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REND. SEM. MaAT. UNIv. PADOVA, Vol. 105 (2001)

The Gross-Koblitz Formula Revisited.

ALAIN M. ROBERT (*)

The formula in question gives an explicit value of Gauss sums using
the p-adic gamma function of Morita. We give here an elementary proof
of this formula (valid for all primes). Let me thank L. van Hamme who
stimulated me to find such a proof, and A. Junod who helped me to un-
derstand [2], which has been my starting point.

1. Preliminary comments on numeration.

Let g=p7 (f=1) be a power of a prime p. Each affine map
x—a+qr:Z,—Z, (acZ,

has a unique fixed point

a
a*=T—-—-=a+aq+aq2+...=a+q(a+aq+aq2+...).
iy . o :

a4

When @ is an integer in the interval 0 <a<gq, say with p-adic
expansion

a=ay+ap+...+a_;p7t (0<ai<p),
the fixed point of the corresponding affine transformation has a periodic
p-adic expansion given by a + ag + aq® + ... (period of length f). Let us
write
ay=a+play+ap+..+a1p’ F+app’ I+ . =ao+ pak.
We recognize in aj the fixed point of the affine map corresponding to

o' =a;+ap+...+a_ 1 p’ P+ agp’Y,

(*) Indirizzo dell’A.: Institut de Mathematiques, Rue Emile Argand 11, Case
Postale 2, CH-2007 Neuchéatel, Svizzera.
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and we observe that a’ is obtained from a by a cyeclic permutation of its
digits. Iterating the procedure, we can write

4

a

Qe =0, +pay, Oy= y e
l1-gq

In this way, we obtain a cycle of integers in the interval {0, ..., ¢—1}

al, au’ o a(f—l), a(f) =qa
having p-adic expansions obtained by cyclic permutations from that of a.

2. p-adic extensions of quotients of factorials.

For any prime p and 0 £ a < p, the relation

(a +pn)! (a+pn)!
(%) = =(=1)**"*1r (g +pn+1)
Pl DGR ) platpn
shows that
n,_,(_l)zmw
p"n!

. . « .
has a continuous extension Z,—Z; c @, given by

x> (=1 (a+pr+1).
This simply follows from the definition of the I',-function by Morita.
Let us generalize this observation to the case of quotients m+— (a +
+qm)Ym! when 0 <a<q=p/(f=1).
We can introduce the p-adic expansion of a, say

a=a+m;p +...+a_p’7Y
and write

a+gm=ay+pa+...+a_;p’ " 2+p " m).

n

Put ny=a + gm = ay + pn; and successively

ny=ay+ap+p3n,, n=a,+pn, ete.
hence with

m=a;+...+a_p’ " E+plm
=a;+pag+...+a 1 p 3 +p/2m),  ete.

~

ng
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Let us write a telescopic product (ny=a + gm, ny=m)

(a+qm)!  my! m! Ny !

m! ny! mg! 1!
_ (ao +p’n1)! (al +p’n2)! (af—l +pm)!
7! Ny ! m!

= ipnlrp(ao‘i‘pnl + 1)'[)”’2Fp(n1+ 1) ...pmrp(nf_l + 1),

(a+gqm)! it
m=irp(a+qm +1)Fp(a1+pn2+1)...Fp(af_1+p1n+1)

ag+pny=ng 0! nf-1

+ [1 Iy+pn+) == I r,m+1).
0si<f T ———r osi<f

Recalling (*) in the form

(a + pn)!

o =(=1)¢*"*1p"T (a+pn+1)

we see that the precise sign is (—1)+ D+ m+ D+ + -1+ 1) Moreover,
the sum o =n, + ... + n; may be computed as follows

ny = E} + plilm
- p
a
ng = | — + p/im
2 LpZJ p
Ny = a J + pm
f-1 = _
[ p/~1
Ny = m
-1
o = ord,a! + I
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so that my+...+np_y=my+o—n=a+(g—1) m+o. Hence

+ !

(a O(Im) =(_1)f+(q-l)m+a+o H Fp(ni+l),
pom! osi<f

(@ +qm)! f+@-1m+a 7

T (1Yt [T Fmi+1).
(=p)m! osi<f

THEOREM 1. For a fixed power g=p’(f=1) of p, the functions

+ qm)!
(atgm!  h<a<q

—
(- p)i—_lmm!

admit continuous extensions Z,— Q, given by

x,__>(_1)(q—1)m+f+a(_p)ordpa! l_[ Fp [1J+pf_ix+1 n
0osi<f p’

7, (%)
When the prime p is odd, ¢ — 1 is even and (— 1)@~ D™ = +1. Hence this

sign is relevant only if p = 2 in which case it is e(m) = (—1)™: let ¢ deno-
te the character sign having kernel 27,

+1 if xe2Z,

8(x)={
-1 if xel+2Z,.

We shall be interested in the inverse of the preceding functions. Thus we
define continuous functions G,: Z,— @, (0 <a < q) with

Gul®) = e(@)(~1)'* “/( —pre 11 1@+ 1),

Go(m) = (—p)e™ —"— (m>0)
W(m) = (=p)r—1 " ——— m=
Py (@ +gqm)!
(e=1if p#2). Let us use the Legendre formula to simplify the prece-
ding expressions. When p =3 is odd, e =1 and

1

= (—D“uT,(—n(a).
Fom@ + 1) (=1 p(—n(®))
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Moreover X.a;= 2 a;p'=amod2, so that

Ga(w)=m7 H F( n;(x)).

This formula is also true when p = 2, because the Legendre formula is
now

1

_—  =(-1 1+a,+al+1r .
Ty(m;(x) +1) (=1) 2(—n;(x)),

and the product leads to an exponent of —1 equal to
ft(apg+ay) +(ay+ag)+...+ (e +20) =f+ ag+ 2omod2 .
Since e(x) = (—1)® we have &(x)(—1)/ 7% —1)/*%*%=1 and there only

remains

G, (x) = W g Io(—ny()).

3. Mahler coefficients of the functions G,.

Let us choose a nonzero root meC, of X + -l-X P =(. We have
p

npvl =-p and (_p)ordpa! =na—Sp(a)’
so that
7°Gy(2) =% [ Ip(—ni(x))
0<i<f
for all primes p. This expression is especially simple at the fixed point
2= a4 of the map x+— a + gx, since in this case
a®
l1-gq

n(x) =m(ay) =0, + 0 1p+...=

are obtained by a cyclic permutation from a

0)
TGy ) = aSH@ IT F( e )

o<i<f "\g-1
It turns out that the Mahler coefficients of the functions G, are linked to
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the coefficients of the Dwork exponential

O, =e™T" 1= 3 A,T"=1+al+T*...).

n=0

THEOREM 2. For 0 <a<gq, the Mahler expansion of G,: N—Qc
cq, s

A,
Gole) = >, 2k (”)

E>0 na+k k
. A A
Gole) =7°Gal@) = 3 :k’“’ @) =Ag+ —Lp+ ...

The proof of this result obviously involves some formal manipulations of
power series. These are made easier if we use the Atkin operators (*).

Let us recall their definition and formal properties. The operator U,
is defined on formal Laurent series by

f=2a,T"~U,(f) =2 anT".
Obviously
TiU,(f) = U/TYf),  g(T) U, (f) = Uy (g(T?) f).

T

For example, remplacing f by e™ f and letting g = e ~"7, we find

e-nTUq(ean) — Uq(e —nT‘lean) — Uq(@q(T) f)
This is the reason for the appearance of the Dwork exponential in this
context. Observe that the action of the Atkin operator forgets all coeffi-
cients a; having an index ¢ not multiple of q e.g. Uq( > a, T”) =
n>-—-q
= Uq( > anT"), and also

nz0

u( = anT”)=Uq(n_§0anT”) (0<a<g).

nz-a

We shall use twice this observation in the next computation (and indicate
it by a «!» on the concerned equality).

(*) Also called «Dwork y-operators» or «Hecke» operators.
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PROOF OF THEOREM 2. Let us recall the Boole relation linking the
values of a function f to its Mahler coefficients c;( f )

“TEﬂm%——E%U)

m=0
Take f= G, and remplace the indeterminate T by =T
(ﬂT)k

m=0

Let us now compute the left-hand side, recalling that (— p)ﬁ =g

me
e 3 Golm) =
@g—-1m m m
A F A S S L I
m=0 (a+qgm)! m! m=0 (a + qm)!

7!
a+m my n mn—a
_e~7rTUq( 2 n T )ieﬂrTUq(zﬂ_T )

m=z0or —a (@ +m)! n°® nz0 n! m°

nn -a T ¢
_e—nTUq(E U ):e—nTUq(enT )

n=0 n! 7° n®

T-0 A
= Uq(@q(T)7) = Uq(Z —"T"‘“)

nz0 7%

Il

U,

A ! A
n+aT")£Uq(z a+nTn)

(n?—a or0 7% n=0 J°

> Ay iy TE= S Ay iig ! (T |

k=0 % k=0 m@tk k!

ck(Ga)

This proves the announced formula. =

COMMENT. Note that the coefficients A, of the expansion of the
Dwork exponential @ ;, depend on the power ¢ = p’and the choice of root
a such that n?~!= —p. If we replace & by another choice {m where
¢P~1=1, the coefficient A, is replaced by {"A,. Since {=(P=... =9
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Akq

implies £* = %, we see that the coefficients —k! are unchanged. On

the other hand, these coefficients belong to Qp s1mply since they are
Mahler coefficients of a @,-valued continuous function.

4. Gauss sums.

The Gross-Koblitz formula concerns the Gauss sums

- 2 0 =- % —aEAg__ZA S gn-a

9=g=0 ed-1=1 nz0 e1-1=1

(the sign «—» is chosen in order to give it the value +1 when a = 0). The
sum on roots of unity is ¢ — 1 if n — @ is a multiple of ¢’ =¢—1 and is 0
otherwise. If a=qg—1=g¢q’', we have to take into account the value
k= —1. Let us assume that 0 <a <gq’, so that only the values k=0
occur

- 2 70, (e)=(1—q) 2 Aging-
el=e#0 k=0

The above Mabhler series involve the coefficients of the Dwork exponen-

tial having indices in arithmetic progressions of ratio q, whereas we are

looking for a summation formula for these coefficients with indices in an

arithmetic progression of ratio ¢’ =q — 1. Here is a link between the

two.

LEMMA. We have nA, =nd,_; (1<sn<gq), nd,=n(A,-,—qA,_,)
(n=q).

Proor. We differentiate the defining identity

Z AnTn - @q(T) - en(T—T‘I)

nz0

2 nA, T =0,(T) =™ (7 — quT7")
Z nA,T" 1= 0 (T —qnT?™ 1) = ZA T"(x—qaTi71).

n=0 or 1

The identification of the coefficients of 7" ! leads to the re-
sult. =
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Let us define functions G, for all integers a =0 by

~ A, Aa A,
Go() = 2 +kq( N = AP ;qu(x—1)+...
k=0 T 7
This definition extends the preceding one (given only for a = a < q), but
let us emphasize that when a = q, these functions are not simply given

by products of I', as in the previous case.

THEOREM 3. For a=0, a,=

, and q¢' =q—1 we have

(1= 3 Auwiiy=Gula) = Gusnylax=N)  (N21).

Proor. The crucial case is N =1:
Golay) = Gyig(ay—1)=(1-q) A,.
To compute Ga(x) - Ga+q:(x — 1), we first transform its second term

(x — l)k

6;"oz+q’(x 1)_ 2Aa+q +kq

Since a+q¢’'+kq=a+ (k+1)g—1=mn—1, we can use the relation
(lemma)

A, = %An+qAn_q n=q),

to bring back the sequence of indices into arithmetic progressions of ra-
tio ¢

~ a+(k+1)q (®x—-1)
Gorg(®x—1) = > [——Aa+(k+1)q+qAa+kq] T ‘
k=0 b4 T
a+kq (x—].)kﬁl (x l)k
=k§1 7 Aorin mh1 2 Wi

Hence G,(x) — @qu(x —1) is equal to

(= 1), (@—1)
At DAging—— @ —a—kg)~ 2 gl 1y —L @~ k).
k=1 T k=0 .7'[
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A miracle happens when « is equal to the fixed point a,:
ay—a—kg=qla,—k),

so that all terms compensate except k¥ =0, whence the first formula in
the theorem. Summing up consecutive expressions and noting that (a +
+¢q')y = a4 —1, we obtain a telescopic sum

Gola) = Cosng(@x—N)=(1=@) 3 Auiyy. ®

More generally,

t-—a—-kg  x—a-kq—qr+gk _ x— (a+qx)

c—k 7 x—k x—k

and remembering a = (1—-¢q)a,

EE—— = ] x—a
PR v —k Y ek

)

hence the more general formula

a+(k+1)q

~ ~ 1- A
Co@ ~Corg @-D=(1-Q) At @) —1 3 5 @=1),.

k=0

It is well known that the Dwork exponential converges in a ball of radius
>1, hence A,—0 (n— ) so that we may go to the limit

(1-q) 2 Aurry  (Gauss-Dwork sum)
K30

= éa(a*) - A}Enméa+Nq’(a* —N).
The limit vanishes in view of the following lemma since a, — N e Z,.

LEMMA. We have ||G,||—=0 (a— ®). More precisely

~ r2 if p=3
IGl<q ®
PO f p=2.



The Gross-Koblitz Formula revisited 167

Proor. The norm used here is the sup norm on the unit ball, so
that

Aa+kq

G'a < su
|Gl < sup | =2

k=0

(the Mahler theorem states that this is in fact an equality, provided that
the sup norm is taken on the unit ball of C,). But

’I‘k

Eual I S S Y
k! Iplordpk! P p :
On the other hand, the Dwork series @ (T) =e™T-T= 3 A, T"
n=0
bounded by 1 on the ball of radius |p| m>1
(»-12

n—— ’nE n
Al lp|" % <1, |Au|s|p[Tw =nw

This leads to

platkp ®-17

p
r,fr"“)

| Aa +kq
* [k!

(1) Case p =3 is odd. In this case, we use the minoration r5r® = rf
of the denominator. The exponent of 7, is easily estimated

_12 _12 _12
(kP o D +k((p ) —1).
pq Pq P
Asp=3, P2l > 1 and
P 2
—1) 1 3 1
PR A S b S k. S
Pq 2q 2 q

Hence this exponent of 7, is greater or equal to a/q whence the first
assertion.

(2) Case p=2. The preceding minoration of the denominator
is not precise enough to lead to the result. This is why we keep
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scrupulously the exponent S;(k) and have now to estimate

_ 2
(a + kg P

1 a k

But the following table

kJO 1 2 3 =4

g—Sz(k)‘ 0 -12 0 -12 >0

shows g —S,(k) = —1/2 (it is a simple exercise to prove it formally)

which finishes the proof. =
Summing up, we have obtained the main result.

THEOREM 4 (GROSS-KOBLITZ). For 0<a<q—1 (gq=p/, f=1), we
have

)
- Z £7%0,(e) = Se(@ H I"p(a—)
el=e#0 os<i<f q-—1
where the integers 0 <a® < q — 1 have p-adic expansions obtained by
cyclic permutation from that of a, and S,(a) is the sum of digits of a in
base p. ’

Since the values of I', are p-adic units, we deduce the following
result.

COROLLARY 1 (STICKELBERGER). For 0 <a <gq, the p-adic absolute

value of the Gauss sum 2, & 0O ,(¢) is
eI=¢#0

Sp(a)
|nSp(a)|=Tl§p(a)=|p|p_l. ™

COROLLARY 2. When p =1modn, the values of I', at the rational

m . .
numbers — are algebraic numbers. More precisely
n

Fp(%)EQ(lunpinV —p)'
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Proor. By the functional equation of I',, it is enough to establish

this when 0 <m < n. If we write p —1 =In and m_ _m
n p—-

the Gross-Koblitz formula for g=p and a=Iim. =

T’ we can use

APPENDIX 1. For an odd prime p =3, the Legendre relation for I', is
I,(x) Ip(1-2)=(-1)~

where R(x) € {1, ..., p} is in the class of xmodp. Let us write it in the
equivalent form

F(—2) T+ )=(—1FC=(—1P %=(-1)1"" (x=xy+xp+...)
For p=2 and x =xy+ 2,2 + 2,22 + ..., we have
Fy(x) Ip(1—) = (-1)'*,
[o(—x) Fy(x+1) = (=1)t*%*a,
One way of unifying the two cases consists in writing
Ty(—x) Ty(x+1)=(-1)o%+r@-Dan
APPENDIX 2. It is well known that the @ ,(¢) e C, are pth roots of
unity (Dwork’s theorem). We can observe
0 ,(T) =0 ,(T) O,(T") ... 0 ,(T")
=1+a(T+TP+...+T%?)+ ...
so that
O,(e)=1+m(e+eP+ ...+ &”) mod n®
0 ,(t(x)) = gurm) £,=0,(1) (t: Teichmiiller)

and the Gauss sums considered here are precisely Gauss sums for the
field F,.

ArPENDIX 3. The Atkin operators still satisfy
U, (T =2 g, T™=¢q “CZ JECT)

€pq

(often used for ¢ = p). On the other hand, the operator 6 = T(d/dT) is the
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degree operator: it sends T" onto nT™ hence

n=0

d
6=T—: 2, a,T"~ > na,T".
dT 2 n=0
From this, the relation U, -0 = q(6 U,) immediately follows

U, oé( > a,nT") = nzo qnag, T" = qng,o Ny, T" = qd o Uq(ngoan T”).

n=z0
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