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Finitely Generated Soluble Groups
with an Engel Condition on Infinite Subsets.

ALIREZA ABDOLLAHI (*)

ABSTRACT - In this note, we prove that, in every finitely generated soluble group
G , G/Z2 (G) is finite if and only if in every infinite subset X of G there exist dif-
ferent x , y such that [ x , y , y = 1.

B. H. Neumann proved in [9] that a group G is centre-by-finite if and
only if every infinite subset X of G contains two different commuting ele-
ments. This answered a question posed by Paul Erd6s. Extensions of
problems of this type are studied in [1], [4], [5], [8] and [11].

We denote by E( 00) (respectively, N( (0» the class of groups G such
that, every infinite subset X of G, contains different elements x and y E X
such that = 1 (respectively, ~ x , y) is nilpotent of class at most k)
for some =1~( x , y ) ~ 1. If the integer k is the same for all infinite sub-
sets of G, we say that G is in the class Ek(oo) (respectively, 

It is easy to see that the above classes are closed with respect to
forming subgroups and homomorphic images.

In [6] J. C. Lennox and J. Wiegold studied the class and

proved that a finitely generated soluble group is in N( oo ) if and only if it
is finite-by-nilpotent. 

’

Also, in [7] P. Longobardi and M. Maj studied the class and

proved that a finitely generated soluble group is in E( oo ) if and only if it
is finite-by-nilpotent. Moreover, they proved that a finitely generated
soluble group G is in if and only if G/R( G ) is finite, where R(G) is

(*) Indirizzo dell’A.: Department of Mathematics, University’ of Isfahan,
Isfahan-Iran.



48

the characteristic subgroup of G consisting of all right 2-Engel elements
of G .

In [2] and [3] C. Delizia proved that, a finitely generated soluble (or
residually finite) group G is in if and only if is
finite.

Here we prove the following:

THEOREM. Let G be a finitety generated soluble Then G E

E2 ( ~ ) if and only is finite.

PROOF. Let G be a finitely generated soluble )-group. By The-
orem 1 of [7], G contains a finite normal subgroup N such that G/N is tor-
sion-free nilpotent. Now by Theorem 2 of [7], R(G) has finite index in G,
where R(G) = x, x] = 1 for all thus R(G) N/N has fi-
nite index in G/N . So R(G) N/N is a torsion-free 2-Engel group, there-
fore by Theorem 7.14 in [10], R(G) N/N is nilpotent group of class at
most 2. Since G/N is torsion-free nilpotent and R(G) N/N is of finite in-
dex in GIN, thus G/N is nilpotent group of class at most 2. We note that
G is residually finite since it is a finitely generated nilpotent-by-finite
group. Thus it contains a normal subgroup L of finite index such that
L n N = 1. Now [L , G , G] ~ N n L =1. Then L ~ Z2 ( G ) as required to
be shown.

Conversely, if GIZ2 (G) is finite and I xi: i E Il is an infinite set of ele-
ments of G, there exist i , j E I with i ~ j such that Xi == xjmod Z2(G).
Therefore z E Z2 (G), so (zj , = (z, is nilpotent of class at
most 2. Hence 
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