
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

CARLO-ROMANO GRISANTI
On a functional depending on curvature and edges
Rendiconti del Seminario Matematico della Università di Padova,
tome 105 (2001), p. 139-156
<http://www.numdam.org/item?id=RSMUP_2001__105__139_0>

© Rendiconti del Seminario Matematico della Università di Padova, 2001, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_2001__105__139_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On a Functional Depending on Curvature and Edges.

CARLO-ROMANO GRISANTI (*)

1. Introduction.

Recently the Mumford-Shah functional for image segmentation has
been greatly investigated. Its minima are functions u jumping through a
set Su which is regular enough as some results by Ambrosio, Fusco &#x26;

Pallara (see [7]) and by David &#x26; Semmes (see [13], [14]) prove. This
leads to a difficulty to recognize edges that could be present in the con-
tour of the images. In order to overcome this difficulty, in a previous pa-
per (see [21]), a new criterion, which we refer to as (C), has been introdu-
ced following Gauch, Pien and Shah [19]. The idea in [21] is to look for
curves, exhibiting edges, which are close enough to the jump set Sue The
existence of such curves minimizing (C) has been proved in the frame-
work of the geometric measure theory. In (C) the closeness between the
closure Su of Su and the minimizing curve y is represented by the term
J dist (x, which makes the functional, in some sense, asym-
y

metric. To take into account this phenomenon, in the present paper (C) is
modified also by introducing the new term: Jdist (x, y) (x) and the

su
new functional (3.1) is proposed for minimization. The proof of the exi-
stence of minima for (3.1) relies on the varifolds theory as in [21], but the
proof of the lower semicontinuity of the new term requires the monotoni-
city formula (see [28]) and non trivial technical details to apply it.
A last remark concerns the regularity of minima. The special classes

of varifolds, introduced by J. E. Hutchinson and C. Mantegazza (see [22],
[25]), where our minima are contained are locally graphs of multiple
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valued functions (see [3]). A general selection result for C 1 ~ 1 multiple
valued functions is proved in [20], and a sharper result for functions
will appear in a work by C. De Lellis, P. Tilli and the author himself. As a
conclusion, the minima of functional (3.1) are finite union of graphs of

curves.

2. Preliminaries and notations.

In this section we recall some results of varifolds theory which we
will use later. For a more exhaustive exposition of the basic theory we re-
fer to Simon (see [28]), for the notions regarding more specifically curva-
ture and boundary varifolds we refer to Hutchinson [23], [22] and Man-
tegazza [24], [25].

Let n, with n  m and let be the Grassmannian of the n-
dimensional linear subspaces of R~. Given T E Gn, m, 1’l T: deno-
tes the orthogonal projection on may be identified with a m x m-
matrix P T = (PTij).

Gn, m is a topological compact space endowed with the Euclidean me-
tric in up to the identification (see [28]).

Given we set _ ,S~ x Gn, m .

DEFINITION 2.1. A n-dimensionaL varifold y in an open set 
is a Radon measure on 

be the projection on the first component:
1’l(x, T) = x . We introduce the weight measure of the varifold y by
setting

where B is a Borel set in S~ . We will deal only with varifolds such that
the support of their weight measure is a rectifiable set of Rm. To be more
precise we will need some definitions.

DEFINITION 2.2. Let Me Rm be Hn-measurable and 0 : M -
~ (0, + 00) locally integrable with respect to L M. We say that a li-
near subspace P E Gn, m is the approximate tangent space to M
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at xo with respect to the function B if

for all fe 

REMARK 2.3. If M is countably n-rectifiable, there exists 
st everywhere the approximate tangent space to M (see [28]).

We denote by Id x P the function, defined almost everywhere,

We can define a Radon measure on by setting:

for every B c Gn (Q) Borel set. y M, 8 is a varifold in S~ to which we refer as
a rectifiable vacrifold. The weight measure of y M, s is L M: indeed,
set y = y M, 0,

for every B Borel set in S~ .

The function 0 is called multiplicity or density of the varifold M . Its
name is due to the following result (see section 3.2 in [24]): -

where OJ n is the Lebesgue measure of the unit ball in Rn.

DEFINITION 2.4. If the density function of a rectifiable n-varifold
Y M, e is integer valued, we say that y M, e is an integer varifold.

We are going to deal only with integer varifolds. It will be useful the
following equality which holds for every bounded Borel function

P) : (see [25]):

In order to introduce the curvature and the boundary for a varifold
we need the definition of gradient and divergence of a field X E
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with respect to a linear n-dimensional subspace If

we denote by the orthogonal projection over P , for a fun-
we set:

More generally, if M is a smooth n-dimensional manifold in we

define

The last expression is called tangential divergence of the field X with re-
spect to the manifold M . It can be seen, after a change of base, that the
above expression is the divergence referred to an orthonormal base of
the tangent space to M.

The following definitions of Allard’s varifold and boundary varifold
are given via integration by parts formulae. Let Q c be an open set
and y an n-varifold in ,S~ . For each vector field R~) we
set

If F is a linear locally bounded functional, Riesz’s theorem (see [17]) gi-
ves the existence of a Radon vector measure 3y such that:

By Lebesgue decomposition theorem there exists a function H y :

such that 3y + a Y’ where is the singu-
lar part of 3y with respect to fl Y. Therefore there exists a vector function
v y with I = 1, 1 or. -a.e., such that:

Following Allard (see [1], [2], [28]) we recall the definition:
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DEFINITION 2.5. A varifold y in Q satisfying equation (2.3) will be
called Allard’s varifold or varifold with locally bounded first variation.
The support of the measure Q y is the generalized boundary of y ; H Y , v y
are respectively the generalized mean curvature and the generalized
inner unit co-normaL to the generalized boundary.

Allard’s varifolds have good compactness properties but they exhibit
structure defects. In fact they may have a very irregular boundary and
no rectifiability result can be proved (see [24] for some examples). A
sharper description of the curvature of a varifold was given by Hutchin-
son (see [23], [22]) who introduced the notion of generalized second fun-
damental form rather than mean curvature. It turns out that Allard’s
mean curvature is actually the trace of Hutchinson’s second fundamental
form, as in the classical case for manifolds. Nevertheless Hutchinson’s
varifolds are necessarily without boundary. For this reason Mantegazza
introduced in [24] the notion of curvature varifolds with boundary which
extends both Allard’s and Hutchinson’s definitions.

Given a function y(x, P) : Q we denote by 
j = 1, ..., m the partial derivatives with respect to x E Q and by Dj) 1J,
i , j = 1, ... , m the partial derivatives with respect to the variables

P E Rm2 .

DEFINITION 2.6. An integer n-varifold y in Q is called curvature
varifolds with boundary if there exist functions E ( Gn (Q), y) and
a Radon vector measure ay in with values in Rm such that, for
every 

ay is called ,boundary measure- of the varifold y .

We shall denote by the class of the n-dimensional curvature
varifolds with boundary such that y). We remark that
the functions are the components of a tensor A Y which is related to
the generalized second fundamental form of y . Indeed, in the classical
case when the varifold y is actually y M, where M is a C2-manifold, we
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have (VM PjZ, ei ~, with P projection on the tangent space to M . The
mean curvature H is related to the curvature tensor A Y by the following
equality:

which is proved in [23].
Before we state the compactness theorem we remind what we mean

by varifolds convergence: we say that a sequence of varifolds ( y n ) con-
verges to a varifold y o if it converges in the sense of weak convergence of

measures; we will write y n - y o .
The following theorem extends Allard’s compactness theorem for lo-

cally bounded first variation varifolds to the case of curvature boundary
varifolds (for a proof see [25]).

THEOREM 2.7. Suppose (yk) is a sequence of varifolds,
with p &#x3E; 1. If there exists a constant such that

then there exists a subsequence, which for simplicity we still denote by
(Y k), and a varifold such that L y k converge
weakly to Aijl L y and ay k . converge weakly to 3y. Moreover, for every
convex and lower semicontinuous function f : Rm 3 ~ [ 0, + 00] the follo-
wing inequality holds:

Before we state the structure theorem for curvature boundary vari-
folds, we have to recall the definition of tangent varifold, which extends
the definition 2.2.

DEFINITION 2.8. Given y , n-varifold in Sz , ~O &#x3E; 0 and x E spt (,u y ),
consider the functions t7,2, x (y) - y x . For every B c Gn(Rm) Borel set,
Let 

’ 

e
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and Ye,x(B) = 1 y(E-’(B)). We call tangent varifold to y at x and we’ 

e 
~, x

write Var Tan ( y , x), the set of all possible weak limits for the sequence
of varifolds x ) when o -~ 0 .

THEOREM 2.9. Let YEA Vf (Q) with p &#x3E; 1 and let xo E spt Then

the following statements hold:

1. The density exists at xo , i. e. there exists

2. There exists the tangent varifold to y in xo. If xo is not a boun-
dary point then the tangent varifold is a finite union of lines (with
their multiplicity), otherwise is a finite union of lines and half-li-
nes.

3. Let T be a line or an half-line tangent to the varifold y in xo.
Then there exists a neighborhood U of xo such that spt (,U.Y) n U is the
graph, in U, of a multiple valued function defined on T.

4. The rectifiable set M associated to y is closed up to a Xl - ne-
gligible set and the density function is upper semicontinuous in the
points not belonging to the boundary of y.

The description of the varifolds in AVf(Q) will not be complete wi-
thout the following result concerning the boundary structure:

THEOREM 2.10. Let y p &#x3E; 1 and let ay be its boundary
measure. Then there exists a set at most countable c Q such

that

are Dirac’s delta in R!, are measures in which are fi-
nite sums of Dirac’s delta in Gl, m and v X, are unit vectors.

For the definition of multiple valued function see [3], [5]; for the
proof of theorems 2.9 and 2.10 see [24].

We remark that the good structure properties stated in the above
theorem hold true only for one-dimensional varifolds. For this reason
our work doesn’t extend to higher dimensional objects.

The last tool we need is a corollary of the monotonicity formula for
varifolds (see [28]).
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THEOREM 2.11. Let y be a n-varifold in Q c with locally boun-
ded first variation, without boundary and mean curvature H Y . Given

u

, where BR ( x ) c Q and p &#x3E; n , then:

whenever 0  a  o ~ R .

3. The main result.

Let us consider the functional

where B c R" is an open set, is an open bounded set, y is an
varifold with boundary, p &#x3E; 1, 0 : R~’-~[0, oo) and K is a fi-

xed closed subset of R7 such that  + oo . We will denote by y
both the varifold as measure in and the support of its weight
measure yy in R!. We prove existence of minima y for 7~ in 
with the constraint Indeed we have the following:

THEOREM 3.1. Let Q c R7 be an open bounded set and 1.

If 95 is a lower semicontinuous convex function such that 0(t) 
Vt E R!,3 for some constant c &#x3E; 0, then the problem

has at least one solution.

In order to prove this theorem we will need the following lem-
mas.

LEMMA 3.2. Let (,y ) be a minimizing sequence for (3.2). Then the-
re exist a subsequence ( y kn ) and y o eA Vr such that and
spt (,u y  ) c Q. 
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PROOF. We first observe that the minimizing property of (y~)
implies

hence we can use the compactness result proved in Remark 2 of [21]. We
obtain a subsequence of (y,,), which we still denote by (y~), converging
in to By remark 1.7.1 in [8] we know that

as measures in R~, then, since S~ is compact and spt (¡t Yn) c S~,
we have

Let us denote by N,,c S~ the sets where the projections of the boun-

dary measures 1 are concentrated; set ~ J

LEMMA 3.3. Let as in lemma 3.2. Then, up to a subsequen-
ce, the set L is finite and contains all cluster points of N .

PROOF. By regularity results on one dimensional varifolds (see [24]),
we know that Nn is discrete. Eventually extracting further subsequen-
ces, we can suppose that Nn is non empty for every In fact, if
Nn = 0 then N is finite and the set of its cluster points is empty.
We observe that, by setting s = int (M) the integer part of the real num-
ber M defined in (3.3), we have Hence we can set

Nn = ~ xn 1 ~ , ... , xnsn ~ ~ with For simplicity we set if

sn  j  s.
We are going to extract iteratively s subsequences from (y~) in order

to obtain a new sequence of sets Nkn with the required property. By vir-
tue of the constraint C Q which is compact, we can find a first
subsequence such that (xk ~ ~ ) converges to an element e Q. Re-

starting from this new sequence we extract new subsequences 
from such that converges to y(j) for every j E

Choose now y E L and We have that
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zn = for a suitable choice of jn. There exists at least an index j  s
such that Considering the subsequence

card (L) ~ s . Let now z be a cluster point for N. By contradiction we sup-

pose that z E L. There exists E &#x3E; 0 such that

But there exist such that if then for j =
=1, ... , s . Hence in B~ (~) there are only a finite number of elements of N
that contradicts the assumption made on z. This proves that z e L and
that N have at most s cluster points.

In the sequel we use N and L instead of Ñ and L and we suppose di-
rectly that y k8 = y n so that the sequences are converging to y ~~ ~ and
consequently N has at most s cluster points.

REMARK 3.4. The set N U L is compact.

PROOF. Since L is finite, the cluster points for N U L are also cluster
points for N, hence N U L is closed. The compactness follows from the
inclusion 

To prove lower semicontinuity for the functional by using the re-
mark 2 of [21], we have just to prove that the term dist ( x , y ) (x) is

K

lower semicontinuous. This is, in general, not true, as the following
example shows.

EXAMPLE 3.5. Let y n the varifold constructed over the rectifiable

is easy to see that the sequence (y~) converges to the varifold yo con-
structed on the set I (x, y) E=- W: O~~~l, y = 2 1. If we set K =

={(.r~?/)eR~: then, for every we have

K

The idea is to pull away from y,, those components which are

useless because they tend to shrink and disappear in the limit varifold
y o , giving lack of lower semicontinuity. Therefore we are going to
consider a new sequence (y’) of varifolds in with U c Rm
suitable open set, which converges to a varifold We
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will prove lower semicontinuity for the functional Fu on the sequence
(y~) and theorem 3.1 will easily follow.

LEMMA 3.6. Let (y~) and L be as above. Set

Then we can find rj  (2 j such that I

consider the varifolds

PROOF. Since the set L is finite, the existence of rj is trivial. It
is also easy to see that Moreover, since as measu-

as measures in R~. Set
, If j is such that then

hence, because of the lower semicontinuity:

Therefore the set BV) x Gl , m is negligible for the measure hence

which concludes the proof.

PROOF. This is obvious because and

LEMMA 3.8. Let (y,) and Nn be as above. There exists c &#x3E; 0 inde-

pendent of n such that for every x E spt BNn and o with 0  e 
 min I c, dist ( x , it results that:

PROOF. For each n e N let is a curvature
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varifold without boundary and we can apply theorem 2.11 obtaining:

where H Y n is the mean curvature of y n and

By passing to the limit when recalling (2.1 ) and that 2 , we
have:

moreover, by using the minimizing property of the integer varifolds y n ,
, we have

Hence, if we choose c &#x3E; 0 such that than for every e

such that

LEMMA 3.9. Let U, y n and y o be as in lemma 3.6, then .

PROOF. By the lower semicontinuity result in [21] the only term in
the functional that needs to be checked is the integral

y n ) By Fatou’s lemma, it will be enough to prove that
K

for every x E Rm it results

By contradiction, we fix and we suppose that:

There exists - &#x3E; 0 and a subsequence of (y~), which we still denote by
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(Y’ n ), such that

We will use the same notations as in the proof of lemma 3.3 with
N, L , Nn instead of N, L, therefore Nn = ~ xn~ ~ : j =

~. We denote by N.
the support of the boundary measure R# 13y’ n I . Since the varifolds y n
are considered in the open set it results that Nn = Nn n U. We

We recall now that

Where 0n and y i are respectively the density and the support of the mea-
sure 03BC Yn, U L ’ ) = 0 since the set N’ U L ’ is at most coun-
table. By theorem 2.9, the density exists at every point of and

then we can choose
such that

Therefore, up to a subsequence which we still denote by ( zn ), there exists
~ E ,S~ such that z. - z. Passing to the limit in (3.5), we have

therefore

and consequently

To contradict (3.6) we will distinguish several cases:

By remark 3.4, L’ U N’ is compact, hence it results that
3 = dist (z, L ’ U N ’ ) &#x3E; 0 . We are going to evaluate dist (z, Nn ). If L ’ = L
then U = R~B Nn = Nn and we have the estimate dist (z, 
; dist (z, N’ U L ’ ) = 3 . If L ’ # L we shall consider separately the points
of Nn which are outside or inside of U. Let us fix j such that y (j) E L ’;
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Now set

with rj as in the definition of U. Since lim = 2/~B there exists 6 &#x3E; 0
~ n -~ ~ 

n

such that d n ; i5 for n large enough. We recall that zn E Ubn E N, hence
U N’ ). Let us fix j E {1, ... , s} such that (this means

that the points of U are far from ~/~). Therefore we have:

Collecting the inequalities above we obtain that, for n large enough,

If we set , it Zn  3 ’ definitively. As a

consequence of lemma 3.8 we have that there exists WE N such that

therefore, by upper semicontinuity of measure convergence on compact
sets we have:

which contradicts (3.6).

2) ~ is a cluster point for N’ .

This means that Z E L ’. By construction of ( y n ) we have that, for
every r &#x3E; 0, it results The upper semicontinuity over
compact sets implies that:

which contradicts condition (3.6).

We will prove that z E Nn only for a finite number of By
contradiction, let us suppose that there exists an increasing sequence

such that zEN,: . It follows that ’2 = for a suitable choice of

jn E ~ 1, ... , s}, hence, extracting a further subsequence, we can suppose
Z = for a fixed j . For the construction of the set N’ then it must be
z = y ~~~ E L ’ and this is not possible. We have proved that there exists
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n’ E N such that, if We have that 8 =

and we can conclude as in case 1).

We have covered every possibility for the limit point z and this con-
cludes the proof.

PROOF. Using the same notations used in the proof of the previous
lemma, let us ... , s} such that (if such a j doesn’t
exist, then L ’ = L , N ’ = N, U = R~B y n = y n and there is nothing to pro-
ve). Since - y (i), there exists n E N such that if n &#x3E; n then U.

It follows that and, for theorem
r

Now we are ready to prove existence of minima for 

PROOF OF THEOREM 3.1. By corollary 3.7, lemma 3.9 and lemma 3.10
we get:

4. Final remarks.

In the last section we proved the existence of solutions for the mini-
mum problem (3.2). The question now is about the regularity of minima.
What we know, from theorem 2.9, is that the varifolds we are dealing
with, are locally the graph of multiple valued functions (for a definition
of multiple valued function see [3], [5]). By recent results on regular se-
lections for multiple valued functions (see [20]) we are able to prove that,
locally, the support of the weight measure 03BCy for the varifold y minimi-
zing (3.2), is decomposable in the finite union of graphs of curves
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(the result contained in [20] concerns, actually, C 1 ~ 1 graphs, but in a mo-
re recent work, to appear, C. De Lellis, P. Tilli and the author prove that
the same result holds true for C 1 ~ a functions too). Hence we can cover
the support of ¡.,t Y’ which is compact because it is closed (see theorem 2.9)
and is bounded, with a finite union of balls, obtaining that it is globally
the finite union of arcs.

As a final remark we want to underline the role played by each single
term in the functional (3.1). The first and the second term represent an
integral distance between the sets K and y . They prevent the varifold y
to be far from K, up to sets of small X’ measure. This means that it is
possible, for a small connected component of y , to be far from K (or vice
versa) but, if this occurs, the third or the fourth term of the functional
will increase. Indeed the third integral takes into account of the curvatu-
re, hence, if there are small connected components without boundary
they must have a big curvature. For instance, if q§(A Y ) = H Y ~ 2 , then the
integral f I H r /2 d X 1 on a circle with radius r will be of order 1 . Ther

fourth term counts the number of edges in the varifold, that is the num-
ber of points where the tangent jumps. Small connected components
with boundary, like little segments, will pay a cost of at least two boun-
dary points, hence the functional tends to prevent the growth of such
phenomena.
We must pay particular attention to the coefficient Xl (K) diam ( S~ ) in

front of the last term. It plays a crucial role in the proof of the lower se-
micontinuity. To be more precise, it is possible to modify the functional
(3.1) including weights for its terms:

The proof is easily modified, but the ratio - have to be at least

9C~(~) diam(Q). This result is optimal for this functional as situations
similar to example 3.5 show. We want to note that this constraint doesn’t
affect the freedom to balance the ratio between the others coefficients,

especially the ratio - which controls the trend of the functional to prefer
Q

sharp to smooth curves. If the value a is big, then the minimizing pro-
B
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cess is made, in some sense, in two steps: first we choose the right balan-
ce between edges and curvature, then we minimize the distance between
y and K among the curves with a fixed number of edges. We observe also
that the number diam ( S~ ) depends by how much we want to allow
the varifold y to move around K: if we choose a set S~ too big we are
wrong with the dimensional scale of the problem and the closeness to K
doesn’t make much sense.

Acknowledgements. I wish to thank Professor Luigi Ambrosio and
Professor Rosanna Schianchi for their kind help.
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