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On the Geometry at Infinity
of the Universal Covering of Sl(2, R).

MARCOS SALVAI (*)

ABSTRACT - Consider the universal covering of Sl(2, R) endowed with the canoni-
cal Riemannian metric (one of Thurston’s eight geometries). For this space
we give the lines, characterize asymptotic geodesics, study the topology
of the space of asymptotic classes, and compute the spread, a Riemannian in-
variant defined by J. E. D’Atri which reflects the long-time behavior of
geodesics.

1. Introduction.

An important part of the global shape of an open Riemannian mani-
fold is the structure at infinity. The notion of asymptoticity of geodesics
has proved to be extremely useful for Hadamard manifolds. In this note
we are concerned with this subject for the universal covering of Sl(2, R),
endowed with the canonical Riemannian metric. This space, which is one
of Thurston’s eight geometries, is diffeomorphic to R3 but its geometry is
not trivial, it has, for example, Ricci curvature of both signs [6, 8].

Given a Riemannian manifold M, let 

denote the unit tangent bundle of M and let d be the distance
on M. For X E T 1 M, let y X denote the geodesic with initial velocity
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X. Unless otherwise specified, geodesics are assumed to be nonconstant
and parametrized by arelength.

Two geodesics y and a in M are said to be asymptotic ( y ~ a) if there
exists a constant C such that d(y(t), ~ ( t ) ) ~ C for all t ~ 0 . Asymptoticity
is an equivalence relation. We denote by y( xJ ) the class which contains a
given geodesic y and by Aoo (M) the set of all such classes. We notice that
if M is a Hadamard manifold, then the map F : defined

by F(X) = is a bijection for [5].
and let 

EM2(R) tr X = 0} be its Lie algebra. Consider on G the left invariant
Riemannian metric {,) such that (X, Y) = 2 tr (XYt ) for all X, Y E g. Let
3: G - G be the universal Riemannian covering of G.

Let K = PSO(2) and let H = G/K be endowed with the Riemannian
metric such that the canonical projection a: G - H is a Riemannian sub-
mersion. H is the hyperbolic plane of constant curvature -1. We will
show that a geodesic in G projects either to a point in H or to a curve of
constant geodesic curvature in H . A nonconstant complete curve c in H
with constant geodesic curvature x satisfying ( x ~ &#x3E; 1 (respectively

I = 1 ) is a circle (respectively a horocycle). If  1, there exists
= lim c(t) in the asymptotic border of H. We recall that a geodesic
t- 00

is called a Line if it minimizes distance between any of its points.
Theorems 1.1 and 1.2 below describe the asymptoticity of geodesics in

G, the former with regard to the projection G - H and the latter with re-
spect to a fixed point in G.

1.1 THEOREM. Let y and y 1 be geodesics in G, which project to
curves c and cl in H, having (constant) geodesic curvatures K and Kl,
respectively (in case of not being constant). Then the following asser-
tions are true:

a) If c is constant, then y 1 - y only if cl is constant.
b) If &#x3E; 1, then Yl-y if and onLy if Kl = K.
c) If = 1, then Y 1 - y if and only if there exists to E such

that cl(. ) = c(. + to ).
d) If I  1, then y 1 - y if and only if x 1= K and 

= c( 00 ).
Moreover, y is a line if and only if I K I ~ 1.

Consider the Cartan decomposition g = RZ + p associated to K,
where . . Let e be the identity of G
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and E ~ -1 ( e ). As usual we shall identify TeK H with p and Të G = g .
Let X denote the set of oriented horocycles of H . Given a regular curve c
in H, let [c] be the set of reparametrizations of c preserving the
direction.

1.2 THEOREM. Given X, Y distinct vectors in the unit tangent
sphere of G at e, then y x is asymptotic to y y if and only if X and Y lie
both in the same parallel at a distance less than from the poles (we
think of Z as the North Pole).

Moreover, there are geodesics in G which are not asymptotic to any
geodesic through e. They are in natural correspondence with the horo-
cycles of H not containing eK.

More precisely: Let us define the map F : Te G -~ A ~ (G) by F(X) =
= y x( 00), then

b) The map II : A ~ (G) - Image (F) - ( h E I eK ft h ~ is well de-
fined by II( y( ~ ) ) _ [(n 0 5í) y] and is moreover a bijection.

In particular F is neither injective nor surjective.

D’Atri defined in [4] a Riemannian invariant reflecting the long-time
behavior of geodesics. Given a complete noncompact Riemannian mani-
fold M of dimension n , let the spread of M be defined by

spread (M) =

0 ;1~  n ~ I there exists a distribution E0 of dimension 1~, 

}= max defined on the complement of a compact set in M, such that
0 for all unbounded geodesics y in M J

where denotes the norm of the orthogonal projection of 
to 6DY(t) (unlike in [4], we consider unbounded geodesics instead of rays).
For example spread = n - 1, since every straight line is asymptoti-
cally orthogonal to the distribution on R" - ( 0 ) tangent to the spheres
centered at zero.

1.3 THEOREM. spread (G) = 0.



94

2. Preliminaries.

In this section we introduce some more notation and known or basic

facts. We sketch some of the proofs for the sake of completeness. Two
unit tangent vectors X , Y are said to be asymptotic if y x is asymptotic to
y y. In this case we shall write X --- Y.

The unit tangent space of the hyperbolic plane.

G can be identified via left multiplication with the set of orientation
preserving isometries of H and, hence, it acts canonically on T 1 H.

The connection operator X : is well defined by ~) =
= V’ ( o ), where V is a curve in T 1 M with V( 0) = ~ ( V’ denotes the covari-
ant derivative of V along the curve JC 0 V, yr : the canonical pro-
jection). Let carry the canonical (Sasaki) metric, defined by 11~112 =
= llR *v Ell2 + llK(E)ll2 for E E TvT1 H, v E T1 H.
H carries a canonical complex structure, which comes from the G-in-

variant quasi-complex structure i induced by Let X1 =

0 ~1); by the usual identification of p with we can write Xl E

since 

The map 0 : G ~ T 1 H defined by Ø( g) is an isometry
(notice that (exp tY)*eKX1 is the parallel transport of X, along the curve
( exp tY) K since (G, K) is a symmetric pair).

Geodesics in G.

Using Sasaki equations we obtained in Proposition 3.1 of [7] the fol-
lowing description of the geodesics in G (or equivalently in T 1 H). If V is
a smooth curve in T 1 H, then V’ will denote the covariant derivative
along the projection of V to H.

2.1 PROPOSITION. a) Let V be a geodesic in T 1 H and let c = no V .
Then ()V’ (( = const, A and one of the following possibili-
ties holds:

i) If ~==0, then V is a constant speed curve in the circle

T1c(0)H.
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ii) If ~, ~ 0, then the geodesic curvature K of c with respect to the
normal is constant and

for all t E where z E cC is such that V(O) = z c( 0 ).

b) Conversely, any curve V in T’H satisfying (i) or (ii) ~is a con-

stant speed geodesic. Moreover, given a constant speed curve c in H
with constant geodesic curvature, and Vo E there is a unique
geodesic V in T’H which projects to c and such that V(O) = Yo.

c) For V as in (1) one has (V, Z) = - AK. In particular the norm of
the vertical component of V with respect to the submersion T 1 H ~ H is

= À x ( , hence V has unit speed if and only if

In fact, part of the last item is not in the cited proposition of [7], but it
follows from the following computation.

The Riemannian universal covering of G.

Let S’ = a la &#x3E; 0, b E R) and let us consider the Iwasawa de-1(0 a-’

composition of G given by the diffeomorphism 0 : S x S1 - G, (well) de-
fined by

where R(e) denotes the matrix of the rotation through the angle 0 in the
canonical basis of R2 . We identify S with the image of S x 111 under
This solvable subgroup of G acts simply transitively on H.

Since S is simply connected, the map defined by
x ) = e ~ ) is a universal covering map. Let us consider on S x R

the lifted multiplication with identity e = ( e , 0). Then ( s , 0 ). ( s1, 0 ) =
= (ssl, 0) and (s, x). (e, xl ) _ (s, x + xl ) for all s, x, e R . For

the sake of simplicity we shall write s . x = (s, x). When no confusion
arises we shall identify s with ( s , 0 ), x with ( e , x ), as well as S with S x

x ( 0 ) c G. We denote P 
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2.2 REMARK. The following facts are easy to verify.

a) The metric on G is left invariant. Furthermore, the right mul-
tiplication s.x H s.(x + xo) is an isometry of G for any xo E since adz
is skew symmetric. Hence, if gj = Xj with Sj E S and Xj E I~ ( j = 1, 2 ),
then

N IV

b) Let d, d and dH be the distances on G, G and H respectively.
Since ,~ and 1C are Riemannian submersions, then

Curves with constant geodesic curvature in the upper half plane.

Now, we consider for the hyperbolic plane the model H = {z e
with the metric (z = x + iy). Then,

We denote by aH the border R U I oo I of H, which is homeomorphic to
the circle with the relative topology in the sphere C U f o- }.

The distance dH on H is given by ([2] Theorem 7.2.1)

G acts by orientation preserving isometries on the upper half plane
by g.z = gM (z ), where gM denotes the M6bius transformation associated

to g . In this way we can identify eK = i and Xl = ( i , i ) = ( a and thedy I
isometry 0 reads now 0(g) = 

We define the unit vector field I on H by Iz = ( z , ( Im z ) i ). We notice
that Iz is asymptotic to Iz , I for all z , z ’ E H . It can be easily checked
that

We recall Lemma 5.5 of [1], which asserts that if V, W are asymptotic
unit vectors in T 1 H, then

Given a differentiable curve c in the upper half plane, denote by
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E C its derivative at t E R and by c( t ) = c( t ), 
de 

( t ) the corre-
dt dt

sponding element of TH.

2.3 LEMMA. Let c be a curve in H with II ~ II A and constant geodesic
curvature K with respect to the normal Then the image of c is a E~c-
clidean circle or straight line intersected 2vith H and

(8) c is injective ~ c is not bounded --&#x3E; I K 1 .

If 1, there exists lim c(t) = E aH . Moreover, if
c( - 00 ) E then there 

the angle between the oriented irrzage of c and the real axis at c( - 00 ),
and cos 6 = K.

PROOF. Let a E ( o, z) and let gt be the one-parameter subgroup of
isometries of H given by gt ( z ) = e / z for z E H . By Lemma 3.2 in [7],
the curve c( t ) = gt ( e ia ) has constant geodesic curvature equal to

cos a .

It is also straightforward to check that = coth r if c is a geodesic
circle of radius r (using polar coordinates), and K = --t 1 for the curve

c(t) = i --t t . The assertions follow now from the fact that G acts transi-

tively on T 1 H and conformally on C I - 0

2.4 REMARK. Let c be a curve in H as in the preceding lemma. It can
be derived from it that the following statements are true (the last three
items give parametrizations of curves of constant geodesic curvature in
the upper half plane model of the hyperbolic plane).

a) If 1, then c is completely determined by c(0), K, A and
c( 00 ).

b) I K( - 1 if and only if the image of c is a horocycle.
c) If x ~ ~ 1 and c( 00), c( - 00) are both real numbers, then c(t) =

= z + Re for some z E C, R &#x3E; 0 and a strictly monotonic differentiable

function

d) If x ~ ~ 1 and either of the ends of c is 00, then c is the

reparametrization of a straight line. If c( 00 ) = 00 and I = 1 we have
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more precisely: c(t) = z ± ( Im z ) At with z E H . If c( 00 ) = 00 and I K I  1,
then c has the form c(t) = b + with x(t) = A(sin a) t + b, IE~,
a E ( o , n), cos a = K.

e) If I &#x3E; 1, then the image of c is a geodesic circle of hyperbolic
radius I r I and length 2 Rsinh I r I , where K = coth r . Therefore c(t) = z +
+ zl e iy~t~ , , with y : a strictly monotonic differentiable function
such that for any 

3. Asymptotic geodesics in G.

We begin this section stating some lemmata that are necessary to ob-
tain Theorem 1.1, from which Theorem 1.2 follows. At the end we study
the topology of 

3.1 LEMMA. Let V be a geodesic in T 1 H such that c = Jio V is not
constant. Let A ~ 0 and let K denote the geodesic curvature of c
(both are constant according to Proposition 2.1). Then,

a) (length Vho, l~ )2 = (length c / [0, L~ )2 + (ÀKl)2.
b) If V realizes the distance between two asymptotic vectors Vo

and Vl in T’H, then 

c) If I K 1 and V( o ) = Ic(o), then V(t) = 2).Kt), with

y(O) = 0 and y(t) ~ I  2Ji for all t.

PROOF. (a) is immediate from (2), because V is parametrized by
arclength.

b) Let 1 = d(Vo, V1 ). By (7) we have that

Then, according to (2), 1 + x2 = 2 and hence x ~ ~ 1.

c) Suppose that c( 00) and c( - 00) are both real numbers. It follows

from Remark
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If &#x3E; 0 for all t , then = Ic(t)Àeix(t). Consequently by ( 1 ) we have
that

Now, Az = since V( o ) =1 ~~ ° ~ . Hence, y : = x - r( 0 ) satisfies

I y(t) I  21r for all t . If  0 for all t , one proceeds in the same way
with x + Jt instead of x . Finally, if either of the ends of c is 00 one can
take y = 0 (see Remark 2.4 (d)).

3.2 LEMMA. If g = s. x, gl = sl. xl E G with s, sl E ,S and 
then

PROOF. By (3), It is clear that

d (e, x - x, I We claim that d ( s , Sl) ~ 3 d( s , s1 ) + 2 Z. By left
invariance of the metrics it suffices to show that d (e, 3d(e, sl ) + 2z
for all s, ES. Let 1 = d( e , sl ) and let V be a geodesic in T 1 H such that
V(o) _ ~(e) = Ii and V(L) _ Ø(Sl) = 181. i (see (6)). Let c = zV and let K be
the geodesic curvature of c . By Lemma 3.1 (b) we have that 1 and,
hence, 2 ~, ~ x ~ ~ 2 by (2). Let y be the lift of V to G with y(0) = e and let
s( t ) E ,S such that Ø(s(t» = Ic(t) (unique by (6) because q5 is a diffeomor-
phism).

Sine with y(0) = 0 and I  2n by Lemma
3.1 (c), we have that y = s(t). (y(t) - 2ÀKt). Hence

The lemma follows now from (7), which implies that d(s, 
 ý2dH(Ps, Ps1 ), since Rs = Ps and 0(s) = Ins is asymptotic to (P(sl) for
all s , s 1 E ,S .

NOTATION. FrorrL now on, given a geodesic y in G, we shall denote
V = 0 Fr Y, c = Py , A ë II I and K the geodesic curvature of c , provided

0. For the geodesic y 1 in G we shall use the obvious analogous
notation.
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Suppose that IK/ I &#x3E; 1 and put

3.3 LEMMA. a) If c is a curve in H with constant geodesic curvature
K and À = 1 / 1 + x2 , then the period of c is v I. .

b) If y is a geodesic in G which projects to c as in (a) and satisfies
y(0) ES, then

where s is a curve in S with period 2 n I v I and y : lE~ -~ lE~ is a strictly
monotonic differentiable function such that y(2mnv) = for all

m E Z.

PROOF. Using (2) one computes that sinhr = if K = coth r.

Hence, (a) follows from the first assertion of Remark 2.4 (e). Also by that

remark, we have that with z1 E C and y : R-R a

strictly monotonic function such that y(2mnv) for any m E Z.

Therefore, and so

for some z2 Etc.

On the other hand, it follows by straightforward computations from
(2) that fl 0 = 2AK. Then by Proposition 2.1 (a) we have that V( t ) =
= c(t) with z E C. Then, V(t) = Ic(t) because Z2 z =1 since

y( o ) = 0 , and y(0) E S implies that V(0) = Ic(o). If s is the curve in S such
that s(t)(i) = c(t), we obtain by (6) that 3y(t) = o(s(t), e(y(t)-¡lt)i), which
implies (b).

3.4 COROLLARY. Let y be as in the previous lemma, then there exist
continuous I &#x3E; f : R~R, satisfy-
ing that d is inj ective and I &#x3E; 1, ~ lf(t) I  2n for all K, t , such
that y(t) = s ( t ) (d ( x) t + f ( t ) ) , where s is a b ounded curve in ,S .
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PROOF. Take s as in the lemma, ô = .!. -/1 o v and f ( t ) = ?/(~) 2013 2013.
v v

The required properties can be easily verified. Indeed, one computes
that 6 is odd and &#x3E; 1, v ’ (K)  0 , provided that K &#x3E; 1. Consequently,
d ( x)  0 and 6’(K) &#x3E; 0 if K &#x3E; 1. Finally, one checks that
- -1.

3.5 PROPOSITION. a) Let x &#x3E; 0 and let k be the largest integer strictly
smaller than x . Then there exist real numbers Kk  ... Kl  0 and k + 1

2.7r

geodesic segments y o , ... , Y k in G j oining e with x = ( e , x ) = 6x-p (xZ),
such that y 0 projets to a constant curve in H, and for n = 1, ... , k the

projection of Y n to H runs n times along a circle of constant geodesic
curvature 

If x ~ 2 ir (respectively x &#x3E; 2,,r), then y o (respectively y 1) minimizes
length between e and x . Moreover,

In particular,

b) No geodesic in G is bounded.

PROOF. c~) Let y be a geodesic in G such that y( o ) = e and y(l) =
- ( e , x ) = x . We have that c = i if and only if y ( t ) = t 
Suppose that c is not constant. Then c is not injective since c(0) = =

= i , and hence IKI I &#x3E; 1 by (8). Lemma 3.3 (b) implies that x = y( L) _
= l) for some monotonic function y satisfying 
= 2mn for all Hence s( l ) = e . By Lemma 3.3 (a) we have that

for some counting the number of turns. Thus, and

for some or equivalently

Now, ,~( v ) v &#x3E; 2 yields easily that c  0 , hence K is negative, v  -1,
In particular, if then c is constant
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and the unique geodesic in G joining e with .r is /(~)=~ and so

d(e, x) = x.
Suppose now that .r &#x3E; 2 a. Given n E N with n  ~, there exists a

unique ~ 20131 satisfying (11), namely 
2,,r

For the existence of Y n, take any curve c~ in H with Cn (0) = i , con-
stant geodesic curvature -1 ( v o (n ) ) and /

that v : I &#x3E; 11 - R is one to one). Let V, be the geodesic in T 1 H
projecting -to c~ with V~(0) = Ii . By the way xn has been chosen, we
have that the lift y n of Vn to G through e, restricted to the interval
[0, -2~jn~o(~)L satisfies the required properties. Therefore,

Since - nv o (n) is an increasing function of n on 1, x (a straight-L 21r I
forward computation), it attains its minimum value on that interval at
n = 1. Then d (e, x ) is the minimum between x Now,

x if x &#x3E; 2jr. Consequently, the stated formula for d (e, x) is
correct. Clearly, its values converge to infinity when x ~ ~ .

b) Let y be a geodesic in G. We may suppose that y( 0 ) = e. If c is
constant, y(t) = (e, ± t) is not bounded by (a). Assume c is not constant
and has constant geodesic curvature K. If ( x ~ ~ 1, y is unbounded since c
is by (8). If I &#x3E; 1, to is the period of c, and nz e Z is given, then

and the geodesic Q defined by a(t) = y(t +
+ mto ) coincides with y( t ), since both project to c and have the
same value at t = 0 . In particular, for t = to one has y( (m + 1 ) to ) _
= y(to ) y(mto ). By induction, y(nto ) = for all Hence by (10)
we have that as n --~ ~ . Therefore, y is not

bounded.

PROOF OF THEOREM 1.3. Let a (t) = (e, t) (a geodesic in G), let W =
Q and let y be a geodesic y 1 as in Proposition 3.5, associated to the

choice x = Hence, the geodesic V : _ 3 o y is periodic, V( 0 ) = V(l) =
= W( 0 ) and y( 1 ) = 4R (here 1 is the period Now, by Proposition 2.1 (c)
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we have that

for all since 3 is a local isometry.
On the other hand, for f3 E R, the inner automorphism I~ = I(o, {3)’

~’-~(0,~)~(0, -/3) is an isometry of G that fixes of. Its differential

fixes and rotates its orthogonal space through the angle ~3 .
Denote by the geodesic y . We have that E R} consists of
the circle of unit vectors u E Ta(4kn)G such that, is constant

and equal 0 (independent of 1~). Therefore, no choice of ~~~4k~&#x3E;
of dimension 1 or 2 will satisfy

for all f3 E R..

3.6 LEMMA. For each geodesic G with I K 1 there exists an
isometry Vf such that = e and = Clearly, for any
geodesic a in G, we have that y 2013 a if and only if Vfy - Wa.

PROOF. Let c = Py and let k e K be such that /c. c( = (k. c)( oo) =

= 00. Let x E R satisfy q5(e, eix) = k and define G - G by fJI(g) =

= (e, .r).~.(e, -~). By Remark 2.2 (a), W is an isometry of G and, clearly,
fJI(e) = e. Since Fr is a homomorphism, we have that = k - 1

for all g E G and, therefore, Thus,
(P~/)(oo)=~. c(-) = 00..

PROOF OF THEOREM 1.1. By Remark 2.2 (a) we may suppose without
loss of generality that y( 0) = e and yi(0) E S. This means by (6) that
c(0)=z, V(0)==7, and 

a) and b): If c is constant or I &#x3E; 1, then (8) implies that c is bound-
ed. Assuming that y 1 o-- y, we have by (4) that cl is bounded and, again by
(8), we get that cl is constant or I Kl I &#x3E; 1.

If I and 1 are both greater than 1, applying Corollary 3.4 to y
and y 1, we obtain by (3) that

is bounded by Lemma 3.2 and (8). On the other hand, since 6 is injective,
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if K # we would have that lim |(8(K) - 8(K1))t + a(t) I = 00, which
t- 00

by Proposition 3.5 contradicts the assumption y 1--- y .
In the case when either c or cl is constant, one proceeds in the same

way (observe that 161 [ &#x3E; 1 and, moreover, that c is constant if and only if
y(t) = g. t or yet) = g. ( - t ) for any t E R and some g E G). So far we have
proved the sufficient conditions of (a) and (b).

Conversely, if I K I &#x3E; 1 and x = x, by Lemma 3.2 and applying as be-
fore Corollary 3.4, it follows that

The first term on the right hand side is bounded because by (8) both c
and Cl are bounded. Since the second term is bounded by I 
 4,~, we obtain y 1 - y. Thus, (a) and (b) are proved.

c) and d): If 1, by Remark 2.2 (a) and Lemma 3.6 we may sup-
pose additionally that By Remark 2.4 (d), = holds

for some WE C. Thus, Proposition 2.1 (a) implies that V( t ) : = W 3 o y( t ) =
= e Hence, we have for some curve s(t) in S that

Assume that y 1--- y . It follows from (4) and (8) that c and Cl are both
not bounded, K 1 ~ ~ 1 and Then, a formula analog-
ous to (12) holds for y 1, since yi(0) eS. Therefore, (3) yields
d (y(t), y 1 ( t ) ) ~ d ( e, K 1- t) - const, which by Proposition 3.5 is
bounded for t &#x3E; 0 only if 1= ÀK. This implies together with (2) that
Kl = K.

In particular, if K = E = ± 1, we have by Remark 2.4 (d) that c( t ) = i +
+ EAt (recall that c(0) = i ) and = z + Now, it follows from
(4) and (5) that

which, as it is easy to compute, is bounded for t &#x3E; 0 only if Im z = 1. Thus,
there exists to E R such that cl (.) = c(. + to ). So we have verified the suffi-
cient conditions in (c) and (d).

In order to prove the converses, let us suppose that x 1 = x and

c1 ( oo) = c( 00 ). Then, a formula analogous to (12) holds for y 1 and Lemma
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3.2 implies that

(notice that ~, _ ~,1 1 by (2)).
If c1(.) = c(. + to) for some then

Therefore, y 1--- y and we have checked the necessary condition in (c).
If I  1, according to the form of c and cl described in Remark 2.4

(d), then there exist a &#x3E; 0, b E R such that = ac(t) + b for all t E R. It
follows then from (5) that

which is bounded for t &#x3E; 0 because of the form of c. Hence, y 1--- y .
Next, we prove the last assertion. Let y be a geodesic in G with I K  1

and take s  t such that ÀV(s) = and AV(t) = c( t ). The unique g E G
satisfying ( dg ) V(s) = V( t ) is hyperbolic (it translates the geodesic join-
ing the endpoints of c in aH). Let T be a discrete cocompact subgroup of
G containing g and acting freely and properly discontinuously on H.
Then I’V is a periodic geodesic in T ~T 1 H -== T 1 (T ~H). By Lemma 3.5 of
[7] we have that minimizes length in its free homotopy class.
Hence any lift of TV is a line, in particular y . If I K I = 1, then y is a line,
since it is a limit of geodesics with I K I  1 ([3] Lemma 1.67).

For the remaining cases we may suppose that y(0) = e. If y(t) =
- ( e , t ), y is clearly not a ray by (9). If I &#x3E; 1 and to is the period of c, we
have by Proposition 3.5 that y ( to ) = ( e , x ) with x ~ I &#x3E; 2 a and is

not minimizing since is not one to one. Hence, y ~ ~ o, ~ ~ is not a

ray.

PROOF OF THEOREM 1.2. a) Let y , y 1 be geodesics in G with y(0) =

= y 1 ( 0 ) = e, y( 0 ) = Y. We have that c is constant if and only
if 0, or equivalently X = ± Z . It follows then from Theorem 1.1
(a) that in this case F(X) = F(Y) if and only if y 1 = y , or equivalently X =
= Y = ± Z . Hence the equivalence is true if either c or Cl is constant.

Suppose now that c is not constant and put as before V = (Po 3 o y .
Writing X = Y + ~X , Z) Z with and identifying Te G with Te G
through 3*, , it follows from Proposition 2.1 (c) and (2) that 2(X, Z~2 &#x3E; 1

if and only if [ K I &#x3E; 1, and also that (X - Y, Z) = 0 if and only if K = x 1.
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Consequently, if I K I &#x3E; 1, the assertion follows immediately from Theo-
rem 1.1 b). Finally, if 1, then X = Y by Theorem 1.1 (c) and (d) to-
gether with Remark 2.4 (a) (notice that c(0) = c1 ( o ) = eK and that c de-
termines y if y(0) = e by Proposition 2.1 (b)).

b) Let y be a geodesic in G. Let us verify that if either the image of
c contains eK, or c is constant, or 1, then there exists a geodesic y 1
in G such that and 

Indeed, if c(to ) = eK, then y(to ) _ (e , xo ) with xo E R. Defining
y 1 (t) = y(t + to) y(to) - we have that y 1 (0) = e and

for all t E R, and so y 1 ~ y.
If c is constant or I K I &#x3E; 1, then Theorem 1.1 (a) and (b) implies that

/i:=y(0)’~y has the required properties (observe that cl =

_ ,~(Y(o).)_~ c).
If I K I  1 we may suppose by Lemma 3.6 that c( 00 ) = 00. If y(0) =

= with So E Sand we define y 1 ( t ) = so y ( t ) ( e , xo ) for all
which satisfies y 1 ( o ) = e. Since Pso y = so Py , we obtain by Lemma

3.2 that

for all t E R. But so. z = az + b for some a &#x3E; 0 and b E R. Then, proceeding
as in the proof of the necessary condition of Theorem 1.1 (d), we conclude
that y 1--- y .

Consequently, we have shown that if Image (F), then [c] is an
oriented horocycle which does not contain eK (see Remark 2.4 (b)).
Moreover, Theorem 1.1 (c) implies that II is well defined and injec-
tive.

Finally, by Proposition 2.1 (b), if Cl is a curve in H with constant

geodesic curvature x 1 and ( 1 + x i ) ~, 2 =1, then there exists a geodesic
y 1 in G such that Py i = cl . From this and the necessary condition of
Theorem 1.1 (c) it follows that 77 is surjective. 8

On the topology of A ~ (G).

Given a Riemannian manifold M, we topologise A ~ (M) via the obvi-
ous identification with 7~M/2013, the unit tangent bundle of M modulo
asymptotic vectors.
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Although our space G is homogeneous and diffeomorphic to 

has not nice topological properties, as the following remark
states.

3.7 REMARK. is neither Hausdorff nor compact.

PROOF. We begin by defining the left invariant 1-form cv on G such
that (X, Z) for all X E g. We denote by Lg the left multiplication
by g and for X E T1G we putcx=Pyx. Since llXll = llzll = 1, I w(X) I = 1 if
and only if cx is constant. If I w(X) I  1, it follows from Proposition 2.1

N IV

(c) and the G-invariance (notice that = 3( g) o P for all g E G, with
3( g) an orientation preserving isometry of H) that

for all X E T 1 G, whereK(X) is the geodesic curvature of cx and 
= Hence (2) implies that 2 cv(X)2 &#x3E; 1 (respectively =1,  1) if and

only if I K(X) I &#x3E; 1 (respectively =1,  1).
Let us take now X E T 1 G such that [ cx ] E X (hence 1 by

Remark 2.4 (b)). Choose g E G such that the oriented horocycles [g.cx]
and [cx] are distinct. Let Xn be a sequence in T 1 G converging to X such
that 1 and I &#x3E; 1 for all n . We consider now 11 E G with
3í(g) = g , and denote and Consequently, con-

verges to [ Y] ( [ W] denotes the equivalence class of W in T 1 G). By (13),
(2) and the G-invariance, we have that = Then Yn --- Xn by
Theorem 1.1 (b). Hence G is not Hausdorff since Y is not asymptotic to X
by Theorem 1.1 (c) ( [Py Y] _ [ g.cx] ~ [cx] by the choice of g).

To show that Aoo (G) is not compact, let us denote by ~+ the set of all
horocycles in H with positive geodesic curvature and speed G acts

transitively on ~-C+ . Let N be the isotropy group at the horocycle t H i +
+ ~-C+ becomes a noncompact topological space via the identification
with G/N endowed with the quotient topology.

One can show that the projection is open and that the

set is closed and ----saturated. Hence

U/ --- may be thought of as a closed topological subspace with

the relative topology. Then by Theorem 1.1 (c) the map f : U/ --- -~ ~C+ is
well defined by f([X]) = [cx]. Since f is onto, to show that is not

compact, it remains only to verify that f is continuous. Indeed, one can
check by straightforward computations that f lifts to f : U- G defined
by/(X) = ~~(z’B/2c~(0)), which is clearly continuous.
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