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03BB and 03BC-Dimensions of Modules.

EDGAR E. ENOCHS (*) - OVERTOUN M. G. JENDA (**)
LUIS OYONARTE (***)

ABSTRACT - Bourbaki [1] defined A-dimension using finite presentations. In this
paper, we extend this definition by replacing finite presentations with resolu-
tions obtained by using either r-precovers, or ~precovers cp : F-M such
that cp is an epimorphism and Ker ( cp ) is orthogonal to lJi where a class of
modules closed under direct sums. The aim of this paper is to study these ~,-di-
mensions. As an application, we prove the existence of Gorenstein flat covers
over n-Gorenstein rings.

1. Introduction.

Throughout this paper, R will denote an associative ring with unity,
R-module will mean a left R-module, and ,r will denote a class of R-mo-
dules closed under finite direct sums.

We recall that if M is an R-module, then a morphism cp : F ~ M is
called an F-precover of M if F E lfand Hom (F’ , F) - Hom (F’ , M) - 0
is exact for all F ’ e 9~ If moreover, any morphism f : F-F such that
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cp = cp o f is an automorphism of F, then cp : F - M is called an ~ cover of
M. F-preenvelope and F-envelope M - F are defined dually. If F-covers
and lKenvelopes exist, then they are unique up to isomorphism. If every
R-module has an F-(pre)cover, F-(pre)envelope, we say that ff’is (pre)co-
vering, respectively.
We note that F-precovers are not necessarily epimorphisms. But if F

contains all the projective R-modules, then cp is an epimorphism. Similar-
ly, if lf contains all the injective R-modules, then an lKpreenvelope
cp : M -~ F is a monomorphism.
A (partial) complex ~ ~ ~ ~ -~ Ml -~ Mo (n ; 2) of R-modu-

les is said to be Hom (~ - ) exact if the sequence

is exact for all F By a left ff-resolution of an R-module M we mean
an Hom (~ - ) exact (not necessarily
exact) with each Fi e ! A right F-resolution of M is defined dually. We
note that Eilenberg-Moore [2] call these resolutions projectile (injecti-
ve) resolutions of M for the class A finite Hom (lJi - ) exact complex

with each FiEffis called a partial
left F-resolution of M of length n. Partial right resolutions are defined
similarly.
We say that if M does not have an F-precover. If n &#x3E; 0,

we say that = n if there is a partial left F-resolution Fn -...- 
~ Fin - Fo ~ M - 0 of M of length n and if there is no longer such complex.
We say A if there exists a partial left F-resolution for each
n &#x3E; 0 . Dually, we say if M does not have an F-preenve-
lope, and 03BC F(M) = n with 0 ; n  oo if there is a partial right F-resolu-
tion length n and if there is no longer such

if there is such a complex for each % % 0. AT(M) is
called the A-dimension of M relative to ff and is denoted A(M) if ff is un-
derstood. Similarly, (or simply ,u(M)) is called the fl-dimension of
M relative to 9~

In this paper, we will study properties of A-dimensions. It is natural
to ask whether A(M) = oo implies that there is an infinite left F-resolu-

of M . We will show that this is indeed
the case (Corollary 2.6). We will also show that if 0 - M ’ - M - M " - 0
is an exact sequence of R-modules such that 0-Hom(F, M’)
-~ Hom (F, M) --~ Hom (F, M") -~ 0 is exact for all F E ff, then A(M " ) a

A(M)), ~,(M) ~ A(M")) and ~,(M’ ) ~
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; min (A(M), A(M") - 1) (Theorem 2.10). We note that if F is the class of

finitely generated projectives, then A(M) a 0 if and only if M is finitely
generated, and 1 if and only if M is finitely presented. In this ca-
se, the A-dimension defined above is the A-dimension of Bourbaki [1, pa-
ge 41], and Theorem 2.10 corresponds to their Exercise 6. In Section 3,
we will obtain results corresponding to the ones in Section 2 for A-dimen-
sions relative to F-precovers cp : F - M such that cp is an epimorphism
and Ext (F, Ker cp ) = 0 for all All the results in Sections 2 and 3
have their counterparts concerning p-dimensions. For each of these the
proof is just the dual of the proof of the corresponding result and hence
we will not state them here. Finally, in Section 4 we use A-dimensions to
prove that the class of Gorenstein flat R-modules is covering over n-Go-
renstein rings (Theorem 4.3) which is a result of Xu-Enochs [7].

As usual, inj. dim M, proj. dim M will denote injective and projective
dimensions of M respectively.

It is well known that if 0 - C ’ - C - C " - 0 is an exact sequence of

complexes then we have an associated long exact sequence of homology.
We will frequently use this result and its concomitant implications about
the exactness of C’ , C, C" at the various terms of these complexes. We
also recall that given a map f : C --~ D of complexes we have the mapping
cone M( f ) of f and the associated exact sequence 0 --~ D ~ M( f ) -j
~ C[ - 1 ] ~ 0 of complexes.
A partial complex will often be thought of as a complex with the extra

terms being zero.

2. A-dimensions.

We start with the following easy

LEMMA 2.1. If M is an R-module and F E F, then F Q9 M has an ff-

precover if and only if M has an ff-precover.

PROOF. If G ~ M is an lKprecover, then easily 
Conversely, if cp : lKprecover, then 
where ,~ 2 : is the projection map.

The following is called Schanuel’s lemma when if is the class of pro-
jective R-modules.
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LEMMA 2.2. If F - M, G-M are F-recovers with kernel K
and L respectively, then J

PROOF We consider the pullback diagram

The map G - M has a factorization G - F - M since F - M is an F-pre-
cover. So P - G has a section and thus P z K Q9 G since Ker (P - G) =
= Ker (F - M) = K. Similarly, P * L Q9 F and so we are done. m

PROPOSITION 2.3. Let and and

Gn -...- G1 - G0 - M - 0 be partial left F-resolutions of M. If K =
= Ker (Fn ~ Fn _ 1 ) and L = where F_ 1= G _ 1= M, then

PROOF. By induction on n . The case n = 0 is Lemma 2.2 above. If
n &#x3E; 0 , the complexes and

are partial left F-resolu-
tions by Lemma 2.1. Furthermore, K Q9 Go = L Q9 Fo by the above. So an
appeal to the induction hypothesis gives the result.

PROPOSITION 2.4. for all 

PROOF. We prove that for n ~ -1, if and only if

A(M) a n . This is trivial if n = -1. It is true for n = 0 by Lemma 2.1.
Now let n &#x3E; 0.

Suppose ~,(M) ~ n . If Fn ~ ~ ~ ~ - Fro - M - 0 is a partial left lKresolu-
tion, then so is the complex Thus

Conversely suppose A(F Q9 M) ; n and let Gn -~ ~ ~ ~ - Go ~ F Q9 M - 0
be a partial left r-resolution We know that A(M) a 0 and so let
Fo -~ M be an ~precover. Set K = Ker (Fo - M) and L = 
0)M). Then is also an F-precover with kernel K and so
L Go by Proposition 2.3. But A(L) -&#x3E; n - 1 and so A(L Q9

1. But then Go ) ~ n - 1 which means that 
~ n -1 by induction. Hence ~,(M) ~ n .
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THEOREM 2.5. Suppose n &#x3E; k ~ 0 . If 1-~ ~ ~ ~ --~

- F0 - M - 0 is a partial left F-resolution of M and K = Ker (Fk -
-~ Fk _ 1 ) where F_ 1= = n,

then ~,(K)=n-k-1.

PROOF If A(M) &#x3E; n, then there is a partial left F-resolution Gn -
~ ~ ~ ~ ~ Go -~ M. Let L = Then ~,(L) ~ n - k - 1. By

by Proposition 2.4. Hence ~,(K) ~ n -1~ - 1. m

COROLLARY 2.6. If A(M) = oo, then there is an infinite left 
of M .

PROOF If is a partial left lKresolution and
K = then So this complex can be extended
to a partial left F-resolution Fn +1 -...- F0 - M - 0. Continuing in this
manner we get the desired complex.

LEMMA 2.7. If Linear map such that the induced

Hom (F, an isomor~phism for all F E ff, then
À(M2).

PROOF. If and Fn -~ ~ ~ ~ -~ Fo --~ Ml ~ 0 is a partial left ~
resolution, then so is Fn ~ ~ ~ ~ -~ Fo ~ M2 --~ 0 where Fo ~ M2 is the com-
position Hence 

If A(M2) &#x3E; n and Fn -...- F0 - M2 - 0 is a partial left F-resolution,
then by hypothesis, Fo ~ M2 has a lifting and so Fo -~ M2 has a
factorization But Hom (Fl , is an

isomorphism and is 0 . So is a complex. Thus
we see that is a partial left ~resolution.
That is, m

COROLLARY 2.8. If a compLex 0 -~ M’ -~ M --~ M" ~ 0 of R-modules
is exact and K = Ker (M--~ M"), then the map M’ ~ K is
such that Hom (F, M’ ) ~ Hom (F, K) is an isomorphisms for all F e !
Hence ~,(M’ ) _ ~,(K) by Lemma 2.7 above.

LEMMA 2.9 (Horseshoe Lemma). Let 0 -M ’ -M-M"-0 be a
Hom (~ - ) exact complex of left R-modules. If - - - - F1 ~ M’ ~ 0

and ...- F"1 - F"0 - M" - 0 are left F-resolutions, then there exists a
commutative diagram
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such that the middle column is a left F-resolution of M .

PROOF. This is standard.

THEOREM 2.10. Let be a Hom (~ - ) exact
complex of left R-modules, then

PROOF. We start with (1). We only need prove that if n ; -1 is an
integer and min (A(M’) + 1, ~,(M)) ~ n, then ~,(M") ; n. If n = -1, this
is trivially true. If n = 0, then 0 means M has an -f-’precover F-~
- M . By hypothesis, Hom ( G , M ) ~ Hom ( G , M" ) ~ 0 is exact if G e ! So
Hom (G, F) ~ Hom (G, M) -~ Hom (G, M") is surjective. Thus F ~ M"
is an lKprecover and so A(M") a 0.

We now suppose n &#x3E; 0. We have A(M’) ~ ~ 2013 1 ~ 0 and A(M) a % by
assumption. So we have partial left lKresolutions Fn _ 1-~ ~ ~ ~ ~ Fo ~

~ ~ ’ ’ -~ Fo -~ M -~ 0 . Hence we have a commuta-
tive diagram

A mapping cone then gives rise to the complex 1
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which is Hom (~ - ) exact.
But then we have a commutative diagram

where the rows are Hom (~ - ) exact complexes. We now apply the addi-
tive functor Hom (F, - ) with any F e lf to the diagram above. Then,
using the long exact sequence associated with the short exact sequence
of complexes we see that F~(B~-i~~-i(B~-2~’’’~~i0~o’~
-Fo-M" - 0 is also Hom (lii - ) exact. Hence 

The proof of (3) is similar. We need to argue that if min(A(M),
~,(M " ) - 1 ) ~ n , then ~,(M ’ ) ~ n . We can assume % a 0 . Then we get a
commutative diagram

and the complex But

then we get a commutative diagram

The kernel of the corresponding map of complexes is the complex

is a pullback diagram. Hence by our hypothesis on 0 - M’ - M - M" -
- 0 , we see that the map Fo’ - M " has a lifting Fo’ - M . But by the proper-
ty of a pullback this means P -~ Fo has a section. Hence 
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where K = Ker (M-M"). But as in the argument for (1), we see that
is Hom exact. This means

n . But since P = Fo + K we get that A(K) n by Proposition 2.4.
But then by Lemma 2.7 and Corollary 2.8, we get ~.(M’ ) ~ n.
We now prove (2). We assume À(M’), A(M") n ~ 0 and argue

~,(M) ~ n . Let F§ - ... - Fg - M ’ - 0 and Fn --~ ~ ~ ~ -~ Fo -~ M" --~ 0 be
partial left ’ r-resolutions of M’ and M" respectively. Then by Horseshoe
Lemma 2.9, we get a partial left F-resolution of M of length n . Hence

n .

3. A-dimensions and special F-precovers.

We recall that the class of modules C such that Ext1 (F, C) = 0 for all
F E F is denoted by It is easy to see that F1 is closed under exten-
sions. Furthermore, if the sequence 0 -~ C ~ F -~ M -~ 0 is exact with
C E and then for each G we have an exact sequence
Hom (G, F) - Hom (G, M) - Ext1(G, C) = 0 and so F - M is an r-pre-
cover.

DEFINITION 3.1. An ff-precover cp : F - M is said to be a special ~
precover if cp is an epimorphism and Ker cp E For example, if R is
n-Gorenstein, that is, R is left and right noetherian and has self injecti-
ve dimension at most n on both sides, then every R-module has a Go-
renstein projective precover cp : C-M such that K = Ker (cp) has pro-
jective dimension at most n. Furthermore, Ext1 (C’ , K) = 0 for all Go-
renstein projective R-modules C’ (see Enochs-Jenda [4]). Hence in this
case, if 3"is the class of Gorenstein projective R-modules, then every R-
module has a special tf-precover. Dually, if the class of Gorenstein
injective R-modules, then every R-module has a special tf-preenvelope
over n-Gorenstein rings (see Enochs-Jenda-Xu [6]).

DEFINITION 3.2. For an R-module M, we say ~,~(M) _ -1 if M
does not have a special ff-precover. If there is an exact sequence Fn -~ ~ ~ ~

where Fo-M, ( Ko = Ker(Fo-M) and
Ki - 1= Ker (Fi - 1 - Fi - 2 ) for i &#x3E; 2 ) are special F-precovers for i &#x3E; 0 ,
and if there is no longer such sequences we say that 7(M) = n . We say
that A(M) = 00 if there is such a sequence for each n ; 0.
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PROPOSITION 3.3. If t1 is such that A(M) a 0 implies 0

for all R-modules M, then A(M) = A(M) for all M.

PROOF. Clearly A(M) % 7(M). So we argue that ~,(M) ~ n implies
7(M) -&#x3E; n for n ; 0. But this is true if n = 0 by assumption. So we suppo-
se A(M) a % &#x3E; 0 . Then I(M) a 0 and so let F - M be a special F-preco-
ver with kernel K. Then n - 1 by Theorem 2.5. So n - 1

by induction and hence 5(M) a n .

The proofs of several results concerning A-dimensions are straight-
forward modifications of the corresponding results about A-dimensions.
These include Proposition 2.4, Theorem 2.5, and Corollary 2.6. We now
prove results that correspond to Theorem 2.10.

We recall that if t1 contains all the projective modules then any ~
precover F ~ M is surjective. And in this case any exact se-

quence is exact.

THEOREM 3.4. If t1 contains all the projective modules and i, f 0 -
-M ’ -M-M"-0 is exact with M’ E t1 1. (so the sequence is also
Hom(,’7’,’ -) exact) then

PROOF. The argument is a straightforward modification of the proof
of (1) of Theorem 2.10.

THEOREM 3.5. If I is an Hom ($ - ) exacct

complex, then

PROOF. This argument is like that for (2) of Theorem 2.10.

DEFINITION 3.6. The class said to be resolving if F contains all
the projective modules and is closed under extensions, and if whenever
0 --~ F’ --~ F ~ F" -~ 0 is exact with F, F" F’ is also 

THEOREM 3.7. resolving and 0 -~ M’ -~ M --~ M" ~ 0 is an
exact sequence of modules, then
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PROOF. We prove by induction on n that if n and 

~ n + 1 then ~(M’) -&#x3E; n.
Let n = 0 and so A(M") &#x3E; 1 and I(M) % 0 . So let 0 - K"0 - F"0 - M" - 0,

be exact sequences

We now form the pullback of M ~ M " and Fo -~ M " and get the com-
mutative diagram

with exact rows and columns. We now consider the exact sequence 0 ~

~ Ko ~ H ~ M -~ 0 . Since Ko E lF~ , this sequence is exact.

So by the Horseshoe Lemma, we have a commutative diagram

with exact rows and columns. Note that since Kl’ , Ko E we also have
K We now form the pullback of M ’ ~ H and F1’ Q9 Fo - H . This gi-
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ves us the following commutative diagram

with exact rows and columns. Since F i’ EÐ F 0, resolving,
F ’ e M As noted above, K E ~1. Hence F ’ ~ M ’ is a special ff-precover
and so ~,(M’ ) ~ 0.

Now assume n &#x3E; 0 and use the construction above. Then by the exac-
tness and Hom (~ - ) exactness of 0 -~ Ki’ -~ K ~ Ko ~ 0 (Kl’ E gives
the exactness), we get I(K) a min (-A(Kl"), I(Ko)) by Theo-
rem 3.5. But min (~,(K1’ ), n - 1 by the I-dimension counterpart
of Theorem 2.5 (or we can assume we chose Ki’ and Ko so that the inequa-
lity holds). But then ~,(K) ~ n - 1 implies 7(M’) &#x3E;- n.8

4. I-dimensions and Gorenstein flat modules.

We recall that an R-module M is said to be Gorenstein flat if there

exists an exact sequence

with M = Ker (F ° --~ F 1 ) such that E Q9- leaves the sequence exact whe-
never E is an injective R-module (see Enochs-Jenda-Torrecillas [5]).
Clearly, the class of Gorenstein flat modules contains the flat modules.
We recall from [5] that if R is n-Gorenstein, then M is Gorenstein flat if
and only if M) = 0 for all i ~ 1 and all right R-modules L of finite
injective dimension.

We start with the following



122

THEOREM 4.1. Let R be n-Gorenstein and the class of Goren-
stein flat R-modules, then for every pure injective R-module P .

PROOF. Let N be any right R-module and let N c G be a Gorenstein
injective envelope. Then we have the exact sequence 0 --~ (G/N)+ -~
- G + - N + - 0 where G + is a Gorenstein flat left R-module (see [5] and
[6]). But G/N has finite injective dimension. So if F is a Gorenstein flat
left R-module, then (G/N) + ) = Torl (F, G/N) + = 0 by the re-

marks above. Hence G + -~ N + is a special Gorenstein flat precover.
Now let P be a pure injective left R-module and set N = P + . Then we

have a special Gorenstein flat precover G + -~ N + = P + + . Since P is pu-
re injective, it is a direct summand of P + + and so P has a Gorenstein flat
precover. But the class of Gorenstein flat modules is closed under direct
limits (see [5]) and therefore P has a Gorenstein flat cover F -~ P by
Enochs [3, Theorem 3.1]. So there exists a commutative diagram

with exact rows and P --~ P + + -~ P the identity on P . Since F ~ P is a
flat cover, we see that F is isomorphic to a direct summand of G + and K
is isomorphic to a direct summand of Since (G/N) + is pure injec-
tive, so is K. But for F’ Gorenstein flat. So

K) = 0 for all such F’ . Hence 0 - K- F - P - 0 is exact with
F - P a special Gorenstein flat cover and K pure injective. But then we
can repeat the argument with K replacing P . Proceeding in this manner
we see that ..

COROLLARY 4.2. For every R-module L of finite injective dimen-
sion, Aff(L) = 00 where tf is the class of Gorenstein flat 

PROOF. If L is injective then L is pure injective and so the result hol-
ds by the theorem above. If inj . dim L  oo , then we see that a repeated
application of Theorem 3.7 gives the result noting that lf is resolv-

ing.



123

As an application, we use A-dimensions and A-dimensions to prove the
following now familiar result.

THEOREM 4.3 ([7, Theorem 3.2]). If R is n-Gorenstein, then every
R-module M has a Gorenstein flat cover F -~ M .

PROOF. We will argue that for every left R-module M, 
with F the class of Gorenstein flat left R-modules. But every R-module
has a special Gorenstein projective precover. That is, there is an exact
sequence 0-L-C-M-0 with C Gorenstein projective and

L  oo. But inj . dim L  00 since R is n-Gorenstein. So by
Corollary 4.2, But C is Gorenstein flat by [5] and so easily

Then Theorem 2.10 says So M has a Gorenstein
flat precover. So since the class of Gorenstein flat modules is closed
under direct limits ([5]), M has a Gorenstein flat cover ([3, Theo-
rem 3.1])..
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