Maurizio Chicco
Marina Venturino

A priori inequalities in $L^\infty(\Omega)$ for solutions of elliptic equations in unbounded domains

Rendiconti del Seminario Matematico della Università di Padova, tome 102 (1999), p. 141-149

<http://www.numdam.org/item?id=RSMUP_1999__102__141_0>
A priori Inequalities in $L^\infty(\Omega)$ for Solutions of Elliptic Equations in Unbounded Domains.

MAURIZIO CHICCO - MARINA VENTURINO(*)

ABSTRACT - We prove some a priori inequalities in $L^\infty(\Omega)$ for subsolutions of elliptic equations in divergence form, with Dirichlet's boundary conditions, in unbounded domains.

1. Introduction.

In an open subset Ω of \mathbb{R}^n, not necessarily bounded, we consider a linear uniformly elliptic second order operator in variational form with discontinuous coefficients, associated to the bilinear form

$$ a(u, v) = \int_{\Omega} \left\{ \sum_{i,j=1}^{n} a_{ij} u_{x_i} v_{x_j} + \sum_{i=1}^{n} (b_i u_{x_i} v + d_i uv_{x_i}) + cuv \right\} \, dx $$

If $u \in H^1(\Omega)$ is a solution of the inequality

$$ a(u, v) \leq \int_{\Omega} \left\{ f_0 v + \sum_{i=1}^{n} f_i v_{x_i} \right\} \, dx \quad \forall v \in C_0^1(\Omega), \; v \geq 0 \; \text{in} \; \Omega, $$

we can consider the problem of determining the minimal hypotheses on the coefficients b_i, d_i, c of the bilinear form (1) and on the known functions f_i ($i = 0, 1, \ldots, n$) for the subsolution u to be (essentially) bounded from above in Ω. Such a problem was already studied e.g. in [2] and [3],

where an inequality of the kind

\[
\text{ess sup}_\Omega u \leq \max (0, \max_\Omega u) + K_1 \left\{ \| f_0 \|_{L^p(\Omega)} + \sum_{i=1}^n \| f_i \|_{L^p(\Omega)} \right\} + K_2 \| u \|_{L^q(\Omega)}
\]

was proved, by supposing \(\Omega \) bounded and \(f_i, d_i \in L^p(\Omega) \) (\(i = 1, 2, \ldots, n \)), \(f_0, c \in L^{n^2}(\Omega), p > n \).

The aim of the present work is to extend these results first of all allowing the set \(\Omega \) to be unbounded and relaxing the hypotheses on the functions \(f_0, f_i, b_i, d_i, c \) (\(i = 1, 2, \ldots, n \)). Finally, the constants in the a priori inequality (3) are explicitly evaluated.

2. Notations and Hypotheses.

Let \(\Omega \) be an open subset (bounded or unbounded) of \(\mathbb{R}^n \). Let \(a_{ij} \in L^\infty(\Omega) \) (\(i, j = 1, 2, \ldots, n \)), \(\sum_{i,j=1}^n a_{ij} t_i t_j \geq \nu |t|^2 \) \(\forall t \in \mathbb{R}^n \) a.e. in \(\Omega \), where \(\nu \) is a positive constant. Let \(c^+ := \max (c, 0), c^- := \min (c, 0) \) and suppose that \(c^+ \in L^{2n/(n+2)}(\Omega') \) for any \(\Omega' \) bounded, \(\Omega' \subset \Omega \). Let us define the spaces

\[
X^p(\Omega) := \{ f \in L^p_{\text{loc}}(\Omega): \omega(f, p, \delta) < +\infty \ \forall \delta > 0 \}
\]

\[
X_0^p(\Omega) := \{ f \in X^p(\Omega): \lim_{\delta \to 0^+} \omega(f, p, \delta) = 0 \}
\]

where

\[
\omega(f, p, \delta) := \sup \{ \| f \|_{L^p(E)}: E \text{ measurable}, \ E \subset \Omega, \text{ meas}(E) \leq \delta \}.
\]

Remark 1. If \(f \in L^p_{\text{loc}}(\Omega) \), we define, for \(k > 0 \),

\[
\phi(f, p, k) := \inf \{ \text{meas}(E): E \text{ measurable}, \ E \subset \Omega, \| f \|_{L^p(E)} \geq k \},
\]

and we have

\[
f \in X^p(\Omega) \quad \text{if and only if} \quad \exists k_0 > 0 \text{ such that } \phi(f, p, k_0) > 0,
\]

\[
f \in X_0^p(\Omega) \quad \text{if and only if} \quad \phi(f, p, k) > 0 \quad \forall k > 0.
\]

Remark 2. If \(G \) is a measurable subset of \(\Omega \) such that \(\text{meas}(G) \leq \phi(f, p, k) \), then it turns out that \(\| f \|_{L^p(G)} \leq k \). In fact, if not there would
exist a subset G_0 of G with positive measure but so small that
\[\|f\|_{L^p(G \setminus G_0)} > k \]
which is in contradiction with the definition of ϕ, since $\text{meas}(G \setminus G_0) < \text{meas}(G)$.

Remark 3. If $1 \leq q < p$ it turns out $X^p(\Omega) \subset X^q(\Omega)$. In fact, if $E \subset \Omega$, $\text{meas}(E) \leq \delta$, $f \in X^p(\Omega)$ we have
\[\|f\|_{L^q(E)} \leq \|f\|_{L^p(E)} \left(\text{meas}(E) \right)^{(p-q)/pq} \leq \omega(f, p, \delta)\delta^{(p-q)/pq} \]
whence
\[\omega(f, q, \delta) \leq \omega(f, p, \delta)\delta^{(p-q)/pq}. \]

We denote by S the constant in the Sobolev inequality
\[\|g\|_{L^{2n/(n-2)}(\mathbb{R}^n)} \leq S\|g\|_{L^2(\mathbb{R}^n)} \quad \forall g \in C^1_0(\mathbb{R}^n). \]

It is a well known fact (see e.g. [4]) that S is given by the following formula:
\[S = \left[n(n-2) \pi \right]^{-1/2} \Gamma(n)^{1/n} \Gamma(n/2)^{-1/n}. \]

Lemma. Let $u \in H^1_0(\Omega)$, $B \subset \Omega$, $u = 0$ in B. Then there exists a sequence $\{u_j\}_{j \in \mathbb{N}} \subset H^1_0(\Omega)$ such that $u_j = 0$ in B, u_j has compact support in Ω ($j = 1, 2, \ldots$), $\lim_j \|u - u_j\|_{H^1(\Omega)} = 0$.

Proof. It follows from the results of [3] that $u^+ := \max(u, 0)$, $u^- := \min(u, 0)$ both belong to $H^1_0(\Omega)$, therefore we may assume without loss of generality that $u \geq 0$ in Ω. By definition of $H^1_0(\Omega)$, there exists a sequence $\{\phi_j\}_{j \in \mathbb{N}} \subset C^1_0(\Omega)$ such that $\lim_j \|u - \phi_j\|_{H^1(\Omega)} = 0$; we may assume $\phi_j \geq 0$ in Ω ($j = 1, 2, \ldots$). Consider the functions $u_j := \min(u, \phi_j)$ ($j = 1, 2, \ldots$). These functions are in $H^1_0(\Omega)$ and they vanish on B and where $\phi_j = 0$. Furthermore it is easy to verify that $|\left(u - u_j\right)_x| \leq |(u - \phi_j)_x|$ where all the derivatives exist (i.e. almost everywhere in Ω), whence
\[\|u - u_j\|_{L^2(\Omega)} \leq \|u - \phi_j\|_{L^2(\Omega)} \quad (j = 1, 2, \ldots). \]

Therefore the sequence $\{u_j\}_{j \in \mathbb{N}}$ has the required properties.

3. Main result.

Theorem. In addition to the hypotheses mentioned above, we assume: $p > n$, $c^{-} \in X_{0}^{np/(n+p)}(\Omega)$, $b_i \in X_{0}^{n}(\Omega)$, $d_i \in X_{0}^{p}(\Omega)$, $f_i \in X^{p}(\Omega)$ ($i = 1, 2, \ldots, n$), $f_0 \in X_{0}^{np/(n+p)}(\Omega)$, $u \in H_{0}^{1}(\Omega)$,

\[a(u, v) \leq \int_{\Omega} f_0 v + \sum_{i=1}^{n} f_i v_{x_i} \, dx \quad \forall v \in C_{0}^{1}(\Omega), \quad v \geq 0 \text{ in } \Omega. \]

Furthermore suppose that there exists a nonnegative real number m such that $\max(u - m, 0) \in H_{0}^{1}(\Omega)$.

Then there exist constants K_1, K_2, K_3, depending on the coefficients of $a(\cdot, \cdot)$, on n and p, such that

\[\text{ess sup}_{\Omega} u \leq K_1 \| \max(u - m, 0) \|_{L^{2}(\Omega)} + 2^{np/(p-n)} m + K_2 \left\{ S \omega(f_0, np/(p + n), K_3) + \sum_{i=1}^{n} \omega(f_i, p, K_3) \right\} \]

where:

- S is the Sobolev constant (10),
- $K_1 = (4/3)^{np/(p-n)} + 2^{np/(p-n)} K_3^{-1/2}$,
- $K_2 = (3S/\nu)[2^{np/(p-n)} - 1]$,
- $K_3 = \min \{ 1, \phi(b_i, n, \nu/(6Sn)), \phi(d_i, p, \nu/(6Sn)), \phi(c^{-}, np/(p+n), \nu/(6S^2)) \}$ ($i = 1, 2, \ldots, n$).

Proof. First of all we notice that if $t \geq m$ obviously the function $u_t := \max(u - t, 0)$ is in $H_{0}^{1}(\Omega)$ as well. Moreover, it is easy to check that (12) is verified also by nonnegative functions $v \in H_{0}^{1}(\Omega)$ with compact support contained in Ω. In fact, let A be an open bounded set containing the support of v, such that $\overline{A} \subset \Omega$. It is easy to find a sequence $\{ u_j \}_{j \in N} \subset C_{0}^{1}(A)$ which converges to v in the norm of $H^{1}(A)$. We can write (12) with u_j instead of v and let j go to infinity, taking into account Hölder's and Sobolev's inequalities and the fact that $u \in H^{1}(A)$ by hypothesis (and also $u \in L^{2n/(n-2)}(A)$). So, (12) is true if $v \in H_{0}^{1}(\Omega)$ with compact support contained in Ω. Then from the lemma above we can find a sequence of functions $\{ u_j \}_{j \in N} \subset H_{0}^{1}(\Omega)$ having compact support in Ω, vanishing where $u_t = 0$ (i.e. where $u \leq t$), and converging to u_t in the norm of $H^{1}(\Omega)$. As before, we can write (12) with u_j instead of v and let j go to infinity, because u_t and u_j are different from zero only in a (fixed) set of finite measure, in which $u = u_t + t$, thus allowing again the use of Hölder's
and Sobolev’s inequalities. We conclude that (12) can be written with \(v \) replaced by \(u_t \) (where it is always \(t \geq m \)). Let us denote for brevity

\[\Omega_t := \{ x \in \Omega : u(x) > t \}. \]

By using Hölder’s and Sobolev’s inequalities, and taking into account our previous hypotheses, we deduce

\[\nu \|(u_t)_x\|_{L^2(\Omega_t)}^2 \leq \sum_{i=1}^n a_{ij} (u_t)_x \, dx, \]

\[\left| \int_{\Omega} \sum_{i=1}^n b_i u_{x_i} \, u_t \, dx \right| \leq \sum_{i=1}^n \int_{\Omega_t} |b_i(u_t)_x| u_t \, dx \leq S \sum_{i=1}^n \|b_i\|_{L^\infty(\Omega_t)} \|(u_t)_x\|_{L^2(\Omega_t)}^2, \]

\[\left| \int_{\Omega} \sum_{i=1}^n d_i u_t \, dx \right| \leq \sum_{i=1}^n \int_{\Omega_t} |d_i u_t| \, dx + t \sum_{i=1}^n \int_{\Omega_t} |d_i(u_t)_x| \, dx \leq \]

\[\leq S \sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - n)/np} \|(u_t)_x\|_{L^2(\Omega_t)}^2 + \]

\[+ t \sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - 2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \]

\[\left| \int_{\Omega} c - uu_t \, dx \right| \leq \int_{\Omega_t} |c - u_t^2| \, dx + t \int_{\Omega_t} |c - u_t| \, dx \leq \]

\[\leq S^2 \|c - \|_{L^{np(n + p)}(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - n)/np} \|(u_t)_x\|_{L^2(\Omega_t)}^2 + \]

\[+ tS \|c - \|_{L^{np(n + p)}(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - 2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \]

\[\left| \int_{\Omega} f_0 u_t \, dx \right| \leq S \|f_0\|_{L^{np(n + p)}(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - 2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}, \]

\[\left| \int_{\Omega} \sum_{i=1}^n f_i(u_t)_x \, dx \right| \leq \sum_{i=1}^n \|f_i\|_{L^p(\Omega_t)} \left(\text{meas } \Omega_t \right)^{(p - 2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)}. \]

Therefore it follows easily from (12)

\[(14) \quad \nu \|(u_t)_x\|_{L^2(\Omega_t)}^2 \leq \]

\[\leq t \left[\sum_{i=1}^n \|d_i\|_{L^p(\Omega_t)} + S \|c - \|_{L^{np(n + p)}(\Omega_t)} \right] \left(\text{meas } \Omega_t \right)^{(p - 2)/2p} \|(u_t)_x\|_{L^2(\Omega_t)} + \]
For brevity, let us denote \(\alpha(t) := \text{meas}(\Omega_t) \). Then we get

\[
\{ \nu - S \left[\sum_{i=1}^{n} \| b_i \|_{L^n(\Omega_t)} + \sum_{i=1}^{n} \| d_i \|_{L^p(\Omega_t)} (\alpha(t))^{(p-n)/np} + \right.
\]

\[
\left. + S \| c^- \|_{L^{n+p}(\Omega_t)} (\alpha(t))^{(p-n)/np} \right\} \| (u_t)_x \|_{L^2(\Omega_t)} \leqslant
\]

\[
\leqslant \left[S \| f_0 \|_{L^{n+p}(\Omega_t)} + \sum_{i=1}^{n} \| f_i \|_{L^p(\Omega_t)} (\alpha(t))^{(p-2)/2p} + \right.
\]

\[
\left. + t \left[\sum_{i=1}^{n} \| d_i \|_{L^p(\Omega_t)} + S \| c^- \|_{L^{n+p}(\Omega_t)} \right] (\alpha(t))^{(p-2)/2p} \right].
\]

We notice that, when \(t \geq m \), we have

\[
\int_{\Omega_m} (u - m)^2 \, dx \geq \int_{\Omega_t} (u - m)^2 \, dx \geq (t - m)^2 \alpha(t)
\]

that is:

\[
\alpha(t) \leq \frac{\| u_t \|_{L^2(\Omega_m)}^2}{(t - m)^2}, \quad \forall t > m.
\]

Now we define (see (7))

\[
\delta_0 := \min \{ 1, \phi(b_i, n, \nu/(6Sn)), \phi(d_i, p, \nu/(6Sn)), \phi(c^-, np/(n+p), \nu/(6S^2)) \}
\]

\[
t_0 := m + \frac{\| u_m \|_{L^2(\Omega)}}{\delta_0^{1/2}}
\]

(please note that \(\delta_0 > 0 \) because of our previous hypotheses and remark 1).

Then if \(t \geq t_0 \) we have

\[
\alpha(t) \leq \alpha(t_0) \leq \frac{\| u_m \|_{L^2(\Omega)}^2}{(t_0 - m)^2} = \delta_0
\]
therefore by the definition of ϕ and remark 2 we deduce

\begin{equation}
\sum_{i=1}^{n} \|b_i\|_{L^p(\Omega_t)} \leq \nu/(6S),
\end{equation}

\begin{equation}
\sum_{i=1}^{n} \|d_i\|_{L^p(\Omega_t)} \leq \nu/(6S),
\end{equation}

\begin{equation}
\|c^-\|_{L^{np/(n+p)}(\Omega_t)} \leq \nu/(6S^2).
\end{equation}

From (16), (17), (19) it follows $\alpha(t) \leq 1$; then from (15), (20), (21), (22) when $t \geq t_0$ we get

\begin{equation}
(1/2)\|u_t\|_{L^2(\Omega_t)} \leq [\alpha(t)]^{(p-2)/2p} \left(t \left(\sum_{i=1}^{n} \|d_i\|_{L^p(\Omega_t)} + S\|c^-\|_{L^{np/(n+p)}(\Omega_t)} \right) + S\|f_0\|_{L^{np/(n+p)}(\Omega_t)} + \sum_{i=1}^{n} \|f_i\|_{L^p(\Omega_t)} \right).
\end{equation}

Let us denote, for brevity,

\begin{equation}
K_4 := (2S/\nu) \left(\sum_{i=1}^{n} \|d_i\|_{L^p(\Omega_{t_0})} + S\|c^-\|_{L^{np/(n+p)}(\Omega_{t_0})} \right),
\end{equation}

\begin{equation}
K_5 := (2S/\nu) \left(\sum_{i=1}^{n} \|f_i\|_{L^p(\Omega_{t_0})} + S\|f_0\|_{L^{np/(n+p)}(\Omega_{t_0})} \right)
\end{equation}

and apply Hölder's and Sobolev's inequalities to (23), thus obtaining

\begin{equation}
\|u_t\|_{L^{1}(\Omega_t)} \leq [\alpha(t)]^{(2+n)/2n} \|u_t\|_{L^{2n/(n-2)}(\Omega_t)} \leq [\alpha(t)]^{1+(p-n)/np} (K_4 t + K_5)
\end{equation}

Now we follow a procedure of [1]. Define

\begin{equation}
\beta(t) := \|u_t\|_{L^{1}(\Omega_t)}, \quad t \geq t_0
\end{equation}

and note that it turns out $\beta(t) = \int_{t_0}^{\infty} \alpha(s) \, ds$. Therefore

\begin{equation}
\beta'(t) = -\alpha(t) \leq 0 \quad \text{a.e. in } [t_0, +\infty).
\end{equation}

From (26), (28) we get the differential inequality

\begin{equation}
\beta(t) \leq (K_4 t + K_5)[-\beta'(t)]^{1+(p-n)/np} \quad \text{a.e. in } [t_0, +\infty)
\end{equation}

Suppose now, by contradiction, that $\beta(t) > 0 \, \forall t \geq t_0$ (i.e., by definition of
\(\beta(t), \text{ess sup } u = +\infty\). Then in (29) we can divide by \(\beta(t)\) obtaining
\[\begin{equation}
-\beta'(t) [\beta(t)]^{-np/(np+p-n)} \geq (K_4 t + K_5)^{-np/(np+p-n)}.
\end{equation}\]

Integrating (30) between \(t_0\) and \(t^* > t_0\) (suppose for the moment \(K_4 > 0\)), we obtain
\[\begin{equation}
K_4 [\beta(t_0)]^{(p-n)/(np+p-n)} - K_4 [\beta(t^*)]^{(p-n)/(np+p-n)} \geq (K_4 t^* + K_5)^{np/(np+p-n)} - (K_4 t_0 + K_5)^{np/(np+p-n)}
\end{equation}\]
which gives a contradiction when \(t^*\) tends to \(+\infty\).

Then it must be \(\text{ess sup } u < +\infty\). We can rewrite (31) with \(t_0 < t^* < \text{ ess sup } u\); by letting \(t^*\) tend to \(\text{ ess sup } u\) we get
\[\begin{equation}
(K_4 \text{ ess sup } u + K_5)^{np/(np+p-n)} \leq (K_4 t_0 + K_5)^{np/(np+p-n)} + K_4 [\beta(t_0)]^{np/(np+p-n)}
\end{equation}\]

Please note that the constant \(K_4\) is not greater than \(2/3\) because of (21), (22). From (32) by easy calculations we get
\[\begin{equation}
\text{ess sup } u \leq (4/3)^{np/(p-n)} \|u_0\|_{L^p(\Omega)} + 2^{np/(p-n)} t_0 + (3/2) [2^{np/(p-n)} - 1] K_5
\end{equation}\]
whence, by recalling the definition of \(t_0\) (18) and \(K_5\) (25) one can write
\[\begin{equation}
\text{ess sup } u \leq 2^{np/(p-n)} m + [(4/3)^{np/(p-n)} + 2^{np/(p-n)} \delta_0^{-1/2}] \|u_m\|_{L^2(\Omega)} + (3S/v [2^{np/(p-n)} - 1] [S \|f_0\|_{L^{np/(p+n)}(\Omega)} + \sum_{i=1}^{n} \|f_i\|_{L^p(\Omega)}].
\end{equation}\]

Finally, by taking into account (19), the definition of \(\delta_0\) (see (17)) and the functions \(\phi, \omega\), we conclude
\[\begin{equation}
\text{ess sup } u \leq 2^{np/(p-n)} m + [(4/3)^{np/(p-n)} + 2^{np/(p-n)} \delta_0^{-1/2}] \|u_m\|_{L^2(\Omega)} + (3S/v) [2^{np/(p-n)} - 1] [S \omega(f_0, np/(p+n), \delta_0) + \sum_{i=1}^{n} \omega(f_i, p, \delta_0)]
\end{equation}\]
with \(\delta_0\) given by (17).

Remark 4. If we suppose, in addition to the hypotheses of the previous theorem, that there exists \(q \geq 1\) such that \(u_m \in L^q(\Omega)\), then we can
write, instead of (16) and (18)

\[
\alpha(t) \leq \|u_m\|_{L^q(\Omega_m)}(t-m)^{-q} \quad \forall t > m ,
\]

(16')

\[
t_0 := m + \|u_m\|_{L^q(\Omega)} \delta_0^{-1/q}
\]

and proceeding as before we get to the conclusion in the form

(35')

\[
\text{ess sup }_{\Omega} u \leq 2^{np(p-n)}m + [(4/3)^{np/(p-n)} + 2^{np(p-n)} \delta_0^{-1/q}]\|u_m\|_{L^q(\Omega)} +
\]

\[
+ (3S/V)[2^{np(p-n)} - 1]\left[S\omega(f_0, np/(p+n), \delta_0) + \sum_{i=1}^n \omega(f_i, p, \delta_0)\right]
\]

where \(\delta_0\) is always given by (17).

Remark 5. Suppose the coefficients \(d_i\) and \(c_i\) of the bilinear form \(a(\cdot, \cdot)\) to be identically zero. Then the constant \(K_4\) defined in (24) vanishes, and by integrating (30) we get, more simply,

(36)

\[
\text{ess sup }_{\Omega} u \leq t_0 + (np + p - n)/(p - n) \delta_0^{-1/2} \|u_m\|_{L^2(\Omega)}^{np/(np+p-n)}
\]

whence, by taking into account the definitions of \(t_0, \delta_0, \ldots\), and Young's inequality, we deduce

(37)

\[
\text{ess sup }_{\Omega} u \leq m + (\delta_0^{-1/2} + 1)\|u_m\|_{L^2(\Omega)} + [np/(p-n)]K_5 .
\]

This inequality is of the same kind of (35), but the coefficient of \(m\) in it is now 1.

Acknowledgment: We are grateful to dr. Laura Servidei for correcting English style.

REFERENCES

Manoscritto pervenuto in redazione il 23 ottobre 1997.