i < f} \Gamma_p \left(\frac{a^{(i)}}{q-1} \right)$$

where the integers $0 \le a^{(i)} < q-1$ have p-adic expansions obtained by cyclic permutation from that of a, and $S_p(a)$ is the sum of digits of a in base p.

Since the values of Γ_p are p-adic units, we deduce the following result.

COROLLARY 1 (STICKELBERGER). For $0 \le a < q$, the p-adic absolute value of the Gauss sum $\sum_{e^q = e \ne 0} e^{-a} \Theta_q(\varepsilon)$ is

$$|\pi^{S_p(a)}| = r_p^{S_p(a)} = |p| \frac{S_p(a)}{p-1}$$
.

COROLLARY 2. When $p \equiv 1 \mod n$, the values of Γ_p at the rational numbers $\frac{m}{n}$ are algebraic numbers. More precisely

$$\Gamma_p\left(\frac{m}{n}\right) \in \mathbf{Q}(\mu_{np}, \sqrt[n]{-p}).$$

PROOF. By the functional equation of Γ_p , it is enough to establish this when $0 \le m < n$. If we write p-1 = ln and $\frac{m}{n} = \frac{lm}{p-1}$, we can use the Gross-Koblitz formula for q = p and a = lm.

APPENDIX 1. For an odd prime $p \ge 3$, the Legendre relation for Γ_p is

$$\Gamma_p(x) \; \Gamma_p(1-x) = (-1)^{R(x)}$$

where $R(x) \in \{1, ..., p\}$ is in the class of $x \mod p$. Let us write it in the equivalent form

$$\Gamma_p(-x)\Gamma_p(x+1) = (-1)^{R(-x)} = (-1)^{p-x_0} = (-1)^{1+x_0}$$
 $(x = x_0 + x_1p + ...)$

For p = 2 and $x = x_0 + x_1 2 + x_2 2^2 + ...$, we have

$$\Gamma_2(x) \Gamma_2(1-x) = (-1)^{1+x_1},$$

$$\Gamma_2(-x) \Gamma_2(x+1) = (-1)^{1+x_0+x_1}$$

One way of unifying the two cases consists in writing

$$\Gamma_p(-x) \Gamma_p(x+1) = (-1)^{1+x_0+(p-1)x_1}.$$

APPENDIX 2. It is well known that the $\Theta_q(\varepsilon) \in C_p$ are pth roots of unity (Dwork's theorem). We can observe

$$\Theta_q(T) = \Theta_p(T) \Theta_p(T^p) \dots \Theta_p(T^{q/p})$$

= $1 + \pi(T + T^p + \dots + T^{q/p}) + \dots$

so that

$$\begin{split} & \mathcal{O}_q(\varepsilon) \equiv 1 + \pi(\varepsilon + \varepsilon^p + \ldots + \varepsilon^{q/p}) \ \mathrm{mod} \ \pi^2 \\ & \mathcal{O}_q(t(x)) = \xi_\pi^{t(Trx)}, \qquad \xi_\pi = \mathcal{O}_p(1) \quad (t: \mathrm{Teichm\"{u}ller}) \end{split}$$

and the Gauss sums considered here are precisely Gauss sums for the field F_q .

APPENDIX 3. The Atkin operators still satisfy

$$U_q(f)(T^q) = \sum a_{qn} T^{qn} = q^{-1} \sum_{\zeta \in \mu_q} f(\zeta T)$$

(often used for q = p). On the other hand, the operator $\delta = T(d/dT)$ is the

degree operator: it sends T^n onto nT^n hence

$$\delta = T \frac{d}{dT} : \sum_{n \ge 0} a_n T^n \mapsto \sum_{n \ge 0} n a_n T^n.$$

From this, the relation $U_q \circ \delta = q(\delta \circ U_q)$ immediately follows

$$U_q \circ \delta\left(\sum_{n \geq 0} a_n T^n\right) = \sum_{n \geq 0} qn a_{qn} T^n = q \sum_{n \geq 0} na_{qn} T^n = q \delta \circ U_q\left(\sum_{n \geq 0} a_n T^n\right).$$

REFERENCES

- B. GROSS N. KOBLITZ, Gauss sums and the p-adic Γ-function, Annals of Math., 109 (1979), pp. 569-581.
- [2] R. F. Coleman, *The Gross-Koblitz Formula*, in Galois Representations and Arithmetic Algebraic Geometry, Advanced Studies in Pure Math., 12 (1987), pp. 21-52, North-Holland Publ. Co. ISBN: 0-444-70315-2.
- [3] A. M. ROBERT, A Course in p-adic Analysis, Springer-Verlag, Grad. Text in Math., 198 (2000) ISBN: 0-387-98669-3.

Manoscritto pervenuto in redazione il 3 marzo 2000.