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A Confinement Result for Axisymmetric Fluids.

CARLOTTA MAFFEI - CARLO MARCHIORO (*)

ABSTRACT - In this paper we consider an incompressible, inviscid, axisymmetric
fluid moving in R3 without swirl (a vortex ring). We study its time evolution
via the Euler Equation, assuming that initially the vorticity is concentrated at
a finite distance, say ro, from the symmetry axis. We prove a bound on the
growth of the support of the vorticity. Namely we show that the fluid is confi-
ned in a cylinder with radius r ~ ro + constant t 1/4 log ( e + t).

1. Introduction.

The interest in studying vortex rings can be found in many different
physical contexts. Just to remind some examples, one can note that que-
stions related to the behavior of vortex rings are crucial in the theory of
transport and mixing (expansion of rings due to the buoyancy [1], or gro-
wth of jets [2]) or in the problem of generation of sound (the sound field
can be expressed in terms of vorticity unsteadiness [3], the sound source
can be modelized in terms of interacting rings [4]), or else, in the study
of turbulence (accelerated ions in superfluid helium create quantized
vortex rings [5]).

For an extensive review of results and problems on the subject one
can see [6].

In the present paper we are concerned with a particular problem
of inviscid swirl-free dynamics of a fluid, namely we are interested
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in saying «how fast, and therefore how far, can go a ring of vorticity».
It is known, in fact, that the main part of the vorticity remains close to

the symmetry axis (see eq. (2.12) below), but this does not exclude that some
filaments of vorticity go far away. We give here a bound on this effect.
We consider, in particular, the time evolution of an incompressible,
inviscid, axisymmetric fluid moving in R 3 without swirl and, assuming
that the vorticity is initially concentrated around the symmetry axis at a
distance ro , we prove that the distance must be less than ro +
+ constant + t).

The paper is organized as follows: in the next section 2 we state the
problem and give our main theorem. The sections 3 and 4 are respect-
ively devoted to the proof of the theorem and to some preliminary
results.

2. Preliminaries and main theorem.

Let us consider an incompressible inviscid fluid of unitary density
in R 3 . If u = u( ~ , t ), ~ E R 3 , , denotes the velocity field of the fluid and
p=p(~, t) is the pressure, the Euler equations can be written

We assume the initial condition

and we suppose, moreover, that the initial velocity field is axisymmetric
without swirl, i.e. if ~= (z, r, 8) are cylindrical coordinates, then

We assume, furthermore, that the boundary condition

holds.
If t ) = V A ~c( ~ , t ) denotes the vorticity, it is well known that the

velocity can be expressed in terms of co as

Taking into account the fact that the cylindrical symmetry is preserved
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by the time evolution, the problem (2.1), can be considered as bidimen-
sional. More precisely, if we set cv = (0, 0 , the equation (2.1) can be
rewritten in terms of co as

If x(t) = (z(t, xo), r(t, xo)), is the time evolution of ~
along the velocity field

it is well known that (2.4)1 says that

that is, cv/r is constant along the evolution (2.5). (We recall that in the ca-
se of planar symmetry the conserved quantity is cv).

The equations (2.5), (2.3), and (2.6) give a weak formulation of the Eu-
ler Equation.

It is also well known that the momentum of inertia

and the total vorticity

are conserved along the evolution (2.5). (The fact that M is constant can
be checked directly by performing the time derivative of M along (2.5)
and is related to the invariance of the problem under rotations; SZ is con-
stant as a direct consequence of (2.6)).

The main result we prove in this paper is the following.

THEOREM 2.1. Assume that w(z, r, t) is a solution of the problem
(2.3), (2.5), (2.6). Call
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with a, b positive constants, the support of the vorticity at time t = 0.
Suppose, finally that

and that

Then there exists a positive constant C, depending only on the initial
conditions, such that for all t &#x3E; 0 the support Dt of cv is contained in the

(The proof is given in the next section).

REMARK. It is trivial to give a rough bound on the growth of Dt by
using the fact that the velocity field is bounded. The previous result sta-
tes this bound in a quite sharp way.
We remind, moreover, that a bound similar to (2.10) has been proved

in the planar case, see [7], [8], [9].

COROLLARY 2.2. A trivial consequence of the theorem is the confi-
nement result

From now on, C always denotes a positive constant depending on the in-
itial conditions.

Before concluding the section, we give a final definition.

DEFINITION 2.1. If S r * - ~ x = (z , r) : z  r * I denotes a strip
in the ( z , r)-plane, then

is the vorticity external to the strip sr* at time t .
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Let us note that, as a consequence of (2.7), a trivial bound on 
is given by

3. Three lemmas and the proof of theorem 2.1.

We remark, first of all, that the velocity u(x, t), with respect to the
coordinates ( z , r), can explicitly be written as

We anticipate that the main step in the proof of the theorem consists in
showing that, for all r ~ ro + + t ), the radial component of the
velocity (3.1) satisfies an estimate of the form

To prove, the previous (3.2) we need some preliminary results, that we
state without proof. All the proofs can be found in the next section.

LEMMA 3.1. Assume the hypotheses of the Theorem 2.1. Then the

following estimate holds

where mr~2 ( t ) is defined in the (2.11 ).
The next two results allow us to say that, for r sufficiently large,

is as small as we want. More precisely the lemmas hold.

LEMMA 3.2. Under the same hypotheses of the theorem 2.1., given
two positive numbers rl, r2 , ro ~ r2 , the vorticity external to the strip
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S r2 satisfies the estimate

where

LEMMA 3.3. Assume that Then for all 

it is

We are ready now for our main result.

PROOF OF THEOREM 2.1. Fix n of Lemma 3.3 equal to 6. The estima-
te (3.2) easily follows from the (3.3) and (3.6).

If the (3.2) holds, then the theorem is proved by contradiction.

4. Proofs of the lemmas.

We start by giving two formulas that we need in what follows.
Call

If x ~ x ’ , there exists a positive constant c such that

Moreover

where R( x - x’ 2) is bounded.
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In what follows, in particular, we use that

(The proof of (4.1), (4.2) can be found in the Appendix).

PROOF OF LEMMA 3.1. To show that the (3.3) holds assume that, for
all r, the interval [0, oo) is divided as follows: [0, where
,N is a neighborhood of r as small as we want, say for definiteness ,N =
= [ r - r/c , r + r/c ], with c a positive constant, and 3 = [ o , ~ ) /,N’ .

From (3.1 ) one can write

where B(x , x ’ ) is defined above.
We estimate the first term in the previous sum. Taking into account

the estimates (4.1) and the (2.7) we get

For the second integral we note that, from the (4.2) it follows that

Given let us consider now the ball 1
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Then, using hypothesis (2.9) it is

where c is a suitable constant, and, as usual, the first integral is perfor-
med in polar coordinates.

Summing T1 and T2 , the lemma is proved.

PROOF OF LEMMA 3.2. Given two positive numbers 
us define the function

where

and

where c is a positive constant.
From the definition of fl rI r2 (t) it follows that

If b of Do is such that b ~ r1, it follows that

Let us compute the time derivative along the evolution (2.5).
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One has, taking into account the (3.1),

As already remarked, x ’ ~ ~ 0 , B(x , x ’ ) becomes singular. We
overcome this problem by using the hypothesis (4.5)2.

More precisely, taking into account that B(x, x’ ) = B(x’ , x), one can
write

It follows then

where 3 and .N are the same as in the previous lemma.
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Let us evaluate the first integral in the sum. Taking into account the
(4.5), (4.1), (2.7) and (2.12), we have

From the (4.2), following the same path as in the previous case, one gets
furthermore,

Then the lemma is proved.
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PROOF OF LEMMA 3.3. In this lemma we finally prove that for r suf-
ficiently large, is as small as we want. To this aim we divide the in-

terval [r/2, r] in a suitable numer of parts and using the (3.4) and (3.5)
we prove our thesis. ~

Let us set, more precisely, where

, and k is a positive constant to be fixed in

Let us remark, first of all, that if one sets 1

, it follows from (3.5) that 
" ’

If one iterates the (3.4) in the intervals Ii one gets

From the (2.12), taking into account the Stirling formula In k! &#x3E; k(ln k -
-1 ), it follows that the (4.6) can be rewritten

Let us define

We show that if r ; R(t), then also

with C’ a suitable constant. Call in fact t * the solution of R ( t ) = t , (t * is
finite), and set r * = t * . If r ~ R(t), then it is
In the case i) one has

Setting , then C * In (e + r)  C, and therefore
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In the case ii) t &#x3E; r, and

Then (4.9) holds with C’ = max ( C, C * ).
The lemma is proved from (4.7) if, for any n E N the number k is cho-

sen such that

APPENDIX. We prove that the (4.1), (4.2), hold. If x ~ x ’ , it is, in
fact,

where . If one notes that

a E (0, a), the (4.1) easily follows by integration.
(ii) The (4.2) can be proved by noting that, if
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The first and second integral can be computed exactly and are equal to

The remaing part is bounded as b’---&#x3E;0. This allows us to say that (4.2)
holds.
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