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Fragments of Almost Ring Theory.

LORENZO RAMERO (*)

1. Introduction.

Let V be a ring and m an ideal of V such that xrt2 = m. The V-modules
killed by m are the object of a (full) Serre subcategory Z of the category
V - Mod of all V-modules, and the quotient category V - Mod/Z is an
abelian category V - al. Mod which we call the category of almost V-mo-
dules. It is easy to check that the usual tensor product of V-modules de-
scends to a bifunctor Q9 on almost V-modules, so that V - al. Mod is a mo-
noidal abelian category in a natural way. Then an almost ring is just an
almost V-module A endowed with a «multiplication» morphism 
- A satisfying certain natural axioms. Together with the obvious mor-
phisms, these gadgets form a category V - al.Alg and there is a natural
localisation functor V - Alg ~ V - al. Alg which associates to any V-alge-
bra the same object viewed in the localised category.

While the notion of almost V-module had already arisen (in the si-

xties) in Gabriel’s memoir «Des categories abeliennes» [2], the useful-
ness of almost rings did not become apparent until Faltings’ paper [1] on
«p-adic Hodge theory». To be accurate, the definition of almost etale
extension found in [1] is still given in terms of usual rings and modules,
and the idea of passing to the quotient category is not really developed,
rather it is scattered around in a series of clues that an honest reader

may choose to pursue if so inclined.
About two years ago I decided that, if no one else was interested in

writing up this story, I could as well take a stab at it myself. The result of
my efforts appeared in the preprint [7]. The main aim of [7] was to provi-
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de convenient foundations for the study of deformations of almost rings
and their morphisms. In view of applications to p-adic Hodge theory, it is
especially interesting to establish suitable almost versions of the stan-
dard results on infinitesimal lifting of étale rings and morphisms. The
method I chose to tackle this question, was to extend Illusie’s theory of
the cotangent complex to the almost case. This method worked reasona-
bly well, and yielded more general results than could be achieved with
Hochschild cohomology (Faltings’ original method). As an added bonus,
proofs using the cotangent complex also require far fewer calcula-

tions.

Last year, on invitation of Francesco Baldassarri, I presented these
results in a talk in Padova. Due to time constraints, I preferred to forgo
the detailed introduction of almost terminology, and rather to focus on
deformations. That is, I dealt throughout the lecture with usual rings
and modules but I gave proofs of the lifting theorems which could be
adapted to the almost case with relative ease (to obtain such proofs, one
has just to copy the arguments given in [7], omitting everywhere the
word «almost»). After the talk, it was convened that I would write up my
lecture as a contribution to the Rendiconti. This would have had to be a

mainly expository article, and much of the work would have gone into
fleshing out the references to homotopical algebra, so that the paper
could have also been useful as a first introduction to the theory of the co-
tangent complex.

However, a string of circumstances kept on delaying this project in
the intervening months. In the meanwhile, Ofer Gabber sent me some
important remarks about my preprint; these remarks led to extensive di-
scussions and eventually to the decision of collaborating on a radical ove-
rhaul of the preprint. Our new approach is based on the systematic
exploitation of the left adjoint V - al. Alg ~ V - Alg to the localization
functor. This approach is in many ways superior to the previous one
(which was based on the right adjoint); in particular, rather than exten-
ding Illusie’s theory to the almost case, one can now reduce the study of
deformations of almost rings to the case of usual rings.

The net outcome of these developments is that, on one hand the the-
ory of deformations of almost rings is now almost as polished as the the-
ory for usual rings, and on the other hand, much of the industrious work
that buttressed the first preprint has been obsoleted.

Since I am still rather fond of the elementary arguments that I devi-
sed for the first version, I prefer to think instead that this material has
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been liberated from the paper and is now free to be included in a revised

note for Rendiconti. The following article is a compromise born out of
these considerations : it is at the same time more and less than what was

originally planned. It is more, because it now consists mostly of original
results. It is less, because it is no longer designed as a gentle first intro-
duction to the cotangent complex and to general homotopical algebra;
besides, whenever the proof of a result has not significantly changed
from the first to the second preprint, I avoid duplication and refer in-
stead to the appropriate statement in the «official» version [3].

2. Homological theory.

2.1. ALmost categories.

Unless otherwise stated, every ring is commutative with unit. If C is a
category, and X, Y two objects of C, we will usually denote by
Homc (X , Y) the set of morphisms in C from X to Y and by 1x the identity
morphism of X. Moreover we denote by C ° the opposite category of C
and by s . C the category of simplicial objects over C, that is, functors
L1 0 ~ C, where d is the category whose objects are the ordered sets
[n] = {0, ... , n} for each integer n &#x3E; 0 and where a morphism 0 : [p] -
- [q] is a non-decreasing map. A morphism f : X - Y in s . C is a sequence
of morphisms f n~ : X[n] -~ Y[n], n ; 0 such that the obvious diagrams
commute. We can imbed C in s . C by sending each object X to the «con-
stant» object s . X such that s . X[n] = X for all n ; 0 and s . = 1x for
all morphisms 0 in L1. We let be the simplicial set represented by
[n], i.e such that d(n)[i] = HomL1 ([i], [n]).

If C is an abelian category, D(C) will denote the derived category of
C. As usual we have also the subcategories D + ( C), D - ( C) of complexes
of objects of C which are exact for sufficiently large negative (resp. posi-
tive) degree. If A is a ring, the category of A-modules (resp. A-algebras)
will be denoted by A - Mod (resp. A - Alg). Most of the times we will
write HomA (M, N) instead of HomA - N).

We denote by Set the category of sets and by Ab the category of abe-
lian groups. The symbol N denotes the set of non-negative integers; in
particular 0 E N.

Our basic setup consists of a fixed base ring V containing an ideal m
such that m2 = m. However, pretty soon we will need to introduce fur-
ther hypotheses on the pair (V, m); such additional restrictions are con-
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veniently expressed by the following axioms (Sl) and (S2). Before di-
scussing them, let us stress that many interesting assertions can be pro-
ved without assuming either of these axioms, and some more require
only the validity of (Sl), which is the weakest of the two. For these rea-
sons, neither of them is part of our basic setup, and they will be explicitly
invoked only as the need arises.

(Sl) The ideal m is generated by a multiplicative system Sic m
with the following property. For all there exist y, such that

x = y2~z.
Suppose that axiom (Sl) holds. The divisibility relation induces a par-

tial order on ,S by setting y ~ x if and only if there exists z E ,S U ~ 1 ~ such
that x = y ~ z.

(S2) The ideal m is generated by a multiplicative system c m con-
sisting of non-zero divisors and the resulting partially ordered set (,S , )
is cofiltered.

Let us remark that (S2) implies (Sl). First of all, without loss of gene-
rality we can assume that u. XES whenever u E V is a unit and XES.
Next, pick if x is smaller (under ) than every element of S,
then m = .r’V. Then m = rrt2 implies that x 2 divides x, and the claim follo-
ws easily. Otherwise, there exists s E S which is not greater than x; then
(S2) implies that there exists t , t ’ e S such that x = t ~ t ’ ; again (S2) gives
an element YES which divides both t and t ’, so y 2 divides x and (Sl)
follows.

Moreover, the second axiom implies that m is a flat V-module: in-
deed, under (S2), m is a filtered colimit of the free V-modules s ~ V, where
s ranges over all the elements of S.

EXAMPLE 2.1.1. i) The main example is given by a non-discrete va-
luation ring V with valuation v : V - ( 0 ) - r of rank one (where T is the
totally ordered abelian group of values of v). Then we can take for S the
set of elements r e V- (0) such that v(x) &#x3E; v( 1 ) and (S2) is sati-
sfied.

ii) Suppose that S contains invertible elements. This is the «classical
limits In this case almost ring theory reduces to usual ring theory. Thus,
all the discussion that follows specialises to, and sometimes gives alter-
native proofs for, statements about rings and their modules.
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Let M be a given V-module. We say that M is almost zero if m . M = 0.
A morphism 0 of V-modules is an aLmost isomorphism if both Ker ((p)
and Coker (0) are almost zero V-modules.
The full subcategory f of V - Mod consisting of all V-modules which are
almost isomorphic to 0 is clearly a Serre subcategory and hence we can
form the quotient category V - al. Mod = V - Mod/Z (after taking some
set-theoretic precautions : the interested reader will find in [8] (§ 10.3) a
discussion of these issues). Then V - al. Mod is an abelian category which
will be called the category of almost V-modules.

There is a natural localization functor

which takes a V-module M to the same module, seen as an object of
V - al. Mod.

Since the almost isomorphisms form a multiplicative system (see e.g.
[8] Ex. 10.3.2), it is possible to describe the morphisms in V - al. Mod via
a calculus of fractions, as follows. Let V - al. Iso be the category which
has the same objects as V - Mod, but such that HOmV-al.Iso(M, N) consi-
sts of all almost isomorphisms M - N. If M is any object of V - al. Iso we
write (V - al. Iso/M) for the category of objects of V - al. Iso over M (i. e.
morphisms ~p : X ~ M). ( i = 1, 2 ) are two objects of

( V - al. Iso/M) then Ø2) consists of all morphisms
1jJ : Xl ~ X2 in V - al. Iso such that 0 1 = 0 2 o 1jJ. For any two V-modules
M, N we define a functor FN: (V - al. Iso/M)’--~- V - Mod by associating
to an object 0: P -~ M the V-module Homv(P, N) and to a morphism
a : P - Q the map

J

Then we have

In particular Homv - al. Mod (M, N) has a natural structure of V-module,
for any two almost V-modules M, N, i. e. Homv _ al. Mod ( - , - ) is a bifun-
ctor which takes values in the category V - Mod.

The usual tensor product induces a bifunctor - 0y - on almost V-
modules, which, in the jargon of [5] makes of V - al. Mod a (closed sym-
metric) monoidaL category. Then an almost V-algebra is just a monoid in
the monoidal category V - al. Mod. This means (a bit sloppily) the follo-
wing. For two almost V-modules M and N let 17MIN: 
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be the automorphism which «switches the two factors» 
and vvv: the « scalar multiplication » Then an

almost V-algebra is an almost V-module A endowed with a morphism of
almost V-modules (the «multiplication» of A) and a
«unit morphism» V~A satisfying the conditions

(associativity)

( commutativity)

(unit property ) .

With the morphisms defined in the obvious way, the almost V-alge-
bras form a category V - al. Alg. Clearly the localization functor restricts
to a functor V - Alg ~ V - al. Alg. Occasionally we will have to deal with
non-commutative or non-unital almost algebras; for these more general
monoids, the second, resp. the third of the above axioms fails.

Furthermore, a left aLmost A-module is an almost V-module M endo-
wed with a morphism such that

Similarly we define right almost A-modules. The A-linearity of a mor-
phism 4): M ~ N of A-modules is expressed by the condition

We denote by A - al. Mod the category of left almost A-modules and A-
linear mor~phisms defined as one expects. Clearly A - al. Mod is an abe-
lian category. For any V-algebra B we have a localization functor

B - Mod - B a - al. Mod.

Next, if A is an almost V-algebra, we can define the category A -
- al. Alg of almost A-algebras. It consists of all the morphisms A - B of al-
most V-algebras.

Being, as they are, objects in a quotient category, almost A-modules
do not possess elements in the same way as usual modules do. However,
not everything is lost, as we show in the following definition.

DEFINITION 2.1.2. Let M be an almost A-module. An almost A-ele-

ment of M is just an A-linear morphism A ~ M. We denote by M * the
set of all almost A-elements of the almost A-module M. If B is an almost

A-algebra, we can multiply almost elements as follows. First we remark
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that the morphism u,4/A: is an isomorphism. Then, given al-
most elements bl : A ~ B and b2 : A ~ B set 

Q9Ab2) A ~ B. In particular, A * is a V-algebra and B * is endowed
with a natural A *-algebra structure, whose identity is the structure

morphism 1BIA: A - B.
Moreover, if m : is an almost A-element of Ml and Mi -

M2 is an A-linear morphism, we denote by 4),, (m) : A -~ M2 the almost
A-element of M2 defined as 0,, (m) = O o m. In this way we obtain an A *-
linear morphism O*: M1* - M2*, i. e. the assignment M H M * extends
to a functor from almost A-modules (resp. almost A-algebras) to A *-mo-
dules (resp. A *-algebras).

For any two almost A-modules M, N, the set HomA - al.Mod (M, N) has
a natural structure of A *-module and we obtain an internal Hom functor
by letting

This is the functor of almost homomorphisms from M to N.
For any almost A-module M we have also a functor of tensor product

M 0A - on almost A-modules which, in view of the following proposition
2 can be shown to be a left adjoint to the functor alHomA (M, - ). It can
be defined as (M * 0 A N *)a but an appropriate almost ver-
sion of the usual construction would also work.

With this tensor product, A - al. Mod is a monoidal category as well,
and A - al. Alg could also be described as the category of monoids in the
category of almost A-modules. Under this equivalence, a morphism
~ : A ~ B of V-algebras becomes the unit morphism 1BIA: A ~ B of the
corresponding monoid. We will sometimes drop the subscript and write
simply 1.

Suppose that B1 and B2 are two almost A-algebras and M is an almost
B1-module. Then we can induce a structure of almost B2 XA B1-module on

by declaring that the scalar multiplication 
acts by the rule: ( cl ® b ) ® ( c2 ® m) H

’-&#x3E;(Ci’C2)0(6’m) (for all cl , c2 E B2*, b E B1*, m E M * ). In categorical
notation, this translates as follows. 1 be

the A-linear isomorphism which «switches the two factors«; we set
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PROPOSITION 2.1.3. i) There is a natural isomorphism A = A ~ of
almost V-algebras.

ii) The functor M - M * from A - al. Mod to A * - Mod (resp. from
A - al. Alg to A * - Alg) is right adjoint to the localization functor A * -
- Mod -A a- al. Mod = A - al. Mod (resp. A * - Alg - A - al. Alg).

iii) The counit of the adjunction M * -~ M is a natural equivalence
from the composition of the two functors to the identity functor 1A - al. Mod
(resp. 1A - al.Alg).

PROOF. (i): quite generally, for any almost A-module M we have a
standard isomorphism of A *-modules

Then the claim follows easily from the explicit description of the set of
morphisms in V - al. Mod given above.

(ii): For any given almost A’-module N and any A.-module M we
need to establish a natural bijection

For any m E M define the morphism of A *-modules a~ m : A * --~ M by
Then the bijection sends a morphism 0: M a ~ N of almost

A a*-modules to the morphism of A *-modules ~ : M-N* defined as
o Moreover, ~ is a morphism of A a*-algebras whenever 0 is a

morphism of almost A-algebras.
An explicit inverse for the bijection can be obtained as follows. Pick

any A *-linear morphism ~: M -~ N *. We construct a morphism of V-mo-
dules 0 : torsion) which represents the required mor-
phism of almost A a*-modules M a -N. If m E M, by definition the mor-
phism jmv: V- N is represented by a pair consisting of an almo-
st isomorphism y : X-V and a V-linear morphism ~ ’ : X --~ N. For
given ð, ë E m choose u E X such that 6 - (ë -1jJ(u» = 0 and define O(8.E.
-m) to be the class modulo m-torsion of O’ (u). We leave it to the reader
to verify that 0 thus defined extends to a unique A’-linear map and that
the assignment O l-&#x3E; O is an inverse for the map (2.1.6).

For (iii) we need to show that the natural morphism q5 : M * --~ M cor-
responding via (2.1.6) to the identity of M *, is an isomorphism of almost
A-modules. Inspecting the proof of (ii), we see that this morphism is re-
presented by a V-linear morphism x~t - M * --~ M/( x~t - torsion) which can
be explicitly computed. We indicate an inverse for q5 and leave the details
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to the reader. For m E M, let cv m : A -~ A OvM be the A-linear morphism
Then the morphism M ~ M ~ defined as provi-

des the required inverse.

REMARK 2.1.4. (i) Proposition 2.1.3 follows also directly from [2]
(chap. III § 3 Cor. 1).

(ii) It is also easy to check that, for any V-module M, the natural map
(unit of the adjunction) M ~ M * is an almost isomorphism. Moreover,
under (S2) we have a natural isomorphism

where, for any two elements E  8 of the cofiltered set S, the correspon-
ding M -~ M is defined by 

COROLLARY 2.1.5. The categories A - al. Mod and A - al. Alg are
both complete and cocomplete.

PROOF. We recall that the categories A * - Mod and * A - Alg are
both complete and cocomplete. Now let I be any small indexing category
and M : I -A - al. Mod be any functor. Denote by M * : I ~ A * - Mod
the composed functor i H M( i ) * . We claim that

The proof is an easy application of proposition 2.1.3(iii). A similar argu-
ment also works for limits and for the category A - al. Alg.

Next recall that the forgetful functor A * - Alg - Set (resp. A * -
- Mod - Set) has a left adjoint A * [ - ]: Sod - A* - Alg (resp.
A (-): Sod --*A. - Mod) which assigns to a set ,S the free A *-algebra
A * [,S] (resp. the free A *-module A ~8) generated by ,S. If S is any set, it
is natural to write A[S] (resp. A (8) for the almost A-algebra (A * [s])a
(resp. for the almost A-module (A ~s~ )a. This yields a left adjoint, called
the free almost algebra functor Sod -A - al.Alg (resp. the free almost
module functor Sod -A - al. Mod) to the «forgetful» functor A -
- al. Alg - Sod (resp. A - al. Mod - Sod) B H B *.

REMARK 2.1.6. The functor of almost elements commutes with ar-

bitrary limits, because all right adjoints do. It does not in general com-
mute with arbitrary colimits, not even with arbitrary infinite direct
sums.
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2.2. Almost homological algebra.

In this section we fix an almost V-algebra A and we consider various
constructions in the category of almost A-modules.

REMARK 2.2.1. i) Let Ml , M2 be almost A-modules. By proposition
2.1.3 it is clear that a morphism 95 : of almost A-modules is uni-

quely determined by the induced morphism 
ii) It is a bit tricky to deal with preimages of almost elements under

morphisms: for instance, if 0 : is an epimorphism (by which we
mean that Coker (0) = 0) and m2 E M2*, then it is not true in general that
we can find an almost A-element ml e Mi* such = m2. What

remains true is that for arbitrary E E m we can find ml such that

0.(Ml) = E-m2.
Suppose that (Sl) holds. Let be an infinite sequence

of elements of ,S. We say that T is a Cauchy sequence if, for any c E S the-
re exists s = E ,S such that s ~ tn ~ s ~ E for all but finitely many n E N.
We say that T converges to 1 if, for any s E ,S, we for all but fi-

nitely many n E N. We illustrate the use of this language in the proof of
the following lemma.

LEMMA 2.2.2. Assume (S2) and Let fMn; 0 n: 
be a direct (resp. inverse) system

of almost A-moduLes and morphisms n E N) a sequence of S
which converges to 1.

for all n E ~T then

for all n E N then

iii) If ê n . Coker ( y~ n ) = 0 for all n E ~1 and moreover
is a Cauchy sequence, then

PROOF. (i) and (ii) are left as exercises to the reader. We prove (iii).
Let V) be the morphism

which assigns to any sequence n E N) of almost A-elements bn E N n*
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the sequence

It is a standard result (see e.g. [8] (§ 3.5)) that

other words, we have
n E 1~‘I

Let ô e S be any element; it

suffices therefore to show that

After replacing c n by E 2 n we can assume = 0 for
all n E N. Moreover, for any fixed we have a natural isomorphism

Hence, up to omitting the first m modules and

renumbering the others, we can assume that

i for all Also, for any element of

~ we denote by (c) the new element defined by

Now, let be any almost A-element of We will

construct inductively a sequence with the property that
for all in other words

We let ao = 0. Suppose that we have already found aI, ... , an such

that for all j  n. Since -,, - Coker = 0, we can
find an + 1 E Nn + 1 * such ( cn + ( an + 1). We multiply both
sides of this equation + 1 to obtain

which is what we need. Finally, for any sequence (bn / n E N) as above, let

be the sequence defined by for all n e N. It is

clear that (c: _ ~ ~ ( bn ~ I n E N), which means =

= 0, as required. 0

DEFINITION 2.2.3. Let M be an almost A-module.

i) We say that M is flat if the functor N - M OA N, from the category
of almost A-modules to itself is exact. M is almost projective if the fun-
ctor N - alHomA (M, N) is exact.
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ii) We say that M is almost finitely generated if, for arbitrarily small
there exist a positive integer n = n(E) and an A-linear morphism

such that e - Coker (o ) = 0.
iii) We say that M is almost finitely presented if, for arbitrarily small

there exist positive integers n = n(E), m = and a three term

complex Am ~An ~M such that 
The abelian category A - al. Mod satisfies axiom (AB5) (see e.g. [8]

(§ A.4)) and it has a generator, namely the object A itself. It then follows
by a general result that A - al. Mod has enough injectives. It is also clear
that A - al. Mod has enough almost projective (resp. flat) objects. Given
an almost A-module M, we can derive the functors M Q9A - (resp.
alHomA (M, - ), resp. alHomA ( - , M)) by taking flat (resp. injective, re-
sp. almost projective) resolutions (one remarks that bounded above
exact complexes of flat (resp. almost projective) almost modules are
acyclic for the functor M Q9A - (resp. alHomA ( - , M)), and then uses the
construction detailed in [8] th. 10.5.9). We denote by (resp.
alExt~(M, -), resp. the corresponding derived fun-

ctors. If A = B a for some V-algebra B we obtain easily natural isomor-
phisms

for all B-modules M, N. A similar result holds for Ext§(M, N).

REMARK 2.2.4. i) Clearly, an almost A-module M is flat (resp. almo-
st projective) if and only if N) = 0 (resp. alExtA (M, N) = 0) for
all almost A-modules N and all i &#x3E; 0.

ii) Let M, N be two flat (resp. almost projective) almost A-modules.
Then M ®AN is a flat (resp. almost projective) A-module and for any al-
most B-algebra A, the almost B-module BOA M is flat (resp. almost
projective).

LEMMA 2.2.5 (see [3]). Let M be an atmost finitely generated almo-
st A-moduLe. Consider the following properties:

i) M is almost projective.
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ii) For arbitrary E e m there exist and A-linear manor-

phism

such that v, ë.1Mo

There is a converse to lemma 2.2.5 in case M is almost finitely presen-
ted. To prove it, we need some preparation.

Let R be a ring and M any R-module. Recall (see [8] (3.2.3)) that the
Pontrjagin duaL of M is the R-module M+ = HomAb (M, An ele-

ment r of R acts on M+ via (r.f)(m) = f(r.m) (for f E M+, m E M).

PROPOSITION 2.2.6 (cp. [8] § 3.2).

i) The Pontrjagin dual is a contravariant exact functor on the ca-
tegory R - Mod.

ii) A sequence M - N - P of morphisms of R-modules is exact if
and only if the dual sequence pt is exact.

iii) For any two R-modules M, N there is a natural R-Linear mor-
phism defined by a (fO n): h -f(h(n)),
which is an isomorphism if N is finitely presented. 0

COROLLARY 2.2.7. Let M be a finitely presented R-module and
r E R an elements such that r. TorRi (M, N) = 0 for any R-module N and
any integer i &#x3E; 0 . Then we have also N) = 0 for any R-modu-
le N and any integer i &#x3E; 0.

PROOF. Suppose we are given a surjection 0 : B -~ C of R-modules.
It suffices to show that r kills the cokernel of the induced morphism
ø *: HomR (M, B) ~ HomR (M, C). By proposition 2.2.6(i) the map C t -
-~B t is injective. We consider the commutative diagram

whose vertical arrows are isomorphisms according to 2.2.6(iii). By hypo-
thesis, r kills the kernel of the upper horizontal arrows, hence also the
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kernel of the lower one. By proposition 2.2.6(i) this kernel is the Pontrja-
gin dual of D = Coker (O*) and by proposition 2.2.6(ii) it follows easily
that r must kill D itself, as required.

PROPOSITION 2.2.8. If (Sl) holds then every almost finitely presen-
ted flat almost A-module is almost projective.

PROOF. Let M be such an almost A-module. For pick mor-
phisms such that E - Coker (0) =ë.(Ker(Ø)/Im(1jJ» = 0 .
Let C = Coker (y * : A ~ ~A * ). The kernel and cokernel of the natural
morphism C-M* are killed by ë2. Moreover, by hypothesis, E kills

Torf * (M *, N) for all A *-modules N and all i &#x3E; 0 . It follows easily that
e5 kills Torf * (C, N) for all A *-modules N and all i &#x3E; 0 . Then it follows
from corollary 2.2.7 that E5 also kills ExtA (C, N) for all A *-modules N
and all i &#x3E; 0 . In turns, this implies that E9 kills ExtA (M *, N) for all A *-
modules ,N and all i &#x3E; 0. As ë can be taken arbitrarily small, the claim
follows.

For the proof of the following two lemmata, we refer the reader to [3].

LEMMA 2.2.9. Assume (S1) and Let 
be a direct system of almost A-modules and suppose there exist sequen-
ces of elements of ,S such that

i) T converges to 1 and is a Cauchy sequence;
ii) for all n E 1~T there exist-integers N( n ) and morphisms of almo-

st A -modules 1/J n : A N~n~ such ( y~ n ) = 0;

iii) 6 n - Coker (0 n) = 0 , for all n e N .

Then colim Mn is an almost finitely generated almost A-mo-

dule.. 

LEMMA 2.2.10. Assume (SI) and let 
be a direct system of almost A-modules and suppose there exist sequen-
ces and f6n In(=-NJ of e lements of S such that

i) T converges to 1 and i ~ is a Cauchy sequence;
N) = 0 for all al-

most A-modules N, all i &#x3E; 0 and all n E N;

iii) 6n-Ker(On) = 0 for all 

Then colim Mn is an almost projective almost A-module. 0
n E N
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2.3. Almost homotopical algebra.

Our first task is to extend all of section 2.1 to simplicial almost modu-
les and algebras. This requires no particular effort, so we only sketch
how to proceed. A simplicial almost V-algebra is just an object in the ca-
tegory s . ( V - al. Alg). Then, for a given simplicial algebra A , we define
the category A - al. Mod of almost A-modules: it consists of all simplicial
almost V-modules M such that M[n] is an almost A[n]-module and such
that the face and degeneracy morphisms di : M[n] -~ M[n - 1 ] and

si : M[n] - M[n + 1] ( i = 1, ..., n ) are A[n]-linear. For instance, if A is
an almost V-algebra, we can form the constant simplicial almost V-alge-
bra s . A and then the category s . A - al. Mod is the same thing as the ca-
tegory s . (A - al. Mod) of simplicial almost A-modules. Sometimes we
may have to consider, for a given simplicial almost algebra A, the catego-
ry s . (A - al. Mod) of simplicial almost A-modules. This is the same as the
category of all bisimplicial complexes of almost V-modules, with additio-
nal A[n]-linearity conditions which the reader can easily figure out.

The category A - al. Mod is abelian and it is even a monoidal category
with the tensor product formed dimension-wise: 

= M[n] 0A[n]M[n]. The internal hom functor s . alHomA ( - , - ) : A -
- al. Mod° x A - al. Mod -A - al. Mod can be defined as

with face morphisms induced naturally from those of Here V°~~~
denotes the simplicial almost V-module obtained by applying dimension-
wise the free almost module functor to the simplicial set 4(n).

Again, an almost A-algebra B is a monoid in the category of almost A-
modules, which is the same as a simplicial almost V-algebra with a mor-
phism of simplicial almost V-algebras A -~ B . We let A - al. Alg be the
category of these objects.

Next, by applying dimension-wise the functor of almost elements we
may form the simplicial V-algebra A * . The functor of almost elements
then extends to a functor A - al. Mod -A * - Mod (and similarly for al-
most algebras). Then the whole of proposition 2.1.3 and its corollary car-
ries over to this more general situation.

Similarly we have forgetful functors A * - Mod - s. Sod (resp. A * -
- Alg - s. Sod) and their adj oints associate to a simplicial set ,S the

simplicial free module (resp.algebra) generated dimension-wise by S[n].
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These can be composed with the previous functors to give constructions
of free simplicial almost A-modules A (8) and A-algebras A[S].

In the following we let A be some fixed simplicial almost V-algebra.
Our next task is to extend parts of [4] to the almost case, leading up to
the construction of the almost cotangent complex in the coming section.
Most of the work consists in poring over Illusie’s manuscript and accep-
ting that the arguments given there carry through verbatim to the almo-
st setting. This is usually the case, with few exceptions mostly due to the
fact that the functor of almost elements is only left exact (rather than
exact). We will point out these potential difficulties as they arise.

DEFINITION 2.3.1. Let B be any almost A-algebra and M any almost
B-module. An almost A-derivation of B with values in M is an A-linear

morphism a : B ~ M such that

for all objects [n] of d and all b1, b2 E B ,~ [n]. The set of all M-valued al-
most A-derivations of B forms a V-module DerA (B, M) and the corre-
sponding almost V-module alDerA (B , M) has a natural structure of al-
most B[ 0 ]-module (via the degeneracy morphisms).

DEFINITION 2.3.2. Let again B be an almost A-algebra. An ideal of
B is a monomorphism I - B of almost B-modules. We reserve the nota-
tion for the ideal Ker B B ). The almost module of rela-
tive differentials of 0 is defined as the (left) almost B-module =

= IBIA IIB21A. It is endowed with a natural almost A-derivation

which is defined by b H 1 ® b - b ® 1 for all b E B * . The assignment
defines a functor

from the category of morphisms A -~ B of simplicial almost V-algebras to
the category denoted s . al. Alg. Mod consisting of all pairs (B , M) where
B is a simplicial almost V-algebra and M is an almost B-module. The
morphisms in s . al. Alg. Morph are all the commutative squares; the mor-
phisms (B , M)2013~(.BB M ’ ) in s . al. Alg. Mod are all pairs (Ø, f ) where
~ : B -~ B ’ is a morphism of simplicial almost V-algebras and f : B ’ 0

is a morphism of almost B ’-modules.
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The almost module of relative differentials enjoys the familiar uni-
versal properties which one expects. In particular represents the
functor DerA (B , - ), i. e. for any (left) almost B-module M the mor-
phism

is an isomorphism. As an exercise, the reader can supply the proof for
this claim and for the following standard proposition.

PROPOSITION 2.3.3. i) Let B and C two almost A-aLgebras. Then
there is a natural isomorphism ·

ii) Let B be an almost A-algebra and C an almost B-algebra. Then
there is a natural exact sequence of almost C-modules

iii) Let I be an ideal of the almost A-algebra B and let C = BII be
the quotient almost A-algebra. Then there is a natural exact sequence

iv) The functor ,S~ : s . al. Alg. Morph~s.al.Alg. Mod commutes
with all colimits. 0

DEFINITION 2.3.4. An A-extension of an almost A-algebra B by an
almost B-module I is a short exact sequence of almost A-modules

such that C is an almost A-algebra, p is a morphism of almost A-algebras
and I is a square zero ideal in C. The A-extensions form a category
ExalA . The morphisms are commutative diagrams with exact rows

such that g and h are morphisms of almost A-algebras. We denote by
ExalA (B , I) the subcategory of ExalA consisting of all A-extensions of B
by I, where the morphisms are all short exact sequences as above such
thatf= 1] and h = lB.

For a morphism 0 : C-B of almost A-algebras, and an A-extension



152

X in ExalA (B , I), we can pullback X via 0 to obtain an A-extension X * 4)
in ExalA ( C, I ) with a morphism X * ~ -~ X of A-extensions. Similarly,
given a B-linear morphism y : I-J, we can push out X and obtain an
object 1jJ * X in ExalA (B , J) with a morphism X ~ 1jJ * X of ExalA . These
operations can be used to induce a structure of abelian group on the set
ExalA (B , I ) of isomorphism classes of objects of ExalA (B , I ) as follows.
For any two objects X, Y of ExalA (B , I) we can form X EB Y which is an
object of Let 0 : be the diagonal mor-
phism and y : I ED I ~ I the addition morphism of I. Then we set X + Y =

= y * (X fli Y) * ~ . One can check that X + Y = Y + X for any X , Y and that
the trivial split A-extension is a neutral element for + . Moreover

every isomorphism class has an inverse - X. The functors X - X * 0 and
X- y * X commute with the operation thus defined, and induce group
homomorphisms

q5 : ExalA (B, I) ~ ExalA (C, I) and V) * : ExalA (B, I) - ExalA (B, J) .

DEFINITION 2.3.5 (cp. [4] (III.1.1.7)). We say that an almost A-alge-
bra C verifies condition (L) if, for all A-extensions X = (0 -1-B -
~ C ~ 0), the sequence of C-modules

obtained by extending (2.3.2) by zero on the left, is exact.
Suppose now that C verifies (L). Then we denote by diff (X) the exact

sequence (2.3.3) associated to the A-extension X. This defines a functor
from ExalA (C, I ) to the category of extensions (in the category of almost
C-modules) of by I. Hence we derive a morphism of abelian

groups

where Ext’ denotes here the Yoneda Ext functor on the abelian category
of almost C-modules.

Conversely, let C be any almost A-algebra and Y = ( 0 ~ I ~ J ~
~ S~ c~A ~ o ) an exact sequence of almost C-modules. We deduce an
A-extension of (C ®A c/A

where J is also a square zero ideal in C (D J and I is an almost
C fl3 Q c/A-module annihilated by the ideal Q CIA. Let j2 : C ~ (C ®A 
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be the morphism (c E C *). Then we obtain an A-extension of C
by I

This defines a group homomorphism

The basic observation is the following:

PROPOSITION 2.3.6 (cp. [4] (III.1.1.9)). Suppose that the almost A-
algebra C verifies condition (L). Then the homomorphisms diff and alg
are inverse to each other

Our aim is to extend proposition 2.3.6 to general almost A-algebras.
The strategy will be the following: find a suitable (functorial) simplicial
resolution P ~ C by a system of A-algebras P[n] satisfying condition (L).
Then form the simplicial C-module This will replace
the C-module in (2.3.4). Moreover the Yoneda Ext will be replaced
by a hyperext functor, computed in a suitable derived category. This pro-
gram will occupy the rest of this section and the following one. To start
out, we verify that there are enough A-algebras to play with, which sati-
sfy (L).

LEMMA 2.3.7. Assume that (S2) holds and suppose that C = A[S]
for some simplicial set S. Then C satisfies (L).

PROOF. This is one of the points which require a little extra care. Let
be an A-extension. We need to show that the

sequence (2.3.3) is exact. By virtue of proposition 2.3.3(iv) we can assume
that ,S is a simplicial finite set (i.e. all S[n] are finite sets). By applying
termwise the functor of almost elements to X we obtain a sequence X * .
However the morphism f * will not be in general surjective, but rather
only almost surjective. Now pick E eS and consider the morphism
0,: A * [,S] ~ A[,S]* which sends a generator s E S[n] c A * [S[n] ] to the
element Let X,. = X * * ~ £ . Then X£ * is an A *-extension
of A * [S] by I. According to [4] (III.l.l.7.1) the almost A *-algebra A * [S]
satisfies the analogous condition (L) for A *-algebras. Hence we can
form the exact sequence of A * [,S ]-modules diff (X£ * ). Let Dg = 
be the exact sequence of A[,S]-modules obtained by applying termwise
the functor Because of (S2) the sequences Dg form a direct
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system for varying c e S and moreover the colimit of the system is natu-
rally isomorphic to the sequence (2.3.3). As a filtered colimit of exact se-
quences of almost modules is again exact, the claim follows.

Next, we construct a few auxiliary derived categories, for the future
complex to live in. A bit more generally, let C be any abelian catego-
ry. Recall (see [4] (1.1.3)) the construction of the normaLized complex
which associates to every object X of s . C a chain complex N(X))’ defined
by

(We have used the standard convention N(X)n = N(X)-n). It is an object
of the category C.(C) of chain complexes M of objects of C such that
M = 0 for all i &#x3E; 0 . The theorem of Dold-Kan (see [8] th. 8.4.1) states
that X-N(X) induces an equivalence

and in fact an explicit essential inverse to N can be produced. Now we
say that a morphism X- Y in s . C is a quasi-isomorphism if the induced
morphism of N(X ) ~ N( Y) is a quasi-isomorphism of chain comple-
xes.

DEFINITION 2.3.8. Let A be a simplicial almost V-algebra. We say
that a morphism ~p : M ~ N of almost A-modules (or almost A-algebras)
is a quasi-isomorphism if the morphism 0 of underlying simplicial almo-
st V-modules is a quasi-isomorphism. We define the category D. (A) (re-
sp. D, (A - al. Alg)) as the localization of the category A - al. Mod (resp.
A - al. Alg) with respect to the class of quasi-isomorphisms. (We assume
that our universe is large enough to accommodate this kind of construc-
tions).

If A is an almost V-algebra, then the functor N induces an equivalen-
ce from D, (s . A) to the derived category D. (A - al. Mod) which is the lo-
calization of C. (A - al. Mod) with respect to the class of quasi-isomor-
phisms. Many tools that are available for derived categories have ade-
quate simplicial counterparts. For instance we have a suspension fun-

A - al. Mod -+A - al. Mod (for any simplicial V-algebra A). We
recall the definition from [4] (I.3.2.1). Let do, dl : =4 ( 1 ) be the two
natural simplicial maps and set a = + Im This is a
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simplicial almost V-module whose normalised chain complex is

where the component V is placed in homological degree 1. Then set
EM = for any almost A-module M. It follows from the Eilenberg-
Zilber theorem (see [8] th.8.5.1) that the simplicial almost V-module
underlying decomposes as a direct sum K(M) ® N(M)[ 1 ] where
K(M) is a contractible complex depending functorially on M (and where

denotes the usual shift operator on the category C. (V -
- al. Mod)). Similarly we have a cone functor on almost A-modules, defined
as E - C(E) = y0vE’ where y is the simplicial V-module 
The morphism di : J(0)2013~(l) induces a morphism iE : E -~ C(E) and
there is a short exact sequence

With this notation we can now introduce the hyperext functor which will
replace Yoneda Ext. It is defined as

for any two almost A-modules E , F and for any integer . It turns out
that the computation of Ext’ can be reduced to some extent, to the com-
putation of certain related Yoneda Ext’ groups. We are going to describe
how this is accomplished.

First, for a morphism u : E -~ F of almost A-modules we define the
cone C(u) via the push-out diagram

We derive a sequence of morphisms of almost A-modules

where the morphism p~: C(u) - ZE is induced, via the universal proper-
ty of the push-out, by the morphism pE and the zero morphism
F - EE.
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DEFINITION 2.3.9. We call a triangle of D, (A) any sequence of mor-
phisms in D.(A)

A morphism from a triangle to a triangle (L ’ -
2013&#x3E;M’2013&#x3E;A~2013&#x3E;~L’) is a sequence of morphisms , f : L ~ L ’ , g : M ~ M ’
and h : N-N ’ such that the diagram

commutes. We say that a triangle is distinguished if it is isomorphic to a
triangle of the kind (2.3.6).

Now short exact sequence of almo-

st A-modules. One shows (see [4] (1.3.2.3)) that X induces a natural qua-
si-isomorphism sx: C(u ) -~ G and moreover the triangle

is distinguished. We set

It is easy to check that depends only on the class of X in the Yoneda
Ext’ group and moreover, for any morphisms f : E ~ E ’ , g : G ’ ~ G we
have

which means that X induces a group homomorphism

functorial in both variables E, G. Finally we have the following

PROPOSITION 2.3.10 (cp. [4] (1.3.2.3.8)). Let E, F be two aLmost

A-moduLes.

i) for any u E Ext1 (E, F) there is a quasi-isomorphism t : F -
-~ F’ (resp. s : E ’ ~ E) and an exteusion X (resp. ~ ofE by F’ (resp. of E ’
by F) such that (~t) -1 0 X(X) = u (resp. x(Y) 0 s -1= u).

ii) Let t ’ : F ~ F ’ (resp; t " : F - F " ) be a quasi-isomorphism and
X ’ (resp. X") an extension of E by F’ (resp. F"). We have
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if and only if there exist quasi-isomor-
phisms r ’ : F ’ --~ G and r " : F"-G such that r’ 0 t ’ is homotopic to
r" o t" and r’ ~ X’ = r" ~ X" in Extl A - jM(E, G).

iii) Let s ’ : E ’ --~ E (resp. s " : E " ~ E ) be a quasi-isomorphism
and Y’ (resp. Y") an extension of E’ (resp. E") by F. We have
x( Y’ ) ~ ( s ’ ) -1= x( Y") 0 (s " ) -1 if and only if there exist quasi-isomor-
phisms r’ : D - E’ and r" : D ~ E" such that s ’ o r’ is homotopic to

2.4. ALmost cotangent complex.

Let A ~ B be a morphism of almost V-algebras. In this section we
complete the program announced in section 2.3: first of all we construct a
natural simplicial resolution of B by almost A-algebras which satisfy con-
dition (L) of definition 2.3.5. This is just the simplicial almost A-algebra
PA (B ) = PA * (B * )a where PA * (B ,~ ) is the simplicial A *-algebra associa-
ted to the morphism A ,~ 2013~B ~ as in [4] (11.1.2.1). It comes with a natural
augmentation

which induces a quasi-isomorphism of simplicial almost A-algebras P -
-~ s . B . The components of P are free almost A-algebras, which therefore,
by lemma 2.3.7, satisfy condition (L) whenever (S2) holds. In this case P
itself satisfies (L).

DEFINITION 2.4.1. The almost cotangent complex of B over A is the
simplicial almost B-module

For any morphism C ~ D of rings, let be the cotangent complex
defined by Illusie. Then obviously LB/A = L§ * ~A * . It is clear that Q PIA is a
dimension-wise free almost P-module, in particular it is flat. The aug-

mentation p induces an augmentation

and by paraphrasing the argument in [4] we obtain the following
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PROPOSITION 2.4.2 (cp. [4] (II.1.2.4.2)). The natural morphism

is an isomorphism. 0

PROPOSITION 2.4.3. Let M be an almost B-module. There exists a
natural isomorphism

Finally we can return to our chief preoccupation, which is to extend
proposition 2.3.6. First we would like to extend the homomorphism diff.
This is achieved as follows. Let X be an A-extension of B by an almost B-
module M. We deduce an A-extension X * p of P by M, hence, assuming
(S2), an extension of P-modules of Q p/A by M and finally an
element

On the other hand, as Qp/A is flat, [4] (1.3.3.4.4) yields natural

isomorphisms

THEOREM 2.4.4 (cp. [4] (111.1.2.3). Assume (S2). Then the natural

homomorphism

obtained by composing a and the isomor~phism (2.4.1) is an isomor-

phism.

PROOF. The proof is just the transcription of Illusie’s argument.
Therefore we just outline how to construct an inverse for a and leave it
at that. Let y E plA, M). According to proposition 2(i) there exists
a quasi-isomorphism of P-modules s : M ~ N and an extension Y of Q plA
by N such that y = (~s ) -1 Thus we obtain an A-extension alg ( FJ
of P by N . As P is acyclic in degre &#x3E; 0, we deduce, by applying Ho ter-
mwise, an A-extension of Ho (P) by Ho (N), and finally an
A-extension
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One shows using proposition 2.3.10(ii) that the result is independent of
the choices of s and Y. An explicit calculation using proposition 2.3.6 then
shows that ~3 is an inverse for a .

We proceed now to list the other main properties of the almost cotan-
gent complex.

THEOREM 2.4.5. Let A - B - C be a sequence of morphisms of al-
most V-algebras. There exists a natural distinguished triangle of
D, ( C)

where the morphisms u and v are obtained by functoriality of L.

PROOF. It follows directly from [4] (11.2.1.2). m

Finally we have a fundamental spectral sequence as in [4] (III.3.3.2).
It goes as follows. For every integer q &#x3E; 0 let Symh: B - al. Mod - B -
- al. Mod be the non-additive functor which sends an almost B-module M
to its q-th symmetric tensor power. We can extend Symh to a functor
s . B - al. Mod - s . B - al. Mod by applying it termwise to the componen-
ts of a simplicial B-module.

THEOREM 2.4.6 (cp.[4] (III.3.3.2)). Let 0: A -B be a morphism of
almost algebras such that B * ®A * B ,~ = B * (e.g. such that B * is a quo-
tient of A * ). Then there is a first quadrant homology spectral sequence
of bigraded almost algebras

COROLLARY 2.4.7. Under the assumptions of theorem 2.4.6 there is
a five term exact sequence

3. Almost ring theory.

3.1. Flat, unramified and étale morphisms.

Let A ~ B be a morphism of almost V-algebras. Using the natural
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«multiplication» morphism of almost A-algebras we

can see B as an almost B XA B-algebra.

DEFINITION 3.1.1. be a morphism of almost V-alge-
bras.

i) We say that 0 is a flat (resp. almost projective) morphism if B
is a flat (resp. almost projective) almost A-module.

ii) We say that 0 is faithfully flat if it is flat and, for any A-modu-
le M, the natural morphism of almost 
~ B ®A M is a monomorphism.

iii) We say that 0 is almost finite if B is an almost finitely genera-
ted almost A-module.

iv) We say that 0 is unramified if B is an almost projective almost
B Q9A B-module (via the morphism u BIA defined above).

v) We say that 0 is itale if it is flat and unramified.

LEMMA 3.1.2 (see [3]). Let B ~ C be morphisms
of almost V-algebras.

i) Any base change of a fLat (resp. almost projective, resp. fai-
thfully flat, resp. almost finite, resp. unramified, resp. étale) morphism
is flat (resp. almost projective, resp. faithfully flat, resp. almost finite,
resp. unramified, resp. 6tale);

ii) if both 0 and y are flat (resp. almost projective, resp. faithful-
ly fLat, resp. almost finite, resp. unramified, resp. étale), then so is

V, - 0; J

iii) if 0 is flat is faithfully flat, then 0 is faithfully
flat;

iv) unramified flat (resp. étale), then 1/J is flat
(resp. étale). 8

Recall the topological meaning of idempotents: if A is a ring and e E A
satisfies the relation e 2 = e , then the ideal eA (resp. (1 - e) A) is also a
ring with the identity given by e (resp. by 1 - e). Then the natural A-li-
near morphism eA fl3 ( 1 - e) A -A is in fact an isomorphism of rings, so
that Spec (A ) decomposes as the union of two disjoint open and closed
subspaces.

In almost ring theory we will find useful to study certain «ap-
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proximate idempotents», as in the following proposition, whose proof
can be found in [3].

PROPOSITION 3.1.3. A is unramified if and
only if there exists an almost e BfA E B such that

iii) x ~ e B/A = 0 for all x E IBIA..m

PROPOSITION 3.1.4. Under the hypotheses and notation of the pro-
position the ideal I = I B/A has a natural structure of almost A-algebrcc,
with unit morphism given by 1IIA = 1B,&#x26;ABIA - EBIA and whose multipli-
cation is the restriction of to I. Moreover the natural mor-

phism

is an isomorphism of almost A-algebras.

PROOF. Left to the reader as an exercise.

In order to manipulate idempotents we will need the following almost
version of a well known lifting trick.

LEMMA 3.1.5. Assume (SI) and let 0: A - B be an epimorphism of
almost V-algebras such that I = Ker ( ~ ) is a nilpotent ideal, so that
I m = 0 for some positive integer m . Suppose that e is an idempotent al-
most element of B . Then there exists a unique lifting e EO-1 (e) which is
also idempotent.

PROOF. Suppose first that 12 = 0. Pick any E E m and choose an ele-
ment x E ~ -1 ( ~ ~ e). Let y = x - E ~ 1. Clearly x ~ y E I . We write E 3 ~ 1 = (x +
+ y )3 = e, + e.’ where

It is easy to verify that e~’ (1 - eE ) = e~ ~ e£ = 0, that is eE = E 3 ~ e£ . Moreo-
ver Ø(ef) = e 3 - e. If 6 E m is any other element, we have
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whence

Let us define a morphism e : m as follows. For x, y E m choo-

se mi E V and si E ,S such that (under (Sl) these can always
be found). Then we set 

2

To check that e is well-defined, pick also a similar decomposition x =
with We derive from (3.1.1 )

which shows that e(x Q9 y) does not depend on the choice of decomposi-
tion for y . Similarly one proves that the map is bilinear in x and y . Then e
defines an almost element of A such that o(e) = e and the same kind of
arguments using (3.1.1) shows that e is the unique idempotent of A * with
this property.

For the general case 1m = 0, one proceeds by induction, first lifting
to AI I m - 1 and then to A .

THEOREM 3.1.6. Assume (Sl) A -B be an etale mor-

phism of almost algebras. Then ExalA (B , M) = 0 , for all almost B-modu-
les M.

PROOF. Let X = (0 - M ~ C ~ B ~ 0) be an A-extension of B by the
almost B-module M . We need to construct a splitting of almost A-alge-
bras s : .B2013&#x3E;C. As 0 is flat, the diagram

is an A-extension Let am: B 0~M2013&#x3E;M be the scalar multipli-
cation morphism for the almost B-module M and set

On B we have also the structure of almost B XA B-module manda-
ted by (2.1.4). Then we have a well-defined structure of almost B ®A B-
module on M, characterized by requiring the morphism aM to be B 
linear. Let (B 0AB) be the corresponding scalar product;
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in conformity with (2.1.3) we have the equality:

Furthermore, let e E B Q9*AB be the idempotent almost element provi-
ded by proposition 3.1.3. We define a B-linear morphism j : 
by b l-&#x3E; e.(1 X b) for all b E B * . Notice that j is in fact a morphism of non-

t’, a "

unital almost V-algebras. Form the diagram Y * j = ( 0 -+ M i E i B -
2013~0); this is an A-extension of non-unital almost V-algebras. We construct
a splitting B -~ E as follows. Let f E D * be the unique lifting of the idem-
potent e provided by lemma 3.1.5 and denote by n : B ®A C -~ D the pro-
jection induced by a~ M . Define a morphism of non-unital almost V-alge-
bras B -D by for all b E B * . Since a ’ o y~ B = j , the
pair 1B ) induces a morphism of non-unital almost V-algebras

B - E which splits a". Notice that cv( 1 ) = f . We want to show that
Y * j is isomorphic to X in the category of A-extensions of non-unital al-
most V-algebras. To this purpose we need to construct a morphism of
non-unital almost V-algebras B : C - E such that a" 0 f3 = a and 
This is achieved as follows. Define a morphism y c: C ~ D of non-unital
almost V-algebras by We verify that a’ o y c =
= j o a . Indeed

Therefore the pair ( y C, a) determines a morphism C - E of non-uni-

tal almost V-algebras such that It remains to verify that
(3 ° l = t ". It suffices to show that 1/J c ° c = l’. However we have

because M is an almost B ®A B-
module with the scalar multiplication introduced above. Then we

compute using (3.1.2), (2.1.2) and (2.1.4):
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It follows in particular that (3 is an isomorphism of non-unital almost al-
gebras. Then the morphism splitting for a in the
category of non-unital almost V-algebras. But we remark that 
which means = 1 so that s is actually a homomorphism of (unital) al-
most V-algebras. The theorem follows.

3.2. Lif ’ting theorems.

LEMMA 3.2.1 (see [7]). Let A - B be an epimorphism of almost
V-algebras with kernel I. Let U be the A-extension 
~.B2013~0. Then the assignment f -f * U defines a natural isomor-
phism

Now consider any morphism of A-extensions

The morphism u induces by adjunction a morphism of almost Co-modu-
les

whose image is the ideal I. C, so that the square diagram of almost alge-
bras defined by f is cofibred (i. e. Co = C Q9BBo) if and only if (3.2.3) is an
epimorphism.

- -- --

LEMMA 3.2.2. Let f : B - C be a morphism of A-extensions as

above, such that the corresponding square diagram of almost algebras
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is cofibred. Then the morphism f : B - C is flat if and only if fo : Bo -+ Co
is flat and (3.2.3) is an isomorphism.

PROOF. It follows directly from the (almost version of the) local flat-
ness criterion (see [6] Th. 22.3)..

We are now ready to put together all the work done so far and begin
the study of deformations of almost algebras. From here on, throughout
the rest of this section we assume that axiom (S2) is verified.

The morphism u : I ~ J is an element in HomBo (I , J); by lemma 3.2.1
the latter group is naturally isomorphic to ExalB (Bo, J). By applying
transitivity (theorem 2.4.5) to the sequence of morphisms 
we obtain an exact sequence of abelian groups

Hence we can form the element

The proof of the next result goes exactly as in [4] (III.2.1.2.3).

PROPOSITION 3.2.3. i) Let the A-extension B, the Bo-linear mor-
phism u : I - J and the morphism of almost A-algebras fo : B0 - C0 be
given as above. Then there exists an A-extension C and a morphisms
N IV IV ~

f : B - C completing diagram (3.2.2) if and only if w(B, fo , u) = 0 . (i. e.
fo , u) is the obstruction to the lifting of B over fo . )
ii) Assume that the obstruction (o(.T3, fo, u) vanishes. Then the set

of isomorphism classes of A-extensions C as in (i) forms a torsor under
the group ExalB (Co , J) ( = J) ).

iii) The group of automorphisms of an A-extension C as in (i) is

naturally isomorphic to DerBo ( Co , J) ( = J) ).

The obstruction a)(1’3, fo, u) depends functorially on u. More exactly,
if we denote by

the obstruction corresponding to the natural morphism 
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then for any other morphism u : I ~ J we have

where v is the morphism (3.2.3). Taking lemma 3.2.2 into account we
deduce

COROLLARY 3.2.4. Suppose that Bo - Co is flat. Then

(i) The class (9(.T3, fo) is the obstruction to the existence of a fLat
deformation of Co over B , i. e. of a B-extension C as in (3.2.2) such that C
is flat over B and C ®B Bo -~ Co is an isomorphism.

(ii) When the obstruction (o(.T3, fo) vanishes, the set of isomor-
phism classes of flat deformations of Co 01’e’r B forms a torsor under the
group ExalBo ( Co , Co OBO I).

(iii) The group of automorphisms of a given flat deformation of Co
over B is naturally isomorphic to DerBo ( Co , Co 

Now, suppose we are given two A-extensions (;1, with morphisms
of A-extensions

and morphisms such that

We consider the problem of finding a morphism of A-extensions

such thatJ2 = 11 Let us denote by e(C~ ) e J  ) the classes
defined by the B-extensions C1, C’2 via the isomorphism of theorem 2.4.4
and by
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the canonical morphisms defined by v and go . Using the natural

isomorphism

we can identify the target of both v * and * g with J 2 ). It is
clear that the problem admits a solution if and only if the A-extensions
v * Cl and C2 * go coincide, i. e. if and only if v * e( C 1 ) - e( C 2 ) ~ go = 0 .
By applying transitivity to the sequence of morphisms we

obtain an exact sequence

It follows from (3.2.4) that the image of in the

group vanishes, therefore

In conclusion, we derive the following result as in [4] (III.2.2.2).

PROPOSITION 3.2.5. With the above notations, the class (3.2.6) is the
obstruction to the existence of a morphism of A-extensions g: 01 ~ C~ as
in (3.2.5) such = g o , f 1. When the obstruction vanishes, the set of
such morphisms forms a torsor under the group DerBo(C¿, J 2 ) (the lat-
ter being identified with »)..

Let B be an almost A-algebra. We can find a set ,S and an epimorphi-
sm of almost A -algebras 1/1 : A[~S] -~j6. Let J = Ker (1/1). There is a natu-
ral isomorphism B) = which extends to a natural homo-

morphism of graded anticommutative almost B-algebras

(for the natural product structures on the exterior algebra and the almo-
st Tor-algebra).

PROPOSITION 3.2.6. Keep the above hypotheses and suppose moreo-
ver that B is an étale almost A-algebra. Then jlj 2is a free almost B-mo-
dule and the morphism (3.2.7) is an isomorphism of graded anticom-
mutative almost algebras.
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PROOF. By hypothesis B is a flat almost A-algebra, hence B[S] is a
flat almost A[S]-algebra. Moreover the morphism 1/1 factors as a

composition

thereby inducing on B a structure of almost B[,S]-module which restricts
to the given almost A[,S]-module structure. Hence we deduce, by flat ba-
se change (see [8] (3.2.9)), a natural isomorphism of graded almost
algebras

On the other hand corollary 3.1.4 implies

for all integers n . The B/A 0 ( 1B B[,S ] - B is deter-
mined by a map ,S ~ B *: Define a B-automorphism 0 : B[,S] ~
-B[S] by s H s - bs . We derive a commutative diagram with short exact
rows

If we denote by a: F = the epimorphism coming from the
above map q5 : s.B[S] then the Koszul complex associated to
;r is a flat resolution of B as a B[,S]-module. Recall that Kn(n) = ll (F)
and the differential of the complex is given by the formula

We claim that ToeEsl (IBIA, B) vanishes for all integers n . It suffices to
show that the complex K. (Jt) is acyclic. Let e be the idempotent
of B ®A B provided by proposition 3.1.3 and for any e E ,S choose fE E
E B * [,S ] such that ( 1 B OA = E. ( 1 - e ). Clearly fE E Jl * , hence we can
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find with and we can define a sequence of mor-

phisms

A straightforward computation yields

As E can be chosen arbitrarily small, the claim follows. Summing up we
get an isomorphism of graded almost algebras

To determine the right-hand side we use again the Koszul complex. The
claim follows.

PROPOSITION 3.2.7. Suppose that B is an itale almost A-algebra.
Then we have

PROOF. For q = 0 the claim follows easily from corollary 2.4.3 and co-
rollary 3.1.4. For q = 1 the claim follows from the standard cohomology
spectral sequence

together with theorem 2.4.4 and theorem 3.1.6. Finally, pick a set S large
enough and a morphism A[,S] ~ B of almost A-algebras such that

A[,S]* ~B * is surjective. Applying transitivity (theorem 2.4.5) to the se-
quence A -A[S] -B we see easily that for all

p~2. Then proposition 3.2.6 and corollary 2.4.7 yield 
=0

For a given almost V-algebra A, let Et (A) be the category of étale al-
most A-algebras. Notice that, by lemma 3.1.2(iv) all morphisms in Et (A)
are 6tale.

THEOREM 3.2.8. i) Let A - B be an 6tale morphism of almost alge-
bras. Let C be any almost A-algebra and I c C a nilpotent ideal. Then
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the natural morphisms

is bijective.

ii) Let A be an almost V-algebra and I cA a nilpotent almost
ideal. Set A’ = AlI. Then the natural functor

is an equivalence of categories.

PROOF. By induction we can assume that I2 = 0. Then, taking into
account proposition 3.2.7 and the spectral sequence (3.2.8), claim (i) follo-
ws directly from proposition 3.2.5.

We show (ii): by corollary 3.2.4 (and again proposition 3.2.7) we know
that we can lift an étale to a flat morphism
~ : A ~ B (such that B ’ = A ’ OA B). We need to verify that 0 is étale. To
this purpose we apply proposition 3.1.3: since 0’ is étale, there is an
idempotent e ’ = ®A - B ’ * such = 1 and x ~ e ’ = 0
for all x E * . By lemma 3.1.5 there exists a unique lifting of e ’ to an
idempotent e E B ® *A B . Clearly E B * is a lifting of the idempo-
tent = 1 E B *’ , hence = 1 by lemma 3.1.5(iii). It re-

mains to verify that x ~ e = 0 for all We consider the mor-

phism

It is easily checked that the image of a is contained in the ideal I(B Q9
Q9AB). Moreover 3 factors through the projection B ~ B ’ and we can
denote

the induced morphism. Let J be the B Q9AB-submodule generated by the
image of a . We remark that the annihilator of J contains I B/A =
= Ker (so that the B Q9A B-module structure on J is obtained by re-
striction of scalars via In fact we have, for all b , b ’ E B ,~
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because I 2 = 0 . Pick bl, b2 E B * . We compute

In other words, a’ is an almost A-derivation of B ’ with values in the al-
most B ’-module J. Now it follows from corollary 2.4.3 and proposition
3.2.7 that 3’ = 0 and therefore 3=0. This proves that 0 is unramified,
hence étale as claimed.

Acknowledgement. I am very thankful to Ofer Gabber for many use-
ful discussions and for pointing out some mistakes in the first version of
this article.
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