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A and u-Dimensions of Modules.

EpGar E. ENOCHS (*) - OVERTOUN M. G. JENDA (**)
Luis OYONARTE (***)

ABSTRACT - Bourbaki [1] defined A-dimension using finite presentations. In this
paper, we extend this definition by replacing finite presentations with resolu-
tions obtained by using either JFprecovers, or Fprecovers ¢ : F— M such
that ¢ is an epimorphism and Ker (¢) is orthogonal to &, where Fis a class of
modules closed under direct sums. The aim of this paper is to study these A-di-
mensions. As an application, we prove the existence of Gorenstein flat covers
over n-Gorenstein rings.

1. Introduction.

Throughout this paper, R will denote an associative ring with unity,
R-module will mean a left R-module, and & will denote a class of R-mo-
dules closed under finite direct sums.

We recall that if M is an R-module, then a morphism ¢ : F—> M is
called an Fprecover of M if F € Fand Hom (F', F) >Hom (F', M) —0
is exact for all F' € & If moreover, any morphism f: F—F such that
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@ = @ of is an automorphism of F, then ¢ : F— M is called an F-cover of
M. Fpreenvelope and F-envelope M — F are defined dually. If F-covers
and F-envelopes exist, then they are unique up to isomorphism. If every
R-module has an F(pre)cover, F(pre)envelope, we say that Fis (pre)co-
vering, (pre)enveloping, respectively.

We note that F-precovers are not necessarily epimorphisms. But if F
contains all the projective R-modules, then ¢ is an epimorphism. Similar-
ly, if & contains all the injective R-modules, then an Fpreenvelope
@ : M—F is a monomorphism.

A (partial) complex M,—M,_,—-—M,—My(n=2) of R-modu-
les is said to be Hom (F, —) exact if the sequence

---Hom (F', M,,)) > Hom(F', M,,_,) —---— Hom (F, M;) = Hom (F', M,)

is exact for all F € & By a left F-resolution of an R-module M we mean
an Hom (&, —) exact complex :--— F;—F,—>M —0 (not necessarily
exact) with each F; e & A right Fresolution of M is defined dually. We
note that Eilenberg-Moore [2] call these resolutions projective (injecti-
ve) resolutions of M for the class F. A finite Hom (F, —) exact complex
F,—F,_—--—F, —Fy,—>M—0 with each F;e & is called a partial
left F-resolution of M of length n. Partial right resolutions are defined
similarly.

We say that A (M) = —1 if M does not have an Fprecover. If n =0,
we say that 1 (M) =n if there is a partial left Fresolution F,—---—
—F;— Fy— M — 0 of M of length » and if there is no longer such complex.
We say A 5(M) = « if there exists a partial left Fresolution for each
n = 0. Dually, we say that u (M) = —1 if M does not have an Fpreenve-
lope, and u (M) =n with 0 <n < « if there is a partial right Fresolu-
tion 0 >M —>F%—---—F" of length % and if there is no longer such
complex. u (M) = o if there is such a complex for each n = 0. 1 (M) is
called the A-dimension of M relative to & and is denoted A(M) if Fis un-
derstood. Similarly, u (M) (or simply u(M)) is called the u-dimension of
M relative to 7.

In this paper, we will study properties of A-dimensions. It is natural
to ask whether A(M) = o« implies that there is an infinite left Fresolu-
tion ---—>Fy—>F,—>Fy—M—0 of M. We will show that this is indeed
the case (Corollary 2.6). We will also show that if 0 > M'>M —->M"—0
is an exact sequence of R-modules such that 0 -Hom(F,M')—
—Hom (F, M) >Hom (F, M") —0 is exact for all F e &, then A(M") =
Zmin(A(M')+1, A(M)), AM)=Zmin(AM'), A(M")) and A(M') =
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= min (A(M), A(M") — 1) (Theorem 2.10). We note that if Fis the class of
finitely generated projectives, then A(M) = 0 if and only if M is finitely
generated, and A(M) =1 if and only if M is finitely presented. In this ca-
se, the A-dimension defined above is the A-dimension of Bourbaki [1, pa-
ge 41], and Theorem 2.10 corresponds to their Exercise 6. In Section 3,
we will obtain results corresponding to the ones in Section 2 for A-dimen-
sions relative to Fprecovers ¢ : F— M such that ¢ is an epimorphism
and Ext!(F, Ker ¢) =0 for all F e & All the results in Sections 2 and 3
have their counterparts concerning u-dimensions. For each of these the
proof is just the dual of the proof of the corresponding result and hence
we will not state them here. Finally, in Section 4 we use A-dimensions to
prove that the class of Gorenstein flat R-modules is covering over n-Go-
renstein rings (Theorem 4.3) which is a result of Xu-Enochs [7].

As usual, . dim M, proj. dim M will denote injective and projective
dimensions of M respectively.

It is well known that if 0 - C'—C—C"—0 is an exact sequence of
complexes then we have an associated long exact sequence of homology.
We will frequently use this result and its concomitant implications about
the exactness of C’, C, C" at the various terms of these complexes. We
also recall that given a map f : C— D of complexes we have the mapping
cone M(f) of f and the associated exact sequence 0 —>D—M(f)—
—C[-1]—0 of complexes.

A partial complex will often be thought of as a complex with the extra
terms being zero.

2. A-dimensions.
We start with the following easy

LEMMA 2.1. If M is an R-module and F € &, then F ® M has an F-
precover if and only if M has an F-precover.

Proor. If G— M is an F-precover, then easily sois FOG—>F B M.
Conversely, if ¢ : G— F @ M is an Fprecover, then sois w300 : G—>M
where my,: FOM— M is the projection map. =

The following is called Schanuel’s lemma when & is the class of pro-
jective R-modules.
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LEMMA 22. If F>M, G—M are Fprecovers with kernels K
and L respectively, then KOGG=L®DF.

Proor We consider the pullback diagram

P - G
) 1)
F - M

The map G — M has a factorization G — F — M since F'— M is an F-pre-
cover. So P— G has a section and thus P = K@ G since Ker(P—G) =
= Ker(F— M) = K. Similarly, P=L&®F and so we are done. ™

ProposiTiON 23. Let n=0 and F,—--—F,—>Fy—>M—0 and
G,——>G,—>Gy—>M—0 be partial left F-resolutions of M. If K =
=Ker(F,—F,_;)and L =Ker(G,— G, _,)where F_{=G_,=M,then

K&G,®oF, & =L®F,®G,_ @

ProoF. By induction on n. The case n =0 is Lemma 2.2 above. If
n >0, the complexes F,—F,_— - —=F;,—=F ®G,—K®G,—0 and
G,—G,_ > —>G—>GDFy—>LO®F,—0 are partial left Fresolu-
tions by Lemma 2.1. Furthermore, K@ Gy = L @ F,, by the above. So an
appeal to the induction hypothesis gives the result. =

PROPOSITION 24. A(F®M)=AM) for all Fe &.

Proor. We prove that for n= -1, A(F@M)=n if and only if
MM) =n. This is trivial if » = —1. It is true for » =0 by Lemma 2.1.
Now let » > 0.

Suppose (M) =n. If F,,—---— F,— M —0 is a partial left Fresolu-
tion, then so is the complex FOF,— - —=FPFy,—>F®M—0. Thus
MFOM) =mn.

Conversely suppose A(F@®M) =n and let G,—--—>Gy—=FOM—0
be a partial left Fresolution of F @ M. We know that A(M) = 0 and so let
Fy— M be an Fprecover. Set K = Ker (Fy— M) and L = Ker (Gy—F &
@®M). Then F® F,—F ® M is also an Fprecover with kernel K and so
LOSF®F,=K® G, by Proposition 2.3. But A(L) =% —1 and so (L&
SFDF,) =n—1.But then (K& Gy) =n — 1 which means that A(K) =
=Zn —1 by induction. Hence A(M)=n. =
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THEOREM 2.5. Suppose AM)=zn>k=0. If F,—F,_,——
—Fy—>M—0 is a partial left Fresolution of M and K = Ker (F,—
—F,_)whereF_, =M ,then \(K) =n — k — 1. Inparticularif \M) = n,
then A(K)=n—k—1.

Proor If A(M) =n, then there is a partial left Fresolution G,—
—--—>Gy—>M. Let L =Ker(G,—G;_1). Then A(L)=n-k—-1. By
Proposition 2.3, LOF,®G,_ 1D =KPG, DF,_,P--- and so A(L) =
= A(K) by Proposition 2.4. Hence A(K) Zn—-k-1. =

COROLLARY 2.6. If A(M) = o, then there is an infinite left F-reso-
lution --+—>F,—Fy—>M—0 of M.

Proor If F,—--—F,—>M—0 is a partial left Fresolution and
K=Ker(F,—F,_;), then A(K) = . So this complex can be extended
to a partial left Fresolution F, , ,—---— Fy— M —0. Continuing in this
manner we get the desired complex. =

LEMMA 2.7. If M—M, is a linear map such that the induced
Hom (F, M,) —>Hom (F, M;) is an isomorphism for all Fe &, then
AMM,) = A(M,).

Proor. If A(M,)=n and F,—---— F,— M,—0 is a partial left &
resolution, then so is F,—--— Fy— M,— 0 where Fy— M, is the com-
position Fy— M, — M,. Hence A(M,) =n.

If A(M,) =n and F,,—---— F,— M,— 0 is a partial left Fresolution,
then by hypothesis, Fy— M, has a lifting Fy— M, and so Fy— M, has a
factorization Fy— M;— M,. But Hom (¥;, M;)—Hom (F;, M,) is an
isomorphism and F'; — Fy— M, is 0. So F; — Fy— M, is a complex. Thus
we see that F,—--—F,—>F,—M,—0 is a partial left JFresolution.
That is, A(M;)=n. =

COROLLARY 2.8. If a complex 0—>M'—M—>M"—0 of R-modules
is Hom(F, —) exact and K =Ker(M—M"), then the map M' —K is
such that Hom (F, M') —Hom (F, K) is an isomorphism for all F € F.
Hence A(M') = A(K) by Lemma 2.7 above.

LEMMA 2.9 (Horseshoe Lemma). Let 0->M'—-M—>M"—0 be a
Hom (&, —) exact complex of left R-modules. If -+ —F{ >Fj{—M'—0
and - —>F{ —>F{—>M"—0 are left F-resolutions, then there exists a
commutative diagram
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such that the middle column is a left F-resolution of M.
Proor. This is standard. =

THEOREM 2.10. Let 0>M'—>M—>M"—0 be a Hom (&, —) exact
complex of left R-modules, then

1) AMM") Zmin(AM ") + 1, A(M))
2) AM) = min(AM "), A(M"))
3) AM') = min(AM), A(M")-1)

Proor. We start with (1). We only need prove that if n = —1 is an
integer and min (A(M ') + 1, A(M)) =n, then A(M") =n. If n = —1, this
is trivially true. If n = 0, then A(M) = 0 means M has an J-precover F —
— M . By hypothesis, Hom (G, M) — Hom (G, M") — 0isexactif G € & So
Hom (G, F)— Hom (G, M) — Hom (G, M") is surjective. Thus F—>M"
is an F-precover and so A(M") =0.

We now suppose 7> 0. We have A(M') =n—1=0 and /(M) =n by
assumption. So we have partial left Fresolutions F,_;—:-—F;—
—-M'—>0andF,—F,_,—--—F;—M—0.Hence we have a commuta-
tive diagram

F, —»—>Fj—>M -0

l VN

F,—F,_ —-—Fy—M —0

A mapping cone then gives rise to the complex F,®F,_—F,_;®
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@®F, s— - —>F,®F; >F,®M’'—M—0 which is Hom (F, —) exact.
But then we have a commutative diagram

0 0 M’ M’
F,®oF, ,— -+ —> F|®F; —> F®&M' M
F,®F, —— -+ — F\®F;, —= F, M

where the rows are Hom (F, —) exact complexes. We now apply the addi-
tive functor Hom (F', —) with any F e & to the diagram above. Then,
using the long exact sequence associated with the short exact sequence
of complexes we see that F,®F,_—F,_®F,_,— -—>F,®F;—
—F,—>M"—0 is also Hom (J, —) exact. Hence A(M") = n.

The proof of (3) is similar. We need to argue that if min(A(M),
AM")—=1)=n, then A(M') =n. We can assume n = 0. Then we get a
commutative diagram

F,—--—F,—> M—0
) Vol

F) —F)——>Fj—>M"—0

and the complex F, ®F,— —F/®F,—F;®dM—-M"—0. But
then we get a commutative diagram

Fioy®F, —> - —> F{®F, — F{®&M M 0
0 0 M" M" 0

The kernel of the corresponding map of complexes is the complex
F,; ®F,— - —F'®Fy,—>P—0 where P=Ker(F{®M—>M"). So
P - M
! !
F'OII N MII
is a pullback diagram. Hence by our hypothesison0 > M' > M —>M"—

— 0, we see that the map F'¢ — M " has alifting F{ — M . But by the proper-
ty of a pullback this means P— F§ has a section. Hence P=F{® K
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where K = Ker(M —M"). But as in the argument for (1), we see that
F) . .®F,—> —>F'®Fy,—>P—0 is Hom(J, —) exact. This means
A(P) =n. But since P = Fy @ K we get that A(K) = n by Proposition 2.4.
But then by Lemma 2.7 and Corollary 2.8, we get A(M') =n.

We now prove (2). We assume A(M'), AM")=n=0 and argue
AM)=n. Let F,—>--—>F;—>M'—0and F,) —---—Fy—>M"—0 be
partial left Fresolutions of M’ and M" respectively. Then by Horseshoe
Lemma 2.9, we get a partial left Fresolution of M of length %. Hence
AMy=zn., =

3. 1-dimensions and special F-precovers.

We recall that the class of modules C such that Ext!(F, C) = 0 for all
F e Fis denoted by F*. It is easy to see that F* is closed under exten-
sions. Furthermore, if the sequence 0 >C—F —M —0 is exact with
Ce F* and Fe &, then for each Ge & we have an exact sequence
Hom (G, F)— Hom (G, M) — Ext! (G, C) = 0 and so F — M is an Fpre-
cover.

DEFINITION 3.1. An Fprecover ¢ : F— M is said to be a special F
precover if ¢ is an epimorphism and Ker g € F*. For example, if R is
n-Gorenstein, that is, R is left and right noetherian and has self injecti-
ve dimension at most n on both sides, then every R-module has a Go-
renstein projective precover ¢ : C—M such that K = Ker (@) has pro-
Jjective dimension at most n. Furthermore, Ext'(C’, K) = 0 for all Go-
renstein projective R-modules C' (see Enochs-Jenda [4]). Hence in this
case, if Fis the class of Gorenstein projective R-modules, then every R-
module has a special F-precover. Dually, if F is the class of Gorenstein
injective R-modules, then every R-module has a special F-preenvelope
over n-Gorenstein rings (see Enochs-Jenda-Xu [6]).

DEFINITION 8.2. For an R-module M, we say Az(M)= -1 if M
does mot have a special F-precover. If there is an exact sequence F,— ---
c—=>Fy—>M—0 where Fop—M, F;— K, , (Ky= Ker(Fy—M) and
K;_1=Ker(F;_,—F;_,) for i=2) are special F-precovers for i>0,
and if there is no longer such sequences we say that A(M) =n. We say
that A(M) = o if there is such a sequence for each n = 0.
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PROPOSITION 3.3. If F is such that A(M)=0 implies A(M) =0
for all R-modules M, then A(M) = A(M) for all M.

ProoF. Clearly A(M) = A(M). So we argue that A(M) =n implies
A(M) = n for » = 0. But this is true if » = 0 by assumption. So we suppo-
se A(M)=n>0. Then 2(M) =0 and so let F— M be a special F-preco-
ver with kernel K. Then A(K) =7 — 1 by Theorem 2.5. So A(K) =n —1
by induction and hence A(M)=n. =

The proofs of several results concerning A-dimensions are straight-
forward modifications of the corresponding results about A-dimensions.
These include Proposition 2.4, Theorem 2.5, and Corollary 2.6. We now
prove results that correspond to Theorem 2.10.

We recall that if & contains all the projective modules then any F
precover F— M is surjective. And in this case any Hom (&, —) exact se-
quence is exact.

THEOREM 3.4. If F contains all the projective modules and if 0 —
—->M'->M—->M"—0 is exact with M' e F* (so the sequence is also
Hom (F, —) exact) then

AM")zZmin(AM') + 1, AM))

ProOF. The argument is a straightforward modification of the proof
of (1) of Theorem 2.10. =

THEOREM 3.5. If 0>M'>M—>M"—0 is an Hom(F, —) exact
complex, then

M) = min AM "), AAM"))

ProoF. This argument is like that for (2) of Theorem 2.10. =

DEFINITION 3.6. The class Fis said to be resolving if F contains all
the projective modules and is closed under extensions, and if whenever
0—>F' —>F—>F"—0 is exact with F, F"e J, F' is also in F.

THEOREM 38.7. If F is resolving and 0 >M' ->M—>M"—0 is an
exact sequence of modules, then

AM ') = min (AM), AM") - 1).
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PrROOF. We prove by induction on % that if (M) =n and A(M") =
=n+1 then A(M') =n.

Letn=0and so A(M")=1and A(M)=0.Solet 0 >Kj —>Fj—>M"—0,
0—>K/—>F'—Kj—0, and 0> K,—Fy— M —0 be exact sequences
with Ky, K{, K{ e F* and F{, F{, Fye &.

We now form the pullback of M —M" and F§ — M " and get the com-
mutative diagram

0 0
i 4
K(;/ U > K(;I
0 M H Fy 0
id\l/
0 M’ M M" 0
0 0

with exact rows and columns. We now consider the exact sequence 0 —
—K{—H—>M—0. Since Kj € F*, this sequence is Hom (F, —) exact.
So by the Horseshoe Lemma, we have a commutative diagram

0 0 0
y !
0 Ky K K, 0

with exact rows and columns. Note that since K, K, F*, we also have
Ke F*. We now form the pullback of M ' — H and F} @ F,— H. This gi-
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ves us the following commutative diagram

N €«<—o
J=

!
=
CcCe—M<—Pe—mxmR<—o

|

ceRe— e

F,— F! —> 0

g
e——

Fy 0

with exact rows and columns. Since F{ ® F,, F{ e & and & is resolving,
F' e J. As noted above, Ke F*. Hence F'— M is a special Fprecover
and so A(M')=0.

Now assume 7 > 0 and use the construction above. Then by the exac-
tness and Hom (F, — ) exactness of 0 > K — K— K,— 0 (K{ € F* gives
the Hom (&, —) exactness), we get A(K) = min (A(K{), A(K;)) by Theo-
rem 3.5. But min A(K{), 2(K,)) =n — 1 by the 2-dimension counterpart
of Theorem 2.5 (or we can assume we chose K;' and K, so that the inequa-
lity holds). But then A(K) =n — 1 implies (M ') =n.m

4, 1-dimensions and Gorenstein flat modules.

We recall that an R-module M is said to be Gorenstein flat if there
exists an exact sequence

.--_)F1—9F0_9F0—§F1_9--.

with M = Ker (F°— F!) such that E ®— leaves the sequence exact whe-
never E is an injective R-module (see Enochs-Jenda-Torrecillas [5]).
Clearly, the class of Gorenstein flat modules contains the flat modules.
‘We recall from [5] that if R is n-Gorenstein, then M is Gorenstein flat if
and only if Tor;(L, M) =0 for all i = 1 and all right R-modules L of finite
injective dimension.

We start with the following
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THEOREM 4.1. Let R be n-Gorenstein and F be the class of Goren-
stein flat R-modules, then 2#(P) = o« for every pure injective R-module P.

PrROOF. Let N be any right R-module and let N c G be a Gorenstein
injective envelope. Then we have the exact sequence 0 — (G/N)* —
—G*—> N —0where G * is a Gorenstein flat left R-module (see [5] and
[6]). But G/N has finite injective dimension. So if /' is a Gorenstein flat
left R-module, then Ext!'(F,(G/N)*) = Tor;(F, G/N)* =0 by the re-
marks above. Hence G* — N * is a special Gorenstein flat precover.

Now let P be a pure injective left R-module and set N = P *. Then we
have a special Gorenstein flat precover G* —N* =P **, Since P is pu-
re injective, it is a direct summand of P * * and so P has a Gorenstein flat
precover. But the class of Gorenstein flat modules is closed under direct
limits (see [5]) and therefore P has a Gorenstein flat cover F'— P by
Enochs [3, Theorem 3.1]. So there exists a commutative diagram

0 K F P 0

Lol

0 »(GN)*-> Gt —-P*""— 0

Lo

0 K F P 0

with exact rows and P—P** — P the identity on P. Since F—P is a
flat cover, we see that F' is isomorphic to a direct summand of G * and K
is isomorphic to a direct summand of (G/N)™ . Since (G/N)™ is pure injec-
tive, so is K. But Ext'(F',(G/N)*) =0 for F' Gorenstein flat. So
Ext!(F', K) =0 for all such F'. Hence 0 — K — F— P —0 is exact with
F — P a special Gorenstein flat cover and K pure injective. But then we
can repeat the argument with K replacing P. Proceeding in this manner
we see that 1z(P)=x. m

COROLLARY 4.2. For every R-module L of finite injective dimen-
sion, Az(L) = o where F is the class of Gorenstein flat R-modules.

Proor. If L is injective then L is pure injective and so the result hol-
ds by the theorem above. If inj. dim L < o, then we see that a repeated
application of Theorem 3.7 gives the result noting that F is resolv-
ing. =
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As an application, we use A-dimensions and A-dimensions to prove the
following now familiar result.

THEOREM 4.3 ([7, Theorem 3.2]). If R z'sq) n-Gorenstein, then every
R-module M has a Gorenstein flat cover F— M.

Proor. We will argue that for every left R-module M, 1-(M) = o
with & the class of Gorenstein flat left R-modules. But every R-module
has a special Gorenstein projective precover. That is, there is an exact
sequence 0 >L—>C—>M—0 with C Gorenstein projective and
proj. dim L < «. But inj. dim L < « since R is n-Gorenstein. So by
Corollary 4.2, 25(L) = . But C is Gorenstein flat by [5] and so easily
A#(C) = o . Then Theorem 2.10 says A (M) = . So M has a Gorenstein
flat precover. So since the class of Gorenstein flat modules is closed
under direct limits ([6]), M has a Gorenstein flat cover ([3, Theo-
rem 3.1])). =
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