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The Cauchy Problem
with Logarithmic Ramifications for D-Modules.

FRANCESCO TONIN (*)

ABSTRACT - We are concerned with the holomorphic Cauchy problem with logari-
thmic ramifications for general (overdetermined) systems with simple cha-
racteristics. We generalize previous results by Hamada and others. Our situ-
ation is related to that of [K-S2] and [D’A-S2], where more general Cauchy
data are considered. The same arguments also apply to the study of «swallo-
w’s tail » singularities.

1. - Introduction.

The Cauchy problem with singular data is a much investigated
subject. Logarithmic singularities have been treated by Hamada,
Hamada-Leray-Wagschal, Wagschal, Persson, Kashiwara-Schapira and
D’Agnolo-Schapira (see [Ha], [H-L-W], [W], [P], [K-S2], [D’A-Sll and
[D’A-S2]). In particular Kashiwara-Schapira and D’Agnolo-Schapira
have used an algebraic approach to the problem. Roughly speaking, if Y
is an hypersurface in X given by the equation g = 0, they considered
singularities which can be written as fo (x) + fl ( x ) with fo E 
f1 E OxBy (if one denotes by the holomorphic functions on Q). Here we
consider a smaller class of singularities, namely those among the pre-
vious ones which are tempered (meromorphic). The good notions and
theories to deal with this subject are built by use of the functor of mo-
derte cohomology, as developped by Kashiwara ([Kl], see also [K-S3]),
and have been added microlocal insight with the microlocalization of
that functor, which is due to Andronikof (see [A]). In this paper we will

(*) Indirizzo deH’A.: Dipartimento di Matematica Pura ed Applicata, via Bel-
zoni 7, 1-35131 Padova.

AMS classification numbers: 35A10, 32C38, 58G16.
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mainly follow the definitions and the outlines of these three papers, as
well as those given in [K-S1].

At first we approach the classical case of one operator Cauchy pro-
blem. Then we work out a generalization of it to the case of systems. Fi-
nally we show how our result can be adapted to another situation, that
of tempered singularities ramified along a swallow’s tail variety. In the
appendix we state a lemma which is helpful for that application.

2. - The Cauchy problem with logarithmic ramifications.

Let X be a complex manifold, let Y be a hypersurface in X, let Z be a
hypersurface in Y. Let T * X be the cotangent bundle endowed with its
canonical symplectic structure (see [K-S1] for notational conventions).
Let us consider the following situation. Take P = P(x, D) a linear par-
tial differential operator of order m on X with holomorphic coefficients
for which the hypersurface Y be non-characteristic. Let f: Y ~ X be the
embedding. Define tf’ and fR the natural mappings associated to f:

Let us denote by cr(P) the principal symbol of P. Suppose that P have
simple characteristics transversal to Y at 
in the sense of [SI, Prop. III, 2.2.2], that is, ff 0 = 0 is a local equation
for Y, then the Poisson bracket 10, does not vanish at any point
of f1 or(P)~(0). Consider the Cauchy problem:

where the are tempered holomorphic functions on Y logarithmical-
ly ramified along Z and v( x ) with the being tempered
holomorphic functions on X logarithmically ramified along Zi .

Let us describe what we mean by holomorphic functions logarithmi-
cally ramified. Consider on C the functions which can be written as

, where f is an holomorphic function

for i = - 1, ... , 1~. Let now X be an open set in C’ containing 0, Y be an
hypersurface in X, whose local equation we suppose to be z, = 0. Define
(91 [Y ix] the set of functions which can be written as
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where f is an holomorphic function for i = -1, ... , k . By 6Dx (respect-
ively ~X) we denote the sheaf of holomorphic finite order differential
operators on X (resp. microdifferential operators on X, see [SI] for an
exposition). We denote by (resp. the derived catego-
ry of the category of sheaves of left 6Dx-modules with bounded (resp.
bounded and coherent) cohomology. We define analogously the catego-
ries and We will also use the category The
function space qylx] can be described as

which is a coherent 6Dx-module. In a more general setting, let us consi-
der a hypersurface Z = ~ g -1 ( o ) ~ with g : X ~ C a holomorphic fun-
ction with 0. Set = 0). We write 6Dbx,, for the
sheaf of distributions on XR . We shall make use of Kashiwara’s functors
(see [Kl], [K-S3]):

We define which is the 6Dx-module of
holomorphic functions with logarithmic ramifications along Z.

Let us reformulate the Cauchy problem in this new setting. We ha-
ve the following lemma.

LEMMA 2.1 [Sl, Prop. 2.2.2], [D’A-S1, Prop. 3.1.3]. pre-
vious hypotheses there exist smooth hypserfaces Zl, ... , Zr of X pairwi-
se transversal, transversal to Y, and such that Zi fl Y = Z for every i.

Moreover, for a neighborhood W of Tz* Y,

Let us assume that, locally, Y = {zl = 0}. We consider the following
Cauchy problem:

T

where e and wh e We will prove the follo-
i=l

wing theorem.
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THEOREM 2.2. The Cauchy problem (2.7) is locally well posed.

Remark that in general there exist complex analytic functions

g : with and gl, ... , gr : X -~ C with 
and = Zi , such that gi o f = g .

Set Define K to be the first
term of a distinguished triangle

where h is the composite of the natural morphism
-1

2013&#x3E; E9 Cx and the map
i=l

given by (
T

- a1, ..., ar - ar - 1). We also T5hom(K, OX) the complex
i = I 

t

of holomorphic tempered functions on X with ramifications of logari-
thmic type along the Zi’s.

Let us see how one can probe this theorem. We can restrict oursel-
ves to solving separately the two Cauchy problems:

The two of them, together, will be proven if we prove the follo-

wing :

where N denotes the left Wx-module and My its inverse ima-
ge with respect to the embedding f Y4X. Equation (2.11) rewrites
as:

We will prove this last isomorphism.
We introduce Anronikof s functor 

2013&#x3E; Db (~ -1 6Dx) and its holomorphic analogue, OX) =
= R 6Db)) (see [A]). We will make use of the notion
of perverse sheaves (see [K-S1, Chapter 10] for an exposition). We re-
mark that in our situation nx) and Oy) are concen-
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trated in degree zero. In fact, is a perverse sheaf on C (see [K-S 1,
Chapter 10]) and that, being g a finite map, L is a perverse
sheaf on Y (see [K-S1, Prop. 10.3.7]); in particular it is R-constructible.
We have the following lemma.

LEMMA 2.3 [A, Cor. 5.6.1]. and F is perverse,
then nX) is concentrated in degree zero.

Applying this lemma we have that Oy) is concentrated in
one degree. Moreover, as above, we have that Ki : := is a per-
verse sheaf for every i, because gi is a finite map. We can then apply
Lemma 2.3 (see also [A, Cor. 5.6.1]) to get that C03BChom(Ki, OX) is concen-
trated in one degree. We have that, out of the zero section 

so that, out of the zero section, 76,uhom(K, ox) is concentrated in one
degree.
We are dealing with the issue that b,uhom(K, and other sheaves

obtained by applying the functor *EiMhom(’, 0) be concentrated in one
degree. This is a sufficient condition in order to make Oj~)
into an object of the category (see also [A, 5.6.1]). Alernatively,
this condition may be substituted by the requirement that locally out of

(respectively ox) (resp. Oy)) be a well
defined object in Db (8x) (resp. Db ( ~Y)); for this other condition refer to
Section 4 and the Appendix. We remark that it is conjectured that

be naturally an object but we are not taking it
for granted in the present paper.

LEMMA 2.4. a) There is a canonical isomor~phism:

b) (See [D’A-S1, Proof Th. 2.1.1]) Suppose P has simple characte-
ristics and is non characteristic with respect to Y, then:

PROOF. a) It is obvious.

b) By our hypothesis f is non-characteristic for We consider
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the following commutative diagram:

We have the chain of isomorphisms:

where the first isomorphism is due to the fact (being f non-characteri-
stic for ~) that tf’ is propert on and hence on

3jlhom(K, (9x))) and the third to the fact that,
being c9x)) conic,

i denoting the immersion of the zero-section X in T * X . The last isomor-
phism follows from (a). m

Then our Cauchy problem is reduced to proving the following:

This isomorphism is indeed, by use of Sato’s distinguished triangle, em-
bedded in a morphism of distinguished triangles:
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with

Taking Lemma 2.4(a) into account, our theorem will be proven if we
get to prove that {3 is an isomorphism. In order to achieve that we will
prove that a and y are isomorphisms.

We have to prove that:

We have:

where the last isomorphism follows from [A, Prop. 3.1.4]. On the other
hand, thanks again to [A, Prop. 3.1.4], we have:

But X is a coherent module non-characteristic with respect to f, so also
My is a coherent (Dy-module, so by standard arguments it suffices to
prove:

that is (by the Cauchy-Kowalevski theorem):

One has a technical lemma.

LEMMA 2.5 [D’A-S1, Lemma 3.2.1]. There exists a natural map
i: L --~ Cc. Moreover, applying RF, ol (’) to this map we get
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an isomorphism:

This lemma implies:

LEMMA 2.6. A morphism 1/J: induced by (2.27). The
isomor~phism induced by 1/J, is an

isomorphism for every y E Z.

Then it is possible to argue as in [D’A-Sl, § 2A] to conclude that a is
an isomorphism. So what is left to do is to prove that y is an isomor-
phism. Our thesis is now that the natural morphism

is an isomorphism. In other words that, for every

is an isomorphism. Thanks to char (P) being transversal to Y xx T * X
and the hypothesis of simple characteristics, there exist 

such that:

we then have that f is non-characteristic for K and pl , ... , Or are isola-
ted in Then (see [D’A-S1, Lemma 2.1.3]) we can
find sheaves Kl , ... , Kr on X such that:

r 
+1

1) there exists a distinguished triangle + Ki - K - K0 +1-; 
2=1

Lemma (2.7)).

Also (see [P-S, Lemma 4.2], [S-K-K, Chaper II, Th. 2.2.2]) we can
find 8x-modules Ml, ..., M4 such that:

Let us now briefly clarify condition (3)
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LEMMA 2.7 [K-S1, Prop. 6.9.1], [D’A-Sl, Lemma 1.3.4]. Let F E
E p)). Suppose thact:

in a neighborhood 

Then:

a) There exists and a morphisms in 
Fy, p 2013~ F such that:

and f is noncharacteristic for Fy, p ; moreover Fy, p - F is an isomor-
phism at p.

b) For F E Ob(Db (Cx; p)) satisfying (2.31), the object f- 1 Fy, p (re-
sp. f ~ Fy, p) does not depend (up to isomorphism) on
the choice of Fy, p .

In the situation of Lemma 2.7 we define the microlocal inverse ima-

ge of Hence f,- 1 is a functor from the full subcate-
gory of the objects of which verify (2.31) to

·

Remark that the are R-constructible. In fact in [D’A-Sl, Lem-
ma 2.1.3] the Ki’s are obtained by a « microlocal cut-off » . See [A, § A.1 ]
for the «microlocal cut-off lemma» [K-S1, Prop. 6.1.4] in the framework
of R-constructible sheaves. r

Due to pi qt SS(Ko) and the distinguished triangle ~ K --~

-~ ~o "~ ~ ox)’s are concentrated in one degree. We then get
the chain of isomorphisms:
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Remark now that, thanks to the assumption that char (P) be transver-
sal to Y Xx T * X, we can apply [Sl, Cor. A.4.5] with W = Y xx T * X and
V = char (P). Let us give a definition.

DEFINITION 2.8. Let V and T be two conic smooth involutive mani-
folds in a neighborhood V being regular involutive. We say
that V is non glancing with respect to T if for any function O defined in
a neighborhood of p, such that 0 T = 0 and d~ ~ 0, the vector Ho is not
tangent to V. If Y is a submanifold of X we say that V is non glancing
with respect to Y if V is non glancing with respect to Y xX T * X.

LEMMA 2.9 [Sl, Cor. A.4.5], [Sl, Cor. I.6.2.3]. Let V and W be two
conic involutive manifolds in a neighborhood of p E T * X, V being regu-
lar. Assume that V is non glancing with respect to W. Then there exists
a system of local homogeneous symplectic coordinate (x; ~ ) such
that:

We may quantize the contact transformation using the theory of
contact transforms for the functor 7Guhom(-, ox) as developed in [A,
Chaper 5]. Now, as mti is determined up to isomorphism by char(P)
(see [Sl, Cor. I.6.2.3.]) we may suppose that in a local chart:

where r : = codim (char(P)). We just treat the case codim char(P) = 1,
the other cases being more general but equally treatable by this argu-
ment. So suppose Mi = We remark that in the present situ-
ation EX /(EXD1) = EX - Y and My, p, = 8y, where denotes the 
dule inverse image of N at pi . We remark that locally X = Y x Z, with
Y and Z being local charts, with a projection p : X -~ Y and p o f = idy.
Thanks to [K-S 1, Prop. 6.6.2] we have 3L’ E Db (ex). But
p o f = ly, so that Ki = ~ -1 L.

So we have:
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PROPOSITION 2.10. Let p : .Y2013~F be a smooth morphism of com-
analytic manifolds and Let L Then one has a canoni-

cal isomorphism:

PROOF. We apply the isomorphism (see [K-S3, (5.5)]):

with N replaced by b,uhom(p -1 L, Wbx) and then we apply the follo-
wing proposition. 0

PROPOSITION 2.11. Let p: X --* Y be a smooth morphism o, f real
analytic manifolds and let L E (Cy). Then one has a canonical
isomor~phism:

When restricting (2.38) to the zero section, one recovers the iso-
morphisms (see [K2], [A, Prop. 1.1.3], [K-S3, Th. 4.5(i)]):

PROOF. The morphism in (2.38) is obtained by adjunction from
the morphism

This last morphism is deduced from (2.39) by the same method
as Andronikof proves Theorem [A, Th. 3.3.6]. We have to show that
the morphism in (2.38) is an isomorphism in When restricted
to the zero section of T* Y, (2.38) is nothing but the inverse of
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the isomorphism (2.39). Let We have the embedding
We will write ~ for ~p’(~).

As we have to examine the morphism induced on the stalks, the
claim is of local nature. Then we can suppose, until the end of the proof,
X : = Y x Z with Y and Z finite dimensional real vector spaces,
dim (X) = n, dim (Y) = m. Let p and q be the projections p: X --~ Y,

Also recall the maps ql : X x X --~ X;
(x, x’ ) H x and q2 : X x ~~~; (x, a?’)~~’. Let us begin by stating two
lemmas.

LEMMA 2.12. Let y be a closed cone in X proper on y. Take
W c W’ open neighborhoods of 0 in Z, V c V open neighborhoods of 0 in
Y Suppose that:

PROOF. Consider the following diagram:

Let (x, x’) E Z( y) with x E V x W and x’ E V’ x Z. Then p(x’ - x) E
E V’’ - V implies x’ - x V). Also, x’ - x E y, so:

hence

This together with q(x) E W give us:

~ in other words (
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LEMMA 2.13. Let y be a closed cone in X. Let be proper with

convex fibers. Let y’ := p(y) and let Then:

PROOF. Let Then one has:

where q13 : X x X x Y ~ X x Y is the projection on the first and third
factors. Analogously:

So we have

END OF PROOF OF PROPOSITION (2.11). We make use of the stalk
formula for Wby) at ~ (see [A, Prop. 2.3.3] and also[K-Sl,
Prop. 3.5.4] and proof of[K-Sl, Prop. 4.4.4]). We get: Vj

(2.50) 
V, y’ 

where y’ is a convex proper closed subanalytic cone in Rm such that
and V is a subanalytic open neighborhood of

7r(p~)) = 0 in Y.
Then we use the stalk formula 6Dbx). Let y be a convex

proper closed subanalytic cone in Rn such that 
and let U, U’ be subanalytic open neighborhoods of .7r(~) = 0 in X, with
U c U’ . It is not restrictive to take U = V x W, U’ = V’ x W’ with V, V’
subanalytic open sets in Y, W, W’ subanalytic open sets in Z. Also, take
U, U’ as to satisfy (2.41). The stalk formula reads: Vj
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By Lemma 2.12 this is equal to:

By Lemma 2.13 this is equals:

As p is smooth, by (2.39) we get:

But p has contractible fibers, so -1 ( ~ ) = idy and we have:

By this and (2.50) we get: Vj

which proves (2.38). This completes the proof of Proposition 2.11.

Then for ~ = pi we have:

Taking into account that ’6/.thom(p (thanks to

ox) being concentrated in degree 0) and that p is smooth, we
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so we can interchange and 
R-1 DX

thus obtaining the following formulation:

By Lemma 2.9 we may also write (2.58) as:

where p, denotes the EX-module inverse image of M at pi. One has
the chain of isomorphisms:

where the first isomorphism comes from Proposition 2.11, while the se-
cond is due to the fact that is injective and the last isomorphism was
obtained taking into account that (since p o f = idy) =

= 1 T * y . So what we get in the end is nothing but

r

and as at py this is nothing but 
1,=1

(9x))py, so y is an isomorphism.
Now proof of Theorem 2.2 is complete.

3. - The abstract result.

The argument used to prove Theorem 2.2 is sufficiently general to
suit other applications.

Let us first generalize our ingredients. Instead of Y being an hyper-
surface let us just take Y a submanifold of X, f: Y4X the embedding,
Let Z be a subset of Y. Let M be a left coherent In place of
char (P) we will consider V, a smooth conic, involutive, regular subma-
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nifold of T * X. Instead of K being the first term of the distinguished
triangle

we just consider K to be an object of L an object of
D’ -, (Cx). Instead of the morphism 1jJ of Lemma 2.6, we will just suppo-
se a morphism 1/J: to be given. Our new hypotheses we will
be:

i) let N have simple characteristics along V;
ii) let V be non glancing with respect to Y in a neighborhood of

R-1X(Z);
iii) let SS(K) c V;

iv) let nx) (respectively be locally con-
centrated in one degree outside of the zero section (resp.
T1 Y);

v) let the morphism induced by 1/J, be an isomorphism

vi) let the morphism induced by 1/J, (L ® cv y) ~ (K 0
0 be an isomorphism for every y E Z.

THEOREM 3.1. In the above hypotheses we have that the natural
morphism induced by 1/J:

is an isomorphism.

REMARK 3.1. Identify a subset of T * X. Thanks to as-

sumptions (i), (ii) there exists with
in fact, (ii) implies:

Since this implies:

Then f is non-characteristic for 9H, that is tf’ is finite on

f-1R(char(M)).
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REMARK 3.2. Theorem 3.1 extends Theorem 2.2 to general (over-
determined) systems.

This more general theorem can be read as a Cauchy-Kowalevski
theorem, as we have seen in the case of logarithmic ramifications, and
as we will see in the next section.

4. - Application to a different type of ramifications.

We will consider the Cauchy problem with data ramified along a
particular type of variety, called «swallow’s tail». Of course, the ramifi-
cation will be of tempered type, but the approach in meant to parallel
that of non tempered ramifications which can be found in [D’A-S2]. We
will see how the general statement of Theorem 3.1 can be applied to this
second geometrical situation. This case of the swallow’s tail appeared
first in [Le2]. Let X be an open subset of containing 0 and endo-
wed with coordinates x = (xo , x’). Set Let

T = ~ x’ E Y; the polynomial in z,

has at least one double root} .

Here we exploit a particular feature, that is the conormals to T~l =

= Tl reg Y give a Lagrangean manifold in T * X, featuring just one direction
above 0. Define the variety given by the equation A( z, x’ ) _
= 0. If we consider the projection t7: find that the « swallow’s
tail» T is nothing but the image by t7 of the point in Y where t7 is not
smooth. T is thus a singular variety. Let L = t7! CY ; there is a canonical-
ly induced morphism r: L-~Cy. Define bhom(L, Oy).

We will need another assumption. Namely, suppose there exist

7B, ... , Tr « swallow’s tails- in X such that the Ti are mutually transver-
sal and transversal to Y (i.e. Ai U ~l~ c for i ~ j and Ai U T1 Xc

every i) with Ti f1 Y = T . Define ... , r
where Let as above K be the complex defined by (2.8)
with this choice of the Ki’s. 

i 
I

LEMMA 4.1. The canonically induced morphism: 
is an isomorphism.

PROOF. Remark that 1] -I ( 0) === {0}, and that Y is a complex mani-
fold of the same dimension as Y.

We will now introduce the differential system. Let N be a left cohe-
rent 6Dx-module. Let V : = Let N have simple characteristics
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transversal to Y xx T * X; that is, ~ has simple characteristics and V is
non glancing with respect to Y Xx T * X. We denote by f the immersion
of Y into X. Suppose that for a neighborhood W of TT Y f is non-charac-
teristic for M. Suppose also that:

This also implies that f is non-characteristic for ~. We have that 
is a perverse sheaf (see [K-S1, Chapter 10]) and t7 is a finite map, so that
L is a perverse sheaf (see [K-S1, Prop. 10.3.7]). Applying Lemma 2.3 we
have that 7;yhom(L, oy) is concentrated in one degree. As above, we ha-
ve that CFc, [ n + 11 is a perverse sheaf for every i, and being
77i a finite map also Ki is a perverse sheaf (see [K-S1, Prop. 10.3.7]);
we can then apply Lemma 2.3 (see also [A, Cor. 5.6.1]) to get that

ox) is concentrated in one degree. We have that, out of the
zero section TIX:

so that, out of the zero section, Ox) is concentrated in one
degree.

THEOREM 4.2. In the above situation, the natural morphisms

is an isomorphism.

As a result we have the following formulation:

THEOREM 4.3. Let Vi = 1, ... , r f be an holomorphic function on
XBTi, with meromorphic ramification at Ti. Let P be a partial diffe-
rential operator of degree m, with sirnple characteristics transversal to

d h = 0, ..., m - 1, wh be an holomorphic function on
YBT with meromorphic ramification at T. Then the Cauchy pro-
blem :

is locally well posed.
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We skip the details (see § 2) and just note that this theorem proves
existence and uniqueness for the solution of the Cauchy problem, when
holomorphic tempered data and traces ramified along T and the Ti’s are
considered; the solution itself being a holomorphic tempered function
ramified along the Ti’s. Theorem 4.2 generalizes to general (overdeter-
mined) systems the result of Theorem 4.3.

A. - Appendix.

As usual, we suppose that X is a complex manifold. Let X x X be a
complexification of X and d : the diagonal immersion. The
following result was comunicated to be by P. Shapira.

LEMMA A.1. Suppose U c X is open with real acnalytic boundary.
Then (9x) is ac well object in Db (8x).

PROOF. By [S2] we have that

Hence by[K-Sl, Chapter 11] ~x X X) is a well defined ob-
j ect · Since

we get ,uhom(Cu, 

Remark that Lemma A.1 holds true replacing ,uhom by We
make use of this lemma in § 4.
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