RENDICONTI del Seminario Matematico della Università di Padova

ALIREZA ABDOLLAHI

Finitely generated soluble groups with an Engel condition on infinite subsets

Rendiconti del Seminario Matematico della Università di Padova, tome 103 (2000), p. 47-49

http://www.numdam.org/item?id=RSMUP_2000__103__47_0

© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 103 (2000)

Finitely Generated Soluble Groups with an Engel Condition on Infinite Subsets.

ALIREZA ABDOLLAHI (*)

ABSTRACT - In this note, we prove that, in every finitely generated soluble group $G, G/Z_2(G)$ is finite if and only if in every infinite subset X of G there exist different x, y such that [x, y, y] = 1.

B. H. Neumann proved in [9] that a group G is centre-by-finite if and only if every infinite subset X of G contains two different commuting elements. This answered a question posed by Paul Erdös. Extensions of problems of this type are studied in [1], [4], [5], [8] and [11].

We denote by $E(\infty)$ (respectively, $N(\infty)$) the class of groups G such that, every infinite subset X of G, contains different elements x and $y \in X$ such that $[x_{,k}y] = 1$ (respectively, $\langle x, y \rangle$ is nilpotent of class at most k) for some $k = k(x, y) \ge 1$. If the integer k is the same for all infinite subsets of G, we say that G is in the class $E_k(\infty)$ (respectively, $N_k(\infty)$).

It is easy to see that the above classes are closed with respect to forming subgroups and homomorphic images.

In [6] J. C. Lennox and J. Wiegold studied the class $N(\infty)$ and proved that a finitely generated soluble group is in $N(\infty)$ if and only if it is finite-by-nilpotent.

Also, in [7] P. Longobardi and M. Maj studied the class $E(\infty)$ and proved that a finitely generated soluble group is in $E(\infty)$ if and only if it is finite-by-nilpotent. Moreover, they proved that a finitely generated soluble group G is in $E_2(\infty)$ if and only if G/R(G) is finite, where R(G) is

(*) Indirizzo dell'A.: Department of Mathematics, University of Isfahan, Isfahan-Iran.

the characteristic subgroup of G consisting of all right 2-Engel elements of G.

In [2] and [3] C. Delizia proved that, a finitely generated soluble (or residually finite) group G is in $N_2(\infty)$ if and only if $G/Z_2(G)$ is finite.

Here we prove the following:

THEOREM. Let G be a finitely generated soluble group. Then $G \in E_2(\infty)$ if and only if $G/Z_2(G)$ is finite.

PROOF. Let *G* be a finitely generated soluble $E_2(\infty)$ -group. By Theorem 1 of [7], *G* contains a finite normal subgroup *N* such that *G*/*N* is torsion-free nilpotent. Now by Theorem 2 of [7], R(G) has finite index in *G*, where $R(G) = \{a \in G | [a, x, x] = 1 \text{ for all } x \in G\}$, thus R(G) N/N has finite index in *G*/*N*. So R(G) N/N is a torsion-free 2-Engel group, therefore by Theorem 7.14 in [10], R(G) N/N is nilpotent group of class at most 2. Since *G*/*N* is torsion-free nilpotent and R(G) N/N is of finite index in *G*/*N*, thus *G*/*N* is nilpotent group of class at most 2. We note that *G* is residually finite since it is a finitely generated nilpotent-by-finite group. Thus it contains a normal subgroup *L* of finite index such that $L \cap N = 1$. Now $[L, G, G] \leq N \cap L = 1$. Then $L \leq Z_2(G)$ as required to be shown.

Conversely, if $G/Z_2(G)$ is finite and $\{x_i: i \in I\}$ is an infinite set of elements of G, there exist $i, j \in I$ with $i \neq j$ such that $x_i \equiv x_j \mod Z_2(G)$. Therefore $x_i x_j^{-1} = z \in Z_2(G)$, so $\langle x_i, x_j \rangle = \langle z, x_j \rangle$ is nilpotent of class at most 2. Hence $G \in N_2(\infty) \subset E_2(\infty)$.

Acknowledgments. I would like to express my appreciation to my supervisor A. Mohammadi Hassanabadi, who first drew my attention to the subject, and his encouragment and numerous helpful comments.

I also would sincerely like to thank the Referee for shortening my original proof of the Theorem.

REFERENCES

 M. CURZIO - J. C. LENNOX - A. H. RHEMTULLA - J. WIEGOLD, Groups with many permutable subgroups, J. Austral. Math. Soc. (Series A), 48 (1988), pp. 397-401.

- [2] C. DELIZIA, Finitely generated soluble groups with a condition on infinite subsets, Instit. Lombardo Accad. Sci. Lett. Rend. A, 128 (1994), pp. 201-208.
- [3] C. DELIZIA, On certain residually finite groups, Comm. Algebra, 24 (1996), pp. 3531-3535.
- [4] J. R. J. GROVES, A conjecture of Lennox and Wiegold concerning supersoluble groups, J. Austral. Math. Soc. (Series A), 35 (1983), pp. 218-220.
- [5] P. KIM A. RHEMTULLA H. SMITH, A characterization of infinite metabelian groups, Houston J. Math. 17 (1991), pp. 429-437.
- [6] J. C. LENNOX J. WIEGOLD, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc. (Series A), 31 (1981), pp. 459-463.
- [7] P. LONGOBARDI M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, Vol. 89 (1993), pp. 97-102.
- [8] P. LONGOBARDI M. MAJ A. RHEMTULLA, Infinite groups in a given variety and Ramsey's theorem, Comm. Algebra, 20 1 (1992), pp. 127-139.
- [9] B. H. NEUMANN, A problem of Paul Erdös on groups, J. Austral. Math. Soc. (Series A), 21 (1976), pp. 467-472.
- [10] D. J. S. ROBINSON, Finiteness conditions and generalized soluble groups, Part II, Springer-Verlag, Berlin (1972).
- [11] M. J. TOMKINSON, Hypercentre-by-finite groups, Publ. Math. Debrecen, 40 (1992), pp. 313-321.

Manoscritto pervenuto in redazione il 12 marzo 1998 e in forma finale il 7 maggio 1998.