RENDICONTI

 del
SEminario Matematico

 della Università di Padova
Andrea Lucchini
 Federico Menegazzo
 Generators for finite groups with a unique minimal normal subgroup

Rendiconti del Seminario Matematico della Università di Padova, tome 98 (1997), p. 173-191

http://www.numdam.org/item?id=RSMUP_1997__98_173_0
© Rendiconti del Seminario Matematico della Università di Padova, 1997, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Generators for Finite Groups with a Unique Minimal Normal Subgroup.

Andrea Lucchini (*) - Federico Menegazzo(**)

A Giovanni Zacher nel suo 70° compleanno, con gratitudine

Introduction.

Among the many questions involving the minimum number $d(X)$ of generators of a finite group X, a very natural one asks for the deduction of $d(G)$ from $d(G / N)$, where N is a minimal normal subgroup of G and some structural information on G is available.

The first relevant information is

$$
\begin{equation*}
d(G / N) \leqslant d(G) \leqslant d(G / N)+1 \tag{1}
\end{equation*}
$$

where the left inequality is trivial, and the right one is the content of [6].

In case N is abelian a complete answer is known; namely $d(G)=$ $=d(G / N)+1$ if and only if N is complemented in G and the number of complements is $|N|^{d(G / N)}$ (see [5]; the above statement can be reformulated in cohomological terms).

If N is non abelian and G / N is cyclic, it follows from (1) that $d(G)=2$. So the interesting case is when N is non abelian and $d(G / N) \geqslant 2$. An easy way to produce examples of this kind where $d(G)=d(G / N)+1$ is the following. Fix $d \geqslant 2$; let S be a (non abelian) finite simple group. Choose m such that S^{m} is d-generated, while S^{m+1} is not, and put $G=S^{m+1}$. Then $d(G)=d+1>d(G / N)=d$ for every minimal normal subgroup N of G (e.g.: $d=2, S=\operatorname{Alt}(5), m=19)$.
(*) Indirizzo degll'A.: Dipartimento di Elettronica per l'Automazione, Università di Brescia, via Branze, I-25133 Brescia, Italy.
${ }^{(* *)}$ Indirizzo degll'A.: Dipartimento di Matematica Pura ed Applicata, Università degli Studi di Padova, via Belzoni 7, I-35131 Padova, Italy.

This may be considered an extreme situation. The object of our study is, in some sense, the other extreme; namely, when G has a unique minimal normal subgroup. We prove the following:

Theorem. If G is a non cyclic finite group with a unique minimal normal subgroup N, then $d(G)=\max (2, d(G / N))$.

The proof of this theorem uses the classification of finite simple groups. When N is abelian, we use a result of Aschbacher and Guralnick [1] (and we thank the referee for his suggestions). When N is non abelian, our argument depends on the following result, concerning the automorphisms of a simple group:

Lemma. Let S be a finite non abelian simple group. There exists a prime r which divides $|S|$ and has the property: for every $y \in \operatorname{Aut} S$ there exists an element $x \in S$ such that $|y|_{r} \neq|y x|_{r}$.
(We are using the standard notation: $|g|$ denotes the order of g, and if m is a positive integer and $m=r^{a} k$ with $(r, k)=1$ then we define $m_{r}=r^{a}$).

1. - The main theorem.

Theorem 1.1. If G is a non cyclic finite group with a unique minimal normal subgroup N, then $d(G)=\max (2, d(G / N))$.

To prove the theorem we need two results concerning the automorphism groups of finite simple groups.

Result 1. Let S be a finite non abelian simple group and identify S with the normal subgroup $\operatorname{Inn} S$ of Aut S : for every pair y_{1}, y_{2} of elements of Aut S there exist $x_{1}, x_{2} \in S$ such that $\left\langle y_{1}, y_{2}, S\right\rangle=$ $=\left\langle y_{1} x_{1}, y_{2} x_{2}\right\rangle$.

Result 2. Let S be a finite non abelian simple group. There exists a prime r which divides $|S|$ and has the property: for every $y \in \operatorname{Aut} S$ there exists an element $x \in S$ such that $x y \neq 1$ and, for every integer m, coprime with r, y^{m} and $(x y)^{m}$ are not conjugate in Aut S.

Both these facts can be proved using the classification of the finite simple groups. The proof of the first is in [4], the second is an immediate corollary of the lemma proved in the next section.

Proof of the theorem. Suppose that N is abelian. If N lies in the Frattini subgroup, then $d(G)=d(G / N)$. Otherwise N has a complement, K say. The kernel of the action of K on N is a normal subgroup of G, so by the uniqueness of N that kernel must be trivial, the action must be faithful. Corollary 1 of [1] now implies that either $d(G)=$ $=d(G / N)$ or $d(G / N) \leqslant 1$; in the latter case $d(G)=2$.

We now assume that N is a non abelian minimal normal subgroup of G, so $N=S^{n}$, where S is a non abelian simple group; furthermore, the hypothesis that N is the unique minimal normal subgroup of $G \mathrm{im}$ plies that $G \leqslant \operatorname{Aut} S^{n}=\operatorname{Aut} S$ 乙Sym (n) (the wreath product of Aut S with the symmetric group of degree n). So the elements of G are of the kind $g=\left(h_{1}, \ldots, h_{n}\right) \sigma$, with $h_{i} \in \operatorname{AutS}$ and $\sigma \in \operatorname{Sym}(n)$. The map π : $G \rightarrow \operatorname{Sym}(n)$ which sends $g=\left(h_{1}, \ldots, h_{n}\right) \sigma$ to σ is a homomorphism; since N is a minimal normal subgroup of $G, G \pi$ is a transitive subgroup of $\operatorname{Sym}(n)$.

To prove the theorem it is useful to define a quasi-ordering relation on the set of the cyclic permutations which belong to the group $\operatorname{Sym}(n)$: let r be the prime number which appears in the statement of Result 2 (r depends on the simple group S) and let $\sigma_{1}, \sigma_{2} \in \operatorname{Sym}(n)$ be two cyclic permutations (including cycles of length 1); we define $\sigma_{1} \leqslant$ $\leqslant \sigma_{2}$ if either $\left|\sigma_{1}\right|_{r} \xi\left|\sigma_{2}\right|_{r}$ or $\left|\sigma_{1}\right|_{r}=\left|\sigma_{2}\right|_{r}$ and $\left|\sigma_{1}\right| \leqslant\left|\sigma_{2}\right|$.

Let $d=\max (2, d(G / N))$; there exist $g_{1}, \ldots, g_{d} \in G$ such that $G=$ $=\left\langle g_{1}, \ldots, g_{d}, N\right\rangle$. Consider in particular $g_{1}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \varrho, g_{2}=$ $=\left(\beta_{1}, \ldots, \beta_{n}\right) \sigma$, with $\alpha_{i}, \beta_{j} \in \operatorname{Aut} S$ and $\varrho, \sigma \in \operatorname{Sym}(n)$.

We may suppose that ϱ is not a cycle of length n. If ϱ is a cycle of length n, but σ is not, we exchange g_{1} and g_{2}; if both ϱ and σ are cycles of length n, there exists $1 \leqslant i \leqslant n$ with $1 \varrho=1 \sigma^{i}$ and we substitute g_{1} by $g_{1} g_{2}^{-i}$. Furthermore if ϱ has no fixed point, but there exist $\bar{g}_{1}, \ldots, \bar{g}_{d} \in G$ such that $G=\left\langle\bar{g}_{1}, \ldots, \bar{g}_{d}, N\right\rangle$ and $\bar{g}_{1} \pi$ has a fixed point, we change g_{1}, \ldots, g_{d} with $\bar{g}_{1}, \ldots, \bar{g}_{d}$.

We can write $\varrho=\varrho_{1} \ldots \varrho_{s(\varrho)}$ as product of disjoint cycles (including possible cycles of length 1), with $\varrho_{1} \leqslant \varrho_{2} \leqslant \ldots \leqslant \varrho_{s(\rho)}$. By our choice of $g_{1}, \ldots, g_{d}, s(\varrho) \neq 1$ and $\left|\varrho_{1}\right| \neq 1$ if and only if $g \pi$ is fixed-point-free for every g which is contained in a set of d elements which, together with N, generate G.

Moreover, we write $\sigma=\sigma_{1} \ldots \sigma_{q} \ldots \sigma_{s(\sigma)}$ as product of disjoint cycles in such a way that:
a) $\operatorname{supp}\left(\sigma_{i}\right) \cap \operatorname{supp}\left(\varrho_{1}\right) \neq \emptyset$ if and only if $i \leqslant q$;
b) $\sigma_{1} \leqslant \sigma_{2} \leqslant \ldots \leqslant \sigma_{q}$.

The strategy of our proof is to find $u, v \in N$ such that $\left\langle u g_{1}, v g_{2}, g_{3}, \ldots, g_{d}\right\rangle=G$; so we will change the automorphisms α_{i}, β_{j}
with elements in the same cosets modulo S, until we will be able to conclude $\left\langle g_{1}, \ldots, g_{d}\right\rangle=G$. In the following we will denote with H the subgroup $\left\langle g_{1}, \ldots, g_{d}\right\rangle$ of G.

Let $\varrho_{1}=\left(m_{1}, \ldots, m_{k}\right), \sigma_{1}=\left(n_{1}, \ldots, n_{l}\right)$ with $n_{1}=m_{1}=m$ and consider $a_{1}=\alpha_{m_{1}} \ldots \alpha_{m_{k}}, b_{1}=\beta_{n_{1}} \ldots \beta_{n_{l}}$. By Result 1, there exist $x, y \in S$ such that $S \leqslant\left\langle x a_{1}, y b_{1}\right\rangle$. If we substitute $\alpha_{m_{1}}$ with $x \alpha_{m_{1}}$ and $\beta_{n_{1}}$ with $y \beta_{n_{1}}$ we obtain:

$$
\begin{equation*}
S \leqslant\left\langle a_{1}, b_{1}\right\rangle . \tag{1}
\end{equation*}
$$

Now, for $j>1$, let $\varrho_{j}=\left(m_{j, 1}, \ldots, m_{j, k_{j}}\right)$ and define $a_{j}=$ $=\alpha_{m_{j, 1}} \ldots \alpha_{m_{j}, k_{j}}$. Since $\varrho_{i} \leqslant \varrho_{j}$ if $i \leqslant j,\left|\varrho_{1} \ldots \varrho_{j}\right| /\left|\varrho_{j}\right|$ is coprime with r, but then, by Result 2 , there exists $x \in S$ such that $\left(x a_{j}\right)^{\left|e_{1} \ldots e_{j}\right| /\left|e_{j}\right|}$ is not conjugate to $a_{1}^{\left|e_{1} \ldots \varrho_{j}\right| / / e_{1} \mid}$ in Aut S. We substitute $\alpha_{m_{j, 1}}$ with $x \alpha_{m_{j, 1}}$ and we obtain
(2) for every $2 \leqslant j \leqslant s(\varrho)$,

$$
a_{j}^{\left|e_{1} \ldots e_{j}\right| / / e_{j} \mid} \text { and } a_{1}^{\left|e_{1} \ldots e_{j}\right| /\left|e_{1}\right|} \text { are not conjugate in Aut } S .
$$

For any $1 \leqslant i \leqslant n$ denote with S_{i} the subset of $S^{n}=N$ consisting of the elements $x=\left(x_{1}, \ldots, x_{n}\right)$ with $x_{j}=1$ for each $j \neq i$. Recall that G is a subgroup of $\operatorname{Aut} S^{n}=\operatorname{Aut} S$ 亿 $\operatorname{Sym}(n)$, a wreath product with base group $B=(\operatorname{Aut} S)^{n}$ and let $\pi_{i}: B \rightarrow$ Aut S be the projection on the i-th factor. Notice that $g_{1}^{|e|} \in(\text { AutS })^{n}$ with $\left(g_{1}^{|e|}\right) \pi_{m_{1}}=a_{1}^{|e| /\left|e_{1}\right|}$ and $\left(g_{1}^{|e|}\right) \pi_{m_{s(e)}, 1}=a_{s(e)}^{|e| /\left|e_{s(e)}\right|}$. By (2) $a_{1}^{|e| / / e_{1} \mid}$ and $a_{s(e)}^{|e| /\left|e_{s(e)}\right|}$ are not conjugate in AutS; in particular this excludes $\left(g_{1}^{|e|}\right) \pi_{m_{1}}=\left(g_{1}^{|e|}\right) \pi_{m_{\text {de }), 1}}=1$ so $g_{1}^{|e|} \neq 1$. It is also useful to observe that: $g_{1}^{\left|\varrho_{1}\right|}=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \varrho^{\left|e_{1}\right|}$ with $\lambda_{m}=a_{1}$ and $g_{2}^{\left|\sigma_{1}\right|}=\left(\mu_{1}, \ldots, \mu_{n}\right) \sigma^{\left|\sigma_{1}\right|}$ with $\mu_{m}=b_{1}$; since $m \varrho^{\left|e_{1}\right|}=$ $m \sigma^{\left|\sigma_{1}\right|}=m$, we deduce that $g_{1}^{\left|e_{1}\right|}$ and $g_{2}^{\left|\sigma_{1}\right|}$ normalize $S_{m} \cong S$ and induce by conjugation the automorphisms a_{1} and b_{1}.

We have seen that $1 \neq g_{1}^{|e|} \in H \cap$ (AutS) ${ }^{n}$; this implies that ($H \cap$ $\left.\cap(\text { Aut } S)^{n}\right) \cdot \pi_{i} \neq 1$ for at least one $i, 1 \leqslant i \leqslant n$; but, since $H \pi=G \pi$ is a transitive subgroup of $\operatorname{Sym}(n)$, we conclude: $\left(H \cap(\operatorname{Aut} S)^{n}\right) \pi_{i} \neq 1$ for every $1 \leqslant i \leqslant n$. In particular $\left(H \cap(\operatorname{Aut} S)^{n}\right) \pi_{m} \neq 1$. Now ($H \cap$ $\left.\cap(\text { Aut } S)^{n}\right) \pi_{m}$ is a subgroup of Aut S which is normalized by the automorphisms of S induced by conjugation with elements of $N_{H}\left(S_{m}\right)$: in particular $\left(H \cap(\operatorname{Aut} S)^{n}\right) \pi_{m}$ is a non trivial subgroup of Aut S normalized by $\left\langle a_{1}, b_{1}\right\rangle$. Since, by construction, $S \leqslant\left\langle a_{1}, b_{1}\right\rangle$, we deduce: $S_{m} \leqslant$ $\leqslant\left(H \cap(\text { Aut } S)^{n}\right) \pi_{m}$. Since Aut S / S is solvable, this implies $S_{m} \leqslant(H \cap$ $\left.\cap S^{n}\right) \pi_{m}$. But then, using again that H acts transitively on $\left\{S_{1}, \ldots, S_{n}\right\}$, we conclude ($H \cap S^{n}$) $\pi_{i}=S_{i}$ for every $1 \leqslant i \leqslant n$.

This implies that there exists a partition Φ of $\{1, \ldots, n\}$ invariant
for the action of $G \pi$ such that $H \cap S^{n}=\prod_{B \in \Phi} D_{B}$, where, for every block $B \in \Phi, D_{B}$ is a full diagonal subgroup of $\prod_{j \in B} S_{j}$ (that is, if $B=\left\{j_{1}, \ldots, j_{t}\right\}$, there exist $\phi_{2}, \ldots, \phi_{t} \in$ Aut S such that $D_{B}=\left\{\left(x, x^{\phi_{2}}, \ldots, x^{\phi_{t}}\right) \mid x \in\right.$ $\in S\} \leqslant S_{j_{1}} \times \ldots \times S_{j_{t}}$. The subgroup $H \cap S^{n}$ must be normal in H; but we will prove that the automorphisms α_{i}, β_{j} can be chosen so that $\left\langle g_{1}, \ldots, g_{d}\right\rangle=H$ normalizes $H \cap S^{n}=\prod_{B \in \Phi} D_{B}$ only if $|B|=1$ for all $B \in \Phi$; in other words α_{i}, β_{j} can be chosen so that $H \cap S^{n}=S^{n}$, which implies $H=H S^{n}=G$. Up to this point, we fixed all the α_{i} 's, and the β_{j} 's for $j \in \operatorname{supp}\left(\sigma_{1}\right)$; we can still choose the remaining β_{j} 's in their cosets modulo S.

Let B be the block of Φ which contains m; the first thing we can prove is:
$B \subseteq \operatorname{supp}\left(\varrho_{1}\right)$.
To prove that, suppose, by contradiction, that $h \in B \backslash \operatorname{supp}\left(\varrho_{1}\right)$; let $h=m_{j, t} \in \operatorname{supp}\left(\varrho_{j}\right), j>1$. We may assume

$$
D_{B}=\left\{\left(x, x^{\phi_{h}}, \ldots\right) \mid x \in S\right\} \leqslant S_{m} \times S_{h} \times \ldots
$$

Now consider the element $g_{1}^{\left|e_{1} \ldots e_{j}\right|}$; since $\left(g_{1}^{\left|e_{1} \ldots \rho_{j}\right|}\right) \pi=\varrho^{\left|\rho_{1} \ldots \rho_{j}\right|}$ fixes m and $h, g_{1}^{\left|\varrho_{1} \ldots \varrho_{j}\right|}$ normalizes D_{B}. But

$$
\left(x, x^{\phi_{h}}, \ldots\right)^{g_{1}^{|e 1 \ldots e j|}}=\left(x^{\lambda_{m}}, x^{\phi_{h} \lambda_{h}}, \ldots\right)
$$

with

$$
\lambda_{m}=a_{1}^{\left|e_{1} \ldots e_{j}\right| / /\left|e_{1}\right|}
$$

and

$$
\begin{aligned}
& \lambda_{h}=\left(\alpha_{m_{j, t}} \ldots \alpha_{m_{j, k_{j}}} \alpha_{m_{j, 1}} \ldots \alpha_{m_{j, t-1}}\right)^{\left|e_{1} \ldots e_{j}\right| /\left|e_{j}\right|}= \\
&=\left(\alpha_{\left.m_{j, 1} \ldots \alpha_{m_{j, t-1}}\right)^{-1} a_{j}^{\left|e_{1} \ldots e_{j}\right| /\left|e_{j}\right|}\left(\alpha_{m_{j, 1} \ldots} \ldots \alpha_{m_{j, t-1}}\right) ;} .\right.
\end{aligned}
$$

so if $g_{1}^{\left|\varrho_{1} \ldots e_{j}\right|}$ normalizes D_{B} then $\lambda_{m} \phi_{h}=\phi_{h} \lambda_{h}$ which implies

$$
\phi_{h}^{-1} a_{1}^{\left|e_{1} \ldots e_{j}\right| /\left|e_{1}\right|} \phi_{h}=\left(\alpha_{m_{j, 1} \ldots \alpha_{m_{j, t-1}}}\right)^{-1} a_{j}^{\left|e_{1} \ldots e_{j}\right| /\left|e_{j}\right|}\left(\alpha_{m_{j, 1}, \ldots} \ldots \alpha_{m_{j, t-1}}\right)
$$

in contradiction with (2).
If $\operatorname{supp}\left(\varrho_{1}\right)=1$, since $B \subseteq \operatorname{supp}\left(\varrho_{1}\right)$, we can conclude $|B|=1$ and $H \cap N=N$. So, from now on, we may suppose $\left|\varrho_{1}\right| \neq 1$, hence that
there does not exist a set $\bar{g}_{1}, \ldots, \bar{g}_{d}$ of generators for G modulo N such that \bar{g}_{i} has a fixed point for at least one $1 \leqslant i \leqslant d$.

Let now $\sigma_{i}=\left(n_{i, 1}, \ldots, n_{i, l_{i}}\right)$, for $2 \leqslant i \leqslant q$, and define $b_{i}=$ $=\beta_{n_{i, 1}} \ldots \beta_{n_{i, i}}$.

Since $\sigma_{1} \leqslant \ldots \leqslant \sigma_{q}$, for every $2 \leqslant j \leqslant q,\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{j}\right|$ is coprime with r. But then, applying Result 2 , we can find $x \in S$ such that $x b_{j} \neq 1$ and $\left(x b_{j}\right)^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{j}\right|}$ is not conjugate to $b_{1}^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{1}\right|}$ in AutS. We substitute $\beta_{n_{j, 1}}$ with $x \beta_{n_{j, 1}}$ and we have:
(3) for every $2 \leqslant j \leqslant q$,

$$
\cdot b_{j}^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{j}\right|} \text { and } b_{1}^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{1}\right|} \text { are not conjugate in AutS. }
$$

This enables us to prove:

$$
(* *) \quad B \subseteq \operatorname{supp}\left(\sigma_{1}\right)
$$

The proof of $(* *)$ is similar to that of (*): $B \subseteq \operatorname{supp}\left(\varrho_{1}\right) \subseteq$ $\subseteq \operatorname{supp}\left(\sigma_{1}\right) \cup \ldots \cup \operatorname{supp}\left(\sigma_{q}\right)$. Suppose, by contradiction, that $h \in$ $\in B \backslash \operatorname{supp}\left(\sigma_{1}\right) ; h=n_{j, t} \in \operatorname{supp}\left(\sigma_{j}\right)$ with $2 \leqslant j \leqslant q$ and we may assume

$$
D_{B}=\left\{\left(x, x^{\phi_{h}}, \ldots\right) \mid x \in S\right\} \leqslant S_{m} \times S_{h} \times \ldots
$$

Since $g_{2}^{\left|\sigma_{1} \ldots \sigma_{j}\right|}$ normalizes D_{B}, we deduce that $b_{1}^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{1}\right|}$ and $b_{j}^{\left|\sigma_{1} \ldots \sigma_{j}\right| /\left|\sigma_{j}\right|}$ must be conjugate in AutS, in contradiction with (3).

A consequence of $(* *)$ is
$(* * *)$
$B \varrho \cap \operatorname{supp}\left(\sigma_{1}\right)=\emptyset$.
In fact, suppose $h \in B \varrho \cap \operatorname{supp}\left(\sigma_{1}\right): h=j \varrho$ for $j \in B \subseteq \operatorname{supp}\left(\sigma_{1}\right)$, so that there exists $i \in \mathbb{Z}$ such that $h=j \sigma_{1}^{i}=j \sigma^{i}$, but then $\varrho \sigma^{-i}=$ $=\left(g_{1} g_{2}^{-i}\right) \pi$ fixes j and $\left\langle g_{1} g_{2}^{-i}, g_{2}, \ldots, g_{d}, N\right\rangle=G$; a contradiction, since we have seen before that an element $g \in G$ cannot be contained in a set of d elements generating G modulo N, if $g \pi$ has a fixed point.

Notice that ($* *$) and ($* * *$) imply $B \cap B \varrho=\emptyset$.
By (*), $|B|=c$ where c is a divisor of $k=\left|\varrho_{1}\right|$ and $B=$ $=\left\{m_{1}, m_{k / c+1}, \ldots, m_{k(c-1) / c+1}\right\}$ is the orbit of $m=m_{1}$ under the action of $\varrho_{1}^{k / c}$; we will write:

$$
D_{B}=\left\{\left(x, x^{\phi_{2}}, \ldots, x^{\phi_{c}}\right) \mid x \in S\right\} \leqslant S_{m} \times \ldots \times S_{m_{k(c-1) / c+1}}
$$

For every $1 \leqslant i \leqslant c$, let $t_{i}=k(i-1) / c+1 ; \quad m_{t_{i}} \in B \subseteq \operatorname{supp}\left(\varrho_{1}\right) \cap$
$\cap \operatorname{supp}\left(\sigma_{1}\right)$, hence $m_{t_{i}}=n_{u_{i}}$ for some $1 \leqslant u_{i} \leqslant l=\left|\sigma_{1}\right|$. Define :

$$
\lambda_{i}=\prod_{t_{i} \leqslant j \leqslant k} \alpha_{m_{j}} \prod_{1 \leqslant j \leqslant t_{i}-1} \alpha_{m_{j}}, \quad \mu_{i}=\prod_{u_{i} \leqslant j \leqslant l} \beta_{n_{j}} \prod_{1 \leqslant j \leqslant u_{i}-1} \beta_{n_{j}} .
$$

Notice that $g_{1}^{\left|\varrho_{1}\right|}$ and $g_{2}^{\left|\sigma_{1}\right|}$ normalize D_{B}; more precisely, for every $\left(x, x^{\phi_{2}}, \ldots, x^{\phi_{c}}\right) \in D_{B}$ we have:

$$
\begin{aligned}
& \left(x, x^{\phi_{2}}, \ldots, x^{\phi_{c}}\right)^{g_{1}^{|e|} \mid}=\left(x^{\lambda_{1}}, x^{\phi_{2} \lambda_{2}}, \ldots, x^{\phi_{c} \lambda_{c}}\right) \\
& \left(x, x^{\phi_{2}}, \ldots, x^{\left.\phi_{c}\right)^{\left|g_{2} \sigma_{1}\right|}}=\left(x^{\mu_{1}}, x^{\phi_{2} \mu_{2}}, \ldots, x^{\phi_{c} \mu_{c}}\right)\right.
\end{aligned}
$$

but then, for every $2 \leqslant i \leqslant c$,

$$
\lambda_{i}=\phi_{i}^{-1} \lambda_{1} \phi_{i}=\phi_{i}^{-1} a_{1} \phi_{i}, \quad \mu_{i}=\phi_{i}^{-1} \mu_{1} \phi_{i}=\phi_{i}^{-1} b_{1} \phi_{i} .
$$

Since $S \leqslant\left\langle a_{1}, b_{1}\right\rangle, C_{\mathrm{Aut} S}\left(a_{1}\right) \cap C_{\mathrm{Aut} S}\left(b_{1}\right)=1$; so there exists at most a unique $\phi_{i} \in$ Aut S satisfying $a_{1}^{\phi_{i}}=\lambda_{i}$ and $b_{1}^{\phi_{i}}=\mu_{i}$. This means that, for every $B \subseteq \operatorname{supp}\left(\varrho_{1}\right) \cap \operatorname{supp}\left(\sigma_{1}\right)$, there is at most a unique possibility for the diagonal D_{B} to consider. The automorphisms $\phi_{2}, \ldots, \phi_{c}$ that describe D_{B} can be uniquely determined only from the knowledge of α_{i}, β_{j} for $i \in \operatorname{supp}\left(\varrho_{1}\right)$ and $j \in \operatorname{supp}\left(\sigma_{1}\right)$. For the remaining part of our proof we will not change these automorphisms any more, only we will perhaps modify β_{i} for $i \notin \operatorname{supp}\left(\sigma_{1}\right)$. So for every block B we will consider, there will be at most a unique and completely determined diagonal D_{B} normalized by $\left\langle g_{1}^{\left|\varrho_{1}\right|}, g_{2}^{\left|\sigma_{1}\right|}\right\rangle \leqslant H$.

For a given block $B=\left\{m, m_{k / c+1}, \ldots, m_{k(c-1) / c+1}\right\}$ with $|B|=c$ consider now $B \varrho=\left\{m_{2}, m_{k / c+2}, \ldots, m_{j_{c}}\right\}$, where $j_{c}=k(c-1) / c+2$; since $B \neq B \varrho, H \cap N=D_{B} \times D_{B \varrho} \times \ldots$ We have just remarked that D_{B} is uniquely determined; now we will show that the same holds for $D_{B \varrho}$. We can write

$$
D_{B \varrho}=\left\{\left(y, y^{\phi_{2}^{*}}, \ldots, y^{\phi_{c}^{*}}\right) \mid y \in S\right\} \leqslant S_{m_{2}} \times \ldots \times S_{m_{j_{c}}}
$$

It must be

$$
D_{B \varrho}=\left(D_{B}\right)^{g_{1}}=\left\{\left(x^{\alpha_{m}}, x^{\phi_{2} a_{m_{k} / c+1}}, \ldots, x^{\phi_{c} a_{\left.m_{k k c}-1\right) / c+1}}\right) \mid x \in S\right\}
$$

so $\alpha_{m} \phi_{i}^{*}=\phi_{i} \alpha_{m_{k(i-1) / c+1}}$ for every $2 \leqslant i \leqslant c$. But then also the automorphisms $\phi_{i}^{*}, 2 \leqslant i \leqslant c$ and, of consequence, the diagonal $D_{B \varrho}$, will be uniquely determined in the remaining part of our proof.

In the last part of our proof we will modify again the elements β_{i}, for $i \notin \operatorname{supp}\left(\sigma_{1}\right)$ in such a way that the stabilizer in H of the block $B \varrho$ could not normalize the corresponding diagonal $D_{B e}$ for any choice of $B \subseteq \operatorname{supp}\left(\varrho_{1}\right) \cap \operatorname{supp}\left(\sigma_{1}\right)$.

For $2 \leqslant h \leqslant q$, let $\sigma_{h}=\left(n_{h, 1}, \ldots, n_{h, l_{h}}\right)$ and define, for $1 \leqslant s \leqslant l_{h}$,

$$
b_{h, s}=\beta_{n_{h, s}} \ldots \beta_{n_{h, l_{h}}} \beta_{n_{h, 1}} \ldots \beta_{n_{h, s-1}}
$$

(in particular $b_{h, 1}=b_{h}$).
Let σ_{i} be the cyclic factor of σ with $m_{2} \in \operatorname{supp}\left(\sigma_{i}\right)$. Consider first the choices for c such that $B=B_{c}=\left\{m_{2}, \ldots, m_{j_{c}}\right\}$ with $m_{j}=m_{j_{c}} \in$ $\in \operatorname{supp}\left(\sigma_{i}\right)$; suppose $m_{2}=n_{i, p}, m_{j}=n_{i, q}$. The element $g_{2}^{\left|\sigma_{i}\right|}$ normalizes the diagonal $D_{B \varrho}$ and fixes the coordinates m_{2} and m_{j} :

$$
\left\{\left(x, \ldots, x^{\phi_{c}^{*}}\right) \mid x \in S\right\}=D_{B \varrho}=\left(D_{B \varrho}\right)^{g_{2}^{\left|\sigma_{i}\right|}}=\left\{\left(x^{b_{i, p}}, \ldots, x^{\phi_{c}^{*} b_{i, q}}\right) \mid x \in S\right\}
$$

but then $b_{i, p} \phi_{c}^{*}=\phi_{c}^{*} b_{i, q}$, hence $\left(\phi_{c}^{*}\right)^{-1} b_{i, p} \phi_{c}^{*}=b_{i, q}$. Now $b_{i, q}$ is conjugate to b_{i} and, since $i \neq 1$, by our original choice, $b_{i} \neq 1$: so $b_{i, q} \neq 1$ and there exists $z \in S$ such that $z^{-1} b_{i, q} z \neq\left(\phi_{c}^{*}\right)^{-1} b_{i, p} \phi_{c}^{*}$; we substitute $\beta_{n_{i, q}}$ with $z^{-1} \beta_{n_{i, q}}$ and $\beta_{n_{i, q-1}}$ with $\beta_{n_{i, q-1}} z$ (where by $n_{i, 0}$ we mean $n_{i, l_{i}}$, l_{i} being the length of σ_{i}). By (***) $n_{i, q-1}, n_{i, q} \notin \operatorname{supp}\left(\sigma_{1}\right)$ so we are not changing $\phi_{2}, \ldots, \phi_{c}$ and $\phi_{2}^{*}, \ldots, \phi_{c}^{*}$ and the diagonals $D_{B}, D_{B \varrho}$ remain determined in the same way; with these modifications we change $b_{i, q}$ with $z^{-1} b_{i, q} z$ but $b_{i, s}$ remains unchanged for every $s \neq q$, so we ensure that $\left(\phi_{c}^{*}\right)^{-1} b_{i, p} \phi_{c}^{*} \neq b_{i, q}$ and that $g_{2}^{\left|\sigma_{i}\right|}$ cannot normalize $D_{B \varrho}$ (notice also that with these modifications we may substitute b_{i} with a conjugate but in this way, of course, the property (3) continues to hold).

The arguments above can be repeated for every choice of the divisor c of $k=\left|\varrho_{1}\right|$ for which $m_{j_{c}}=n_{i, q_{c}} \in \operatorname{supp}\left(\sigma_{i}\right)$. The crucial remark is that the modifications of the automorphisms β_{h} we introduce in the discussion of one case do not influence the discussion of the other cases: really each time we modify the value of $b_{i, s}$ only for $s=q_{c}$ and different choices for c produce different values of j_{c} and q_{c}. Notice also that in this part of our proof the values of α_{t}, β_{s} are relevant only for $t \in \operatorname{supp}\left(\varrho_{1}\right)$ and $s \in \operatorname{supp}\left(\sigma_{1}\right) \cup \operatorname{supp}\left(\sigma_{i}\right)$. In the last part of our proof we will change no more these elements but we can still modify our choices for β_{s} if $s \notin \operatorname{supp}\left(\sigma_{1}\right) \cup \operatorname{supp}\left(\sigma_{i}\right)$.

To conclude the proof it remains to consider the case $B=B_{c}$, where c is chosen so that $m_{j_{c}} \notin \operatorname{supp}\left(\sigma_{i}\right)$. So let c be a divisor of k and suppose $m_{j_{c}}=n_{h, q} \in \operatorname{supp}\left(\sigma_{h}\right)$ with $h \neq i$. It is also $h \neq 1$, since $m_{j_{c}} \in B \varrho$ and $B \varrho \cap \operatorname{supp}\left(\sigma_{1}\right)=\emptyset$. In this case consider the element $g_{2}^{\left|\sigma_{h}\right|}$: it fixes $m_{j} \in$ $\in B \varrho$, so normalizes $D_{B \varrho}$. But then

$$
\left\{\left(x, \ldots, x^{\phi_{c}^{*}}\right) \mid x \in S\right\}=D_{B \varrho}=\left(D_{B \varrho}\right)^{g_{2}^{\left|\sigma_{h}\right|}}=\left\{\left(x^{\gamma}, \ldots, x^{\phi_{c}^{*} b_{h, q}}\right) \mid x \in S\right\}
$$

where γ is uniquely determined and depends only on $\phi_{2}^{*}, \ldots, \phi_{c}^{*}$ and β_{s} for $s \in \operatorname{supp}\left(\sigma_{i}\right)$ so it is fixed and completely determined at this point of
our proof (more precisely: let $m_{2}=n^{*} \sigma_{i}^{\left|\sigma_{h}\right|}: n^{*} \in B \varrho \cap \operatorname{supp}\left(\sigma_{i}\right)$ hence $n^{*}=m_{k t / c+2}$ for some $0 \leqslant t \leqslant c-1$. Consider $g_{2}^{\left|\sigma_{n}\right|}=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \sigma^{\left|\sigma_{\sigma}\right|}$ with $\gamma_{1}, \ldots, \gamma_{n} \in \operatorname{Aut} S$; since $n^{*} \in \operatorname{supp}\left(\sigma_{i}\right) \gamma_{n^{*}}$ is a product of the automorphisms β_{s} for $s \in \operatorname{supp}\left(\sigma_{i}\right)$: it results $\gamma=\phi^{*} \gamma_{n^{*}}$ where $\phi^{*}=1$ if $n^{*}=m_{2}, \phi^{*}=\phi_{t+1}^{*}$ if $n^{*}=m_{k t / c+2}$ and $t \geqslant 1$). In particular it must be $b_{h, q}=\left(\phi_{c}^{*}\right)^{-1} \gamma \phi_{c}^{*}$. But $b_{h, q}$ is conjugate to b_{h} and $b_{h} \neq 1$ so there exists $z \in S$ such that $z^{-1} b_{h, q} z \neq\left(\phi_{c}^{*}\right)^{-1} \gamma \phi_{c}^{*}$. We substitute $\beta_{n_{h}, q}$ with $z^{-1} \beta_{n_{h, q}}$ and $\beta_{n_{h, q-1}}$ with $\beta_{n_{h, q-1}} z$ (where by $n_{h, 0}$ we mean $n_{h, l_{h}, l_{h}^{q}}$ being the length of σ_{h}). In this way we change $b_{h, q}$ with $z^{-1} b_{h, q} z$ but the values $b_{t, s}$ remain the same if $(t, s) \neq(h, q)$. This ensures that $g_{2}^{\left|\sigma_{h}\right|}$ cannot normalize $D_{B e}$.

We can repeat this argument for all the divisors c of k for which $m_{j_{c}} \notin \operatorname{supp}\left(\sigma_{i}\right)$. At each step we modify only some β_{s} for $s \notin \operatorname{supp}\left(\sigma_{1}\right) \cup$ $\cup \operatorname{supp}\left(\sigma_{i}\right)$, so all that we have proved before remains true. Furthermore also in this case the discussion about one possibility for c is independent with the modifications we may introduce discussing the other possibilities: indeed, given a c, our modification will change only $b_{h, q}$ for $n_{h, q}=$ $=m_{j_{c}}$ and to different choices for c correspond different values for $m_{j_{c}}$ and, of consequence, for $n_{h, q}$.

At this point of the proof we have constructed a set g_{1}, \ldots, g_{d} of elements of G such that $H=\left\langle g_{1}, \ldots, g_{d}\right\rangle$ satisfies:

1) $G=H N$;
2) $H \cap S^{n}=\prod_{B \in \Phi} D_{B}$;
3) H normalizes $\prod_{B \in \Phi} D_{B}$ if and only if $\prod_{B \in \Phi} D_{B}=N$.

This implies that $H \cap N=N$, hence $G=H$ and $d(G)=d$.

2. - An auxiliary lemma.

Let m be a positive integer and r a prime number. We define $m_{r}=r^{a}$ if $m=r^{a} k$ with $(r, k)=1$.

Lemma. Let S be a finite non abelian simple group. There exists a prime r dividing $|S|$ with the property: for every $y \in \operatorname{AutS}$ there exists an element $x \in S$ such that $|y|_{r} \neq|y x|_{r}$.
(We note that this lemma immediately implies that every $y \in \operatorname{Aut} S$ has fixed points; in fact, if y were fixed-point-free, then all the elements in the coset $y S$ would be conjugate to y).

We will prove that the prime r can be chosen in the following way:

1) $r=2$ if S is an alternating group.
2) $r=2$ if S is a sporadic simple group.
3) $r=p$ if $S={ }^{n} L\left(p^{h}\right)$, a group of Lie type over a field of characteristic p, with the exception $r=2$ if $S=A_{1}(q)$ and q is odd.

In all cases r divides the order of S.
We will divide our proof in several steps. Of course it suffices to prove that there exist $x_{1}, x_{2} \in S$ with $\left|y x_{1}\right|_{r} \neq\left|y x_{2}\right|_{r}$, in other words we may substitute y with an arbitrary element in the coset $y S$.
2.1. If $y \in S$ is an inner automorphism then there exists $x \in S$ such that $|y|_{r} \neq|y x|_{r}$.

Proof. We may assume $y=1$; since r divides $|S|$ there exists an element x in S with order $r:|y|_{r}=1$ while $|y x|_{r}=r$.

If $n \neq 6$ then $\operatorname{Aut}(\operatorname{Alt}(n))=\operatorname{Sym}(n)$ and we have:
2.2. Let $S=\operatorname{Alt}(n), n \geqslant 5$ and $n \neq 6$, and $y \in$ Aut $S \backslash$ S. There exists $x \in S$ such that $|y|_{2} \neq|y x|_{2}$.

Proof. We may assume $y=(1,2)$. Let $x=(1,3,4):|y|_{2}=2$ while $|y x|_{2}=|(1,2,3,4)|_{2}=4$.

The group Alt (6) is isomorphic to $A_{1}(9)$, so it will be considered among the groups of Lie type.
2.3. Let S be a sporadic simple group and let $y \in \operatorname{Aut} S \backslash \operatorname{Inn} S$. There exists $x \in S$ such that $|y|_{2} \neq|y x|_{2}$.

Proof. Recall that \mid Aut $S: S \mid \leqslant 2$ with \mid Aut $S: S \mid=2$ only in the following cases: $M_{12}, M_{22}, J_{2}, J_{3}, H S, S u z, M c L, H e, O^{\prime} N, F_{22}, F_{24}^{\prime}, H N$. In all these cases, consider an element $y \in$ Aut $S \backslash S$; from the character table of these groups (see [2]) it can be easily seen that the coset $y S$ contains both elements of order 2 and elements of order divisible by 4.

Before considering the case of groups of Lie type let us recall some properties of these groups.

Let Φ be a root system corresponding to a simple Lie algebra L over the complex field C , and let us consider a fundamental system $\Pi=$
$=\left\{a_{1}, \ldots, a_{n}\right\}$ in Φ. A labelling of Π can be chosen in such a way that $(a, a)=2$ and $(a, b)=0$ for each pair of roots in Π, with the following exceptions:
$A_{n}:\left(a_{i}, a_{i+1}\right)=-1$ for $1 \leqslant i \leqslant n-1 ;$
$B_{n}:\left(a_{1}, a_{1}\right)=1, \quad\left(a_{i}, a_{i+1}\right)=-1$ for $1 \leqslant i \leqslant n-1 ;$
$C_{n}:\left(a_{i}, a_{i}\right)=1, \quad\left(a_{i}, a_{i+1}\right)=-\frac{1}{2}$ for $1 \leqslant i \leqslant n-2$,

$$
\left(a_{n-1}, a_{n-1}\right)=-\left(a_{n-1}, a_{n}\right)=1 ;
$$

$D_{n}:\left(a_{1}, a_{3}\right)=\left(a_{i}, a_{i+1}\right)=-1$ for $2 \leqslant i \leqslant n-1$;
$E_{n}:\left(a_{i}, a_{i+1}\right)=\left(a_{n-3}, a_{n}\right)=-1$ for $1 \leqslant i \leqslant n-2$;
$F_{4}:\left(a_{1}, a_{1}\right)=\left(a_{2}, a_{2}\right)=1,\left(a_{1}, a_{2}\right)=-\frac{1}{2},\left(a_{2}, a_{3}\right)=\left(a_{3}, a_{4}\right)=-1$;
$G_{2}:\left(a_{1}, a_{1}\right)=\frac{2}{3}, \quad\left(a_{1}, a_{2}\right)=-1$.
A Chevalley group $L(q)$, viewed as a group of automorphisms of a Lie algebra L_{K} over the field $K=\mathrm{F}_{q}$, obtained from a simple Lie algebra L over the complex field \mathbb{C}, is the group generated by certain automorphisms $x_{r}(t)$, where t runs over F_{q} and r runs over the root system Φ associated to L. For each $r \in \Phi, X_{r}=\left\{x_{r}(t), t \in \mathbb{F}_{q}\right\}$ is a subgroup of $L(q)$ isomorphic to the additive group of the field. X_{r} is called a root-subgroup.

Let $P=\mathbb{Z} \Phi$ be the additive group generated by the roots in Φ; a homomorphism from P into the multiplicative group \mathbb{F}_{q}^{*} will be called an F_{q}-character of P. From each \mathbb{F}_{q}-character χ of P arises an automorphism $h(\chi)$ of $L(q)$ which maps $x_{r}(t)$ to $x_{r}(\chi(r) t)$ and which is called a diagonal automorphism (see [3], p. 98). The diagonal automorphisms form a subgroup \widehat{H} of $\operatorname{Aut}(L(q))$. In the following, to semplify our notation, the same symbol will denote either the character χ or the element $h(\chi)$ of \widehat{H}.

Any automorphism σ of the field F_{q} induces a field automorphism (still denoted by σ) of $L(q)$, which is defined in the following way: $\left(x_{r}(t)\right)^{\sigma}=x_{r}\left(t^{\sigma}\right)$. The set of the field automorphisms of $L(q)$ is a cyclic group $F \simeq \operatorname{Aut}\left(\mathbb{F}_{q}\right)$.

We recall that a symmetry of the Dynkin diagram of $L(q)$ is a permutation ϱ of the nodes of the diagram, such that the number of bonds joining nodes i, j is the same as the number of bonds joining nodes $\varrho(i), \varrho(j)$ for any $i \neq j$. A non trivial symmetry ϱ of the Dynkin diagram can be extended to a map of the space $\langle\Phi\rangle$ into itself, we still denote by ϱ. This map yields an outer automorphism ε of $L(q) ; \varepsilon$ is said to be a graph automorphism
of $L(q)$ and maps the root subgroup X_{r} to $X_{\varrho(r)}$ (see [3] pp. 199-210 for the complete description).

The main result on the automorphism group of a finite non abelian simple group is the following ([3] Th.12.5.1): for each automorphism $\theta \in$ $\in \operatorname{Aut}(L(q))$, there exist an inner automorphism x, a diagonal automorphism h, a field automorphism σ and a graph automorphism ε, such that $\theta=\varepsilon \sigma h x$; moreover, we have the following normal sequence:

$$
L(q) \unlhd\langle L(q), \hat{H}\rangle \unlhd\langle L(q), \hat{H}, F\rangle \unlhd \operatorname{Aut}(L(q))
$$

2.4. Let $S=L(q)$ be a Chevalley group over a field F_{q} of characteristic p and suppose $L \neq A_{1}$. If $y=\sigma h \in$ Aut S, with $\sigma \in F$ and $h \in \hat{H}$, then there exists $x \in S$ with $|y x|_{p} \neq|y|_{p}$.

Proof. The element h can be modified modulo $H=\hat{H} \cap S$, in such a way to have $\left[h, X_{a}\right]=1$ for at least one root $a \in \Phi$. Let $|\sigma|=m$: σ normalizes X_{a} and \hat{H}, so $(\sigma h)^{m} \in C_{\hat{H}}\left(X_{a}\right)$; in particular $\left|(\sigma h)^{m}\right|$ divides $q-1$ and is coprime with p, so $|\sigma h|_{p}=m_{p}$. Now choose t in \mathbb{F}_{q} such that $u=$ $=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$ (this is always possible) and consider $x=x_{a}(t)$; $\left(\sigma h x_{a}(t)\right)^{m}=(\sigma h)^{m} x_{a}(u)$ has order divisible by p since $p=\left|x_{a}(u)\right|$ and $(\sigma h)^{m}$ centralizes $x_{a}(u)$, but then $|\sigma h x|_{p}=m_{p} p$.
2.5. Let $S=A_{1}(q)$ with \mathbb{F}_{q} a field of characteristic p and let $y \in$ \in Aut $S \backslash S$. Then there exists $x \in S$ such that $|y|_{2} \neq|y x|_{2}$.

Proof. In this case $\Pi=\{a\}$ contains only one root and an element $h \in \widehat{H}$ is uniquely determined by the knowledge of $h(a)$: we denote by h_{ξ} the element of \widehat{H} such that $h(a)=\xi$. It is well known that $h_{\xi} \in \hat{H} \cap S$ if and only if $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{2}$.

If $p=2$ then $\hat{H} \leqslant S$ and we may assume $y_{m-1}=\sigma \in \mathbb{F}_{q}$. Let $|\sigma|=m$ and choose t in \mathbb{F}_{q} such that $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$. Now consider $x=$ $=x_{a}(t):(\sigma x)^{m}=x_{a}(u)$ so $|\sigma x|_{2}=2|\sigma|_{2}$.

Suppose $p \neq 2$; since $A_{1}(q)$ does not possess graph automorphims, we may assume $y=\sigma h$ with $\sigma \in \mathrm{F}_{q}$ and $h \in \widehat{H}$. Let $m=|\sigma|$ and consider the set $\mathbb{K}=\left\{x \in \mathbb{F}_{q} \mid x^{\sigma}=x\right\} ; \mathbb{K}$ is a field and $\langle\sigma\rangle$ is the Galois group of \mathbb{F}_{q} over \mathbb{K}; in particular, if we set $|\mathbb{K}|=s$, we have $q=s^{m}$ and, for every $x \in \mathbb{F}_{q}, x^{\sigma}=x^{s^{i}}$ with $(i, m)=1$. We distinguish the different possibilities:
a) m is odd.

If $h \in H$, we may assume $h=1$ and $y=\sigma$. Observe that $X=$ $=\left\langle x_{a}\left(t_{1}\right), x_{-a}\left(t_{2}\right) \mid t_{1}, t_{2} \in \mathbb{K}\right\rangle \cong \operatorname{PSL}(2, \mathbb{K})$ is a subgroup of S centralized by σ. In particular X contains an involution x which is centralized by σ,
so $|y x|_{2}=2$. Suppose $h \notin H$; let $\mathbb{F}_{q}^{*}=\langle t\rangle$ and consider $u=t^{(q-1) /(s-1)}$: since $(q-1) /(s-1)$ is an odd integer, $u \notin\left(\mathbb{F}_{q}^{*}\right)^{2}$ so we may assume $h=$ $=h_{u}$. Furthermore $\left(h_{u}\right)^{\sigma}=h_{u^{\sigma}}=h_{u}$ so σ centralizes $\left\langle h_{u}, X\right\rangle \cong P G L(2, q)$ and the coset $h_{u} X$ contains an element h_{1} of order $q-1$ and an element h_{2} of order $q+1$. But then $\left|\sigma h_{1}\right|_{2}=(q-1)_{2} \neq(q+1)_{2}=\left|\sigma h_{2}\right|_{2}$.
b) m is even.

Let $n=x_{r}(1) x_{-r}(-1) x_{r}(1) \in S$. Since $\left(h_{\xi}\right)^{\sigma}=h_{\xi^{\sigma}}, n^{\sigma}=n,\left(h_{\xi}\right)^{n}=$ $=h_{1 / \xi}$ we have: $\left(\sigma h_{\xi}\right)^{m}=h_{\theta}$ with $\theta=\xi^{q-1 / s-1},\left(\sigma h_{\xi} n\right)^{m}=h_{\eta}$ with $\eta=$ $=\xi^{(q-1)\left(s^{i}-1\right) /\left(s^{2}-1\right)}$. Let $\mathrm{F}_{q}^{*}=\langle t\rangle$. We may assume $y=\sigma h_{\xi}$ with $\xi=t$ if $h \notin S, \xi=t^{2}$ if $h \in S$. In the first case: $|y|_{2}=\left|\sigma h_{t}\right|_{2}=m_{2}(s-1)_{2} \neq$ $\neq|y n|_{2}=m_{2}(s+1)_{2}$. In the second case: $|y|_{2}=\left|\sigma h_{t^{2}}\right|_{2}=m_{2}((s-$ $-1) / 2)_{2} \neq|y n|_{2}=m_{2}((s+1) / 2)_{2}$.

Now we have to discuss the cases when y involves a graph automorphism ε; if $L=A_{n}, E_{6}$ or D_{n} and ε corresponds to a symmetry ϱ of the Dynkin diagram, we may assume $\left(x_{r}(t)\right)^{\varepsilon}=x_{\varrho(r)}(t)$ for every $r \in \Pi$ ([3] Prop. 12.2.3).
2.6. Let S be a group of type $A_{n}, n \geqslant 4$, or E_{6} over a field \mathbb{F}_{q} of characteristic p and let $y=\varepsilon \sigma h \in$ Aut S with ε a graph automorphism, $\sigma \in F, h \in \widehat{H}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. Let $h_{\xi} \in \widehat{H}$ where $h_{\xi}\left(a_{1}\right)=\xi, h_{\xi}\left(a_{i}\right)=1$ if $i \neq 1$. We may assume $h=h_{\xi}$ for a suitable $\xi \in \mathbb{F}_{q}^{*}$. Let $a=a_{2}, b=a_{n-1}$ and consider the subgroup $X=\left\langle X_{a}, X_{b}\right\rangle$; if $S \neq A_{4}(q)$ then $X=X_{a} \times X_{b}$, if $S=A_{4}(q)$ then $X^{\prime}=X_{a+b}, X / X^{\prime} \cong X_{a} \times X_{b}$ and every element of X can be written uniquely in the form $x_{a}\left(t_{1}\right) x_{b}\left(t_{2}\right) x_{a+b}\left(t_{3}\right)$ with $t_{1}, t_{2}, t_{3} \in \mathbb{F}_{q}$. Let $|\sigma|=$ $=m$; take $x=x_{a}(t)$, with t chosen in such a way that:
$a)$ if m is odd, $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$,
b) if m is even, $u=t+t^{\sigma^{2}}+\ldots+t^{\sigma^{2(m / 2-1)}} \neq 0$.

Notice that $\left.\left(\varepsilon \sigma h_{\xi} x_{a}(t)\right)^{2}=\sigma^{2} \widetilde{h} x_{b}\left(t^{\sigma}\right)\right) x_{a}(t)$ where $\widetilde{h}\left(a_{1}\right)=\xi$, $\widetilde{h}\left(a_{n}\right)=\xi^{\sigma}, \widetilde{h}\left(a_{i}\right)=1$, if $i \notin\{1, n\}$; in particular \widetilde{h} centralizes the subgroup X. Consider first the case m odd; $y=\varepsilon \sigma h_{\xi}$ has order $2 m v$, where v divides $q-1$; but

$$
\begin{aligned}
& (y x)^{2 m}=\left(\varepsilon \sigma h_{\xi} x_{a}(t)\right)^{2 m}=\left(\sigma^{2} \widetilde{h} x_{b}\left(t^{\sigma}\right) x_{a}(t)\right)^{m}= \\
& \qquad \begin{aligned}
&=\left(\sigma^{2} \widetilde{h}\right)^{m} x_{b}\left(t^{\sigma^{2 m-1}}\right) x_{a}\left(t^{\sigma^{2(m-1)}}\right) \ldots x_{b}\left(t^{\sigma^{3}}\right) x_{a}\left(t^{\sigma^{2}}\right) x_{b}\left(t^{\sigma}\right) x_{a}(t)= \\
&=\left(\sigma^{2} \widetilde{h}\right)^{m} x_{a}(u) x_{b}\left(u^{\sigma}\right) z
\end{aligned}
\end{aligned}
$$

with $z=1$ if $S \neq A_{4}(q), z=x_{a+b}(v), v \in \mathbb{F}_{q}$, if $S=A_{4}(q) ;\left(\sigma^{2} \widetilde{h}\right)^{m}$ centralizes X and $x_{a}(u) x_{b}\left(u^{\sigma}\right) z$ is a non trivial element of the p-group X, so p divides $\left|(y x)^{2 m}\right|$, hence $|y x|_{p} \geqslant|y|_{p} p$.

Now suppose that m is even; $y=\varepsilon \sigma h_{\xi}$ has order $m v$, where v divides $q-1 ; \quad(y x)^{m}=\left(\varepsilon \sigma h_{\xi} x_{a}(t)\right)^{m}=\left(\sigma^{2} \tilde{h}\right)^{m} x_{a}(u) x_{b}\left(u^{\sigma}\right) z$, with $z \in X_{a+b} ;$ again, since $\left(\sigma^{2} \widetilde{h}\right)^{m}$ centralizes X and $x_{a}(u) x_{b}\left(u^{\sigma}\right) z \neq 1$, we deduce $|y x|_{p} \geqslant|y|_{p} p$.
2.7. Let S be a group of type A_{3} over a field \mathbb{F}_{q} of characteristic p and let $y=\varepsilon \sigma h \in$ Aut S with ε a graph automorphism, $\sigma \in F, h \in \hat{H}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. Distinguish two cases. If $p=2$ then $\widehat{H} \leqslant S$. So we may assume $h=1$ and $y=\varepsilon \sigma$. We repeat the argument used for the case $S=A_{n}, n \geqslant 5$, with $a=a_{1}$ and $b=a_{3}$.

Suppose $p \neq 2$. We may assume $h=h_{\xi}$. Let $|\sigma|=m$ and take $x=$ $=x_{a_{2}}(t)$ with $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$; the order of $y^{m}=(\varepsilon \sigma h)^{m}$ divides $2(q-1)$, hence is coprime with p, while $(y x)^{m}=y^{m} x_{a_{2}}(u)$ has order divisible by p, since y^{m} centralizes $x_{a_{2}}(u)$.
2.8. Let S be a group of type A_{2} over a field \mathbb{F}_{q} of characteristic p and let $y=\varepsilon \sigma h \in$ Aut S with ε a graph automorphism, $\sigma \in F, h \in \widehat{H}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. If 3 does not divide $q-1$, then $\hat{H} \leqslant S$, so we may assume $y=\varepsilon \sigma$ and repeat the argument used in the case $S=A_{4}$, with $a=a_{1}$ and $b=a_{2}$.

Suppose that 3 divides $q-1$. We will use the symbol $h_{t_{1}, t_{2}}$ to denote the element $h \in \widehat{H}$ such that $h\left(a_{1}\right)=t_{1}, h\left(a_{2}\right)=t_{2} ; h_{t_{1}, t_{2}} \in S$ if and only if $t_{1} t_{2}^{-1} \in\left(\mathbb{F}_{q}^{*}\right)^{3}$. But then, since in particular $h_{\xi, \xi^{-1} \in S}$ if and only if $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{3}$, it is not restrictive to assume $h=h_{\xi, \xi^{-1}}$.

If $|\sigma|=m$ is odd, it can be easily seen that $y=\varepsilon \sigma h_{\xi, \xi^{-1}}$ has order $2 m$. Consider $x=x_{a_{1}}(t)$ and let $\lambda=\xi / \xi^{\sigma}:\left(\varepsilon \sigma h x_{a_{1}}(t)\right)^{2 m}=$ $=\left(\sigma^{2} h_{\lambda, \lambda^{-1}} x_{a_{2}}\left(\xi^{-1} t^{\sigma}\right) x_{a_{1}}(t)\right)^{m}=x_{a_{1}}(u) x_{a_{2}}\left(u_{2}\right) x_{a_{1}+a_{2}}\left(u_{3}\right)$ with $u=t+$ $+\lambda t^{\sigma^{2}}+\ldots+\lambda \lambda^{\sigma^{2}} \ldots \lambda^{\sigma^{2(m-2)}} t^{\sigma^{2(m-1)}}$. We may choose t so that $u \neq 0$;in this way $|y x|_{p} \geqslant|y|_{p} p$.

Now suppose that $|\sigma|=m$ is even: choose t such that $u=t-t^{\sigma}+$ $+\ldots+t^{\sigma^{m-2}}-t^{\sigma^{m-1}} \neq 0$ and consider $x=x_{a_{1}+a_{2}}(t)$; notice that h centralizes $X_{a_{1}+a_{2}}$ and that $x^{\varepsilon}=x^{-1}=x_{a_{1}+a_{2}}(-t)$. This implies that $(\varepsilon \sigma h)^{m}=$ $=\widetilde{h} \in C_{\hat{H}}\left(X_{a_{1}+a_{2}}\right)$ and has order coprime with p while $(\varepsilon \sigma h x)^{m}=$ $=\widetilde{h} x_{a_{1}+a_{2}}(u)$ has order divisible by p.
2.9. Let S be a group of type D_{n} over a field \mathbb{F}_{q} of characteristic p
and let $y=\varepsilon \sigma h \in$ Aut S, where $\sigma \in F, h \in \hat{H}$ and ε is the graph automorphism of order 2 which exchanges $X_{a_{1}}$ and $X_{a_{2}}$ and fixes $X_{a_{i}}$ if $i \geqslant 3$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. First consider the case $p \neq 2$. Let $|\sigma|=m$ and take $x=$ $=x_{a_{3}}(t)$ with $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0 ; y=\varepsilon \sigma h$ has order $m v$, where v, dividing $2(q-1)$, is coprime with p. Since ε and h centralize $X_{a_{3}}$, we obtain $(\varepsilon \sigma h x)^{m}=\widetilde{y} x_{a_{3}}(u)$, with $\widetilde{y} \in C_{\text {Aut } S}\left(X_{a_{3}}\right)$; but then p divides $\left|(y x)^{m}\right|$ and $|y x|_{p} \geqslant m_{p} p$. Now suppose $p=2$. In this case $\hat{H} \leqslant S$, so we may assume $h=1$ and $y=\varepsilon \sigma$. If $|\sigma|=m$ is even then $|y|=m$; take $x=x_{a_{3}}(t)$ with $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0 ;(y x)^{m}=x_{a_{3}}(u)$, hence $|y x|=m p$. If $|\sigma|=m$ is odd then $|y|=2 m$; take $x=x_{a_{1}}(t)$ with $u=t+t^{\sigma^{2}}+\ldots+$ $+t^{\sigma^{2(m-1)}} \neq 0 ; \quad(y x)^{2 m}=\left(\varepsilon \sigma x_{a_{1}}(t)\right)^{2 m}=\left(\sigma^{2} x_{a_{1}}(t) x_{a_{2}}\left(t^{\sigma}\right)\right)^{m}=x_{a_{1}}(u) x_{a_{2}}\left(u^{\sigma}\right)$ has order p, so $|y x|=2 m p$.
2.10. Let S be a group of type D_{4} over a field F_{q} of characteristic p and let $y=\varepsilon \sigma h \in$ Aut S with ε a graph automorphism, $\sigma \in F, h \in \widehat{H}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. Every permutation ϱ on the subset $\left\{a_{1}, a_{2}, a_{4}\right\}$ is a symmetry of the Dynkin diagram of $D_{4}(q)$ and produces a graph automorphism of S. We have already discussed the case when ϱ exchanges two roots a_{i} and a_{j} and fixes the other. It remains to discuss the case $\varrho=$ $=\left(a_{1}, a_{2}, a_{4}\right)$. First of all notice that, modifying h modulo $H=\widehat{H} \cap S$, we may assume that one of the following occours:

1) $h\left(a_{1}\right)=1$ and $h\left(a_{2}\right)^{\sigma} h\left(a_{4}\right)=1$;
2) $h\left(a_{2}\right)=1$ and $h\left(a_{4}\right)^{\sigma} h\left(a_{1}\right)=1$;
3) $h\left(a_{4}\right)=1$ and $h\left(a_{1}\right)^{\sigma} h\left(a_{2}\right)=1$.

Choose $a=a_{1}$ in the first case, $a=a_{2}$ in the second, $a=a_{4}$ in the third. Recall ([3] p. 104 and 114) that $U=\left\langle X_{s} \mid s \in \phi^{+}\right\rangle$is a p-Sylow subgroup of $S, U_{1}=\left\langle X_{s} \mid s \in \phi^{+}, s \neq a\right\rangle$ is a normal subgroup of U with $U=$ $=X_{a} U_{1}$. Let $|\sigma|=m ; y$ has order $m^{*} v$, where v is a divisor of $q-1$ and $m^{*}=m$ if 3 divides $m, m^{*}=3 m$ otherwise. Choose t such that $u=t+t^{\sigma^{3}}+\ldots+t^{\sigma^{3\left(m^{*} / 3-1\right)}} \neq 0 \quad$ and take $x=x_{a}(t) ; \quad\left(\varepsilon \sigma h x_{a}(t)\right)^{3}=$ $(\varepsilon \sigma h)^{3} x_{a}(t) z=\sigma^{3} \widetilde{h} x_{a}(t) z$ with $z \in U_{1}, \widetilde{h} \in \widehat{H}$ and $\widetilde{h}(a)=1 ; \sigma^{3} \widetilde{h}$ normalizes U and U_{1} and $\left(x_{a}(t)\right)^{\sigma^{3} \bar{h}}=x_{a}\left(t^{\sigma^{3}}\right)$ so we obtain: $(y x)^{m^{*}}=$ $=\left(\varepsilon \sigma h x_{a}(t)\right)^{m^{*}}=\left(\sigma^{3} \widetilde{h} x_{a}(t) z\right)^{m^{*} / 3}=h^{*} x_{a}(u) z^{*} \quad$ with $\quad h^{*} \in N_{\hat{H}}\left(U_{1}\right) \cap$ $\cap C_{\hat{H}}\left(X_{a}\right)$ and $z^{*} \in U_{1} ; x_{a}(u)$ has order p modulo U_{1} so we conclude $|y x|_{p} \geqslant|y|_{p} p$.
2.11. Let S be a group of type B_{2}, F_{4} or G_{2} over a field \mathbb{F}_{q} of charac-
teristic p with $p=2$ in the first two cases, $p=3$ in the third. Let $y \in$ \in Aut $S \backslash\langle F, \widehat{H}, S\rangle$; there exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. These groups admit a graph automorphism ε such that $\left\langle\varepsilon^{2}\right\rangle=F$. Moreover in these cases $\hat{H} \leqslant S$, so Aut $S=\langle\varepsilon, S\rangle$. Therefore we may assume $y \in\langle\varepsilon\rangle$. Since, by hypothesis, $y \notin F=\left\langle\varepsilon^{2}\right\rangle, y$ has even order, say $2 m ; \varepsilon^{2}=\sigma$ is a Frobenius automorphism of S. Choose $t \in \mathbb{F}_{q}$ such that $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$ and take $x=x_{a_{1}}(t) ;\left(\varepsilon x_{a_{1}}(t)\right)^{2} \stackrel{q}{=}$ $=\sigma x_{a_{1}}(t) z$ with $z \in U_{1}=\left\langle X_{s} \mid s \in \phi^{+}, s \neq a_{1}\right\rangle . X_{a_{1}}$ normalizes $U_{1}, X_{a_{1}} \cap$ $\cap U_{1}=1$ and $U=X_{a_{1}} U_{1}$ is a p-Sylow subgroup of S. Since σ normalizes U_{1} we obtain: $\left(\varepsilon x_{a_{1}}(t)\right)^{2 m}=\left(\sigma x_{a_{1}}(t) z\right)^{m}=x_{a_{1}}(u) z^{*}$ with $z^{*} \in U_{1}$, a non trivial element of U.

To conclude the proof of our lemma it remains to discuss the case of the twisted groups of Lie type. Let us begin with a short description of these groups.

Let $G=L(q)$ be a group of Lie type whose Dynkin diagram has a non trivial symmetry ϱ.

If g is the graph automorphism corresponding to ϱ, let us suppose that $L(q)$ admits a field automorphism f such that the automorphism $\sigma=g f$ satisfies $\sigma^{m}=1$, where m is the order of ϱ. If such σ does exist, the twisted groups are defined as the subgroup ${ }^{m} L(q)$ of the group $L(q)$ which are fixed elementwise by $\sigma[3]$.

The structure of ${ }^{m} L(q)$ is very similar to that of a Chevalley group: if Φ is the root-system fixed in $L(q)$, the automorphism σ determines a partition of $\Phi=\cup S_{i}$, [3]. If R is one element of the partition, we denote by X_{R} the subgroup $\left\langle X_{a}, a \in R\right\rangle$ of $L(q)$, by X_{R}^{1} the subgroup $\{x \in$ $\left.\in X_{R}, x^{\sigma}=x\right\}$ of ${ }^{m} L(q)$. The group ${ }^{m} L(q)$ is generated by the groups $X_{R_{i}}^{1}$, $\Phi=\cup R_{i}$; really, the subgroups X_{R}^{1} play the role of the root-subgroups. An element R of the partition which contains a simple root is said to be a simple-set. We have: $\operatorname{Aut}\left({ }^{m} L(q)\right)=\left\langle{ }^{m} L(q), \widehat{H}^{1}, F\right\rangle$, where F is the group of the field automorphisms of $L(q)$ and $\left.\widehat{H}^{1}=N_{\hat{H}}{ }^{m} L(q)\right)$. We observe that in the twisted case, the groups X_{R}^{1} are not abelian in general; nevertheless their structure is quite simple and well known (see for example [3] Prop. 13.6.3).
2.12. Let S be a twisted group of type ${ }^{2} A_{n}, n \geqslant 3$, or of type ${ }^{2} E_{6}$ over a field $\mathrm{F}=\mathrm{F}_{q^{2}}$ of characteristic p and let $y=\sigma h \in \operatorname{Aut} S$ with $\sigma \in F$, $h \in \hat{H}^{1}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. First suppose $S={ }^{2} E_{6}\left(q^{2}\right)$ or $S={ }^{2} A_{n}\left(q^{2}\right)$ with $n \geqslant 5$ and let $a=a_{2}, b=a_{n-1} ; R=\{a, b\}$ is a simple set; if we define $x_{R}(\lambda)=$ $=x_{a}(\lambda) x_{b}\left(\lambda^{q}\right)$ we have $($ see $[3] \mathrm{p} .233-235) X_{R}^{1}=\left\{x_{R}(\lambda) \mid \lambda \in \mathbb{F}\right\} \cong(\mathbb{F},+)$.

Changing h with a suitable element in the coset $h\left(\widehat{H}^{1} \cap S\right)$, we may assume that h centralizes X_{R}^{1} so $\left(x_{R}(\lambda)\right)^{y}=x_{R}\left(\lambda^{\sigma}\right)$ for every $\lambda \in \mathbb{F}$. Let $|\sigma|=m ; y=\sigma h$ has order $m v$, with v coprime with p. Take $x=x_{R}(t)$ with $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0 ;(y x)^{m}=(\sigma h)^{m} x_{R}(u)$ has order divisible by p since $\left|x_{R}(u)\right|=p$ and $(\sigma h)^{m} \in C_{\hat{H}^{1}}\left(X_{R}\right)$, hence $|y x|_{p} \geqslant$ $\geqslant|y|_{p} p$.

Now suppose $n=4$. Let $a=a_{2}, b=a_{3}$ and consider the simple set $R=\{a, b, a+b\} ; \quad X_{R}^{1} \quad$ is the set of elements $x_{R}(\lambda, \mu)=$ $=x_{a}(\lambda) x_{b}\left(\lambda^{q}\right) x_{a+b}(\mu)$ with $\lambda \in \mathbb{F}$ and $\mu+\mu^{q}=\lambda \lambda^{q}$. As in the previuos case it is not restrictive to assume that h centralizes X_{R}^{1}. If $|\sigma|=m$ then $|y|_{p}=m_{p}$; choose t such that $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$ and consider $x=x_{R}(\lambda, \mu)$ with $\lambda=t:(y x)^{m}=y^{m} x_{R}\left(\lambda^{*}, \mu^{*}\right)$ with $\lambda^{*}=u$. Since $x_{R}\left(\lambda^{*}, \mu^{*}\right)$ is a non trivial element of order a power of p and y^{m} centralizes X_{R}^{1} we conclude $|y x|_{p} \geqslant m_{p} p=|y|_{p} p$.

Finally suppose $n=3$. If q is even, then $\widehat{H}^{1} \leqslant S$ and we may assume $y=\sigma$; we can argue as in the case $n \geqslant 5$, considering the simple set $R=$ $=\left\{a_{1}, a_{3}\right\}$. Suppose q odd. Let $a=a_{2}: R=\{a\}$ is a simple set with $X_{R}^{1}=$ $=\left\{x_{a}\left(\lambda^{q+1}\right) \mid \lambda \in \mathbb{F}_{q^{2}}\right\}=\left\{x_{a}(\mu) \mid \mu \in \mathbb{F}_{q}\right\}$. We may assume that h centralizes X_{R}^{1}. Now $\sigma \in \operatorname{Aut}\left(\mathbb{F}_{q^{2}}\right)$ induces an automorphism σ^{*} of the subfield F_{q} of $\mathbb{F}_{q^{2}}$. Let $|\sigma|=m$ and $\left|\sigma^{*}\right|=m^{*}$: either $m^{*}=m$ or $m=2 m^{*}$. In both cases, since p is odd, $|y|_{p}=m_{p}=m_{p}^{*}$. But choose $t \in \mathbb{F}_{q}$ such that $u=t+t^{\sigma^{*}}+\ldots+t^{\sigma^{*}\left(m^{*}-1\right)} \neq 0 \quad$ and take $x=x_{a}(t): \quad(y x)^{m^{*}}=$ $\left(\sigma h x_{a}(t)\right)^{m^{*}}=(\sigma h)^{m^{*}} x_{a}(u)$ has order divisible by p, since $(\sigma h)^{m^{*}}$ centralizes $x_{a}(u)$.
2.13. Let S be a twisted group of type ${ }^{2} A_{2}$ over a field $\mathbb{F}=\mathbb{F}_{q^{2}}$ of characteristic p and let $y=\sigma h \in \operatorname{Aut} S$ with $\sigma \in F, h \in \widehat{H}^{1}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. $R=\left\{a_{1}, a_{2}, a_{1}+a_{2}\right\}$ is a simple set whose elements have the form $x_{R}(\lambda, \mu)=x_{a_{1}}(\lambda) x_{a_{2}}\left(\lambda^{q}\right) x_{a_{1}+a_{2}}(\mu)$ with $\mu+\mu^{q}=\lambda \lambda^{q}$. We will use the symbol h_{ξ} to denote the element of \widehat{H}^{1} such that $h_{\xi}\left(a_{1}\right)=\xi$, $h_{\xi}\left(a_{2}\right)=\xi^{q}$. For every $h \in \hat{H}^{1}$ there exists $\xi \in \mathbb{F}_{q^{2}}^{*}$ such that $h=h_{\xi}$ and $h_{\xi} \in S$ if and only if $\xi^{q-1} \in\left(\mathbb{F}_{q}^{*}\right)^{3}$.

If 3 does not divide $q+1$, then $\widehat{H}^{1} \leqslant S$ and we may assume $y=\sigma$. We repeat the same argument as in the case ${ }^{2} A_{4}\left(q^{2}\right)$ with $a=a_{1}$, $b=a_{2}$.

Suppose that 3 divides $q+1$; since 3 cannot divide $q-1$, we may assume $h=h_{\xi}$ with $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{q-1}$. Let $|\sigma|=m: y=\sigma h$ has order $m v$ with v coprime with p. If m is odd then it is not difficult to see that there exists $t \in \mathrm{~F}_{q^{2}}$ such that $t+t^{q}=0$ and $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$. Consider $x=x_{R}(0, t)=x_{a_{1}+a_{2}}(t)$. For every $\mu, x_{R}(0, \mu)^{h}=x_{R}\left(0, \xi^{q+1} \mu\right)=$
$=x_{R}(0, \mu)$, so we deduce $(y x)^{m}=y^{m} x_{R}(0, u)$, with $\left[y^{m}, x_{R}(0, u)\right]=1$ but then $|y x|_{p}=|y|_{p} p$. Suppose that m is even and let $s=\mid\{x \in$ $\left.\in \mathbb{F}_{q^{2}} \mid x^{\sigma}=x\right\} \mid ;$ since $q^{2}=s^{m}$ and $q=-1 \bmod 3,3$ cannot divide $s-1$. We may assume $h=h_{\xi}$ with $|\xi|=3^{j}, j \in \mathbb{Z}$. But then $y^{m}=(\sigma h)^{m}=$ $=h h^{\sigma} \ldots h^{\sigma^{m-1}}=h_{\theta}=1$ since $\theta=\xi \xi^{\sigma} \ldots \xi^{\sigma^{m-1}}=\xi^{\left(q^{2}-1\right) /(s-1)}$. Now choose $t \in \mathbb{F}^{*}$ such that $u=t+\xi t^{\sigma}+\ldots+\xi \xi^{\sigma} \ldots \xi^{\sigma^{m-2}} t^{\sigma^{m-1}} \neq 0$ and consider $x=x_{R}(\lambda, \mu)$ with $\lambda=t$. Since $\left(\sigma h x_{R}(\lambda, \mu)\right)^{m}=x_{R}\left(\lambda^{*}, \mu^{*}\right)$ with $\lambda^{*}=u$, we conclude $|y x|_{p} \geqslant p m_{p}=p|y|_{p}$.
2.14. Let S be a twisted group of type ${ }^{2} D_{n}$ over a field $\mathbb{F}=\mathbb{F}_{q^{2}}$ of characteristic p and let $y=\sigma h \in$ Aut S with $\sigma \in F, h \in \hat{H}^{1}$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. If q is even then $\widehat{H}^{1} \leqslant S$ so we may assume $y=\sigma ; R=$ $=\left\{a_{1}, a_{2}\right\}$ is a simple set and the elements of X_{R}^{1} have the form $x_{R}(\lambda)=$ $x_{a_{1}}(\lambda) x_{a_{2}}\left(\lambda^{q}\right), \lambda \in \mathbb{F}_{q^{2}}$. Let $|\sigma|=m$ and consider $t \in \mathbb{F}_{q^{2}}$ such that $u=$ $=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$ and take $x=x_{R}(t)$. Since $\left(\sigma x_{R}(t)\right)^{m}=x_{R}(u)$, we can conclude as in the other cases. If q is odd, consider the root $a=a_{3}$: $R=\{a\}$ is a simple set with $X_{R}^{1}=\left\{x_{a}\left(\lambda^{q+1}\right) \mid \lambda \in \mathbb{F}_{q^{2}}\right\}$. We may assume that h centralizes X_{R}^{1} and use the same arguments as in the case ${ }^{2} A_{3}\left(q^{2}\right), q$ odd.
2.15. Let S be a twisted group of type ${ }^{3} D_{4}$ over a field $\mathbb{F}=\mathbb{F}_{q^{3}}$ of characteristic p and let $y \in \operatorname{Aut} S \backslash S$. There exists $x \in S$ such that $|y|_{p} \neq$ $\neq|y x|_{p}$.

Proof. In these cases $\hat{H}^{1} \leqslant S$, so we may assume $y=\sigma$. Consider the simple set $R=\left\{a_{1}, a_{2}, a_{3}\right\}$; the elements of X_{R}^{1} have the form $x_{R}(\lambda)=x_{a_{1}}(\lambda) x_{a_{2}}\left(\lambda^{q}\right) x_{a_{3}}\left(\lambda^{q^{2}}\right), \lambda \in \mathbb{F}$. If $|\sigma|=m$ take $x=x_{R}(t)$ with $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$. Since $\left(\sigma x_{R}(t)\right)^{m}=x_{R}(u)$, we conclude $|y x|_{p} \geqslant p|y|_{p}$.
2.16. Let S be a twisted group of type ${ }^{2} F_{4},{ }^{2} B_{2},{ }^{2} G_{2}$ over a field $\mathbb{F}=\mathbb{F}_{q}$ of characteristic p and let $y \in$ Aut $S \backslash S$. There exists $x \in S$ such that $|y|_{p} \neq|y x|_{p}$.

Proof. In these cases $\hat{H}^{1} \leqslant S$, so we may assume $y=\sigma$. Let $R=$ $=\left\{a_{1}, a_{2}, a_{1}+a_{2}, 2 a_{1}+a_{2}\right\}$ if $S={ }^{2} B_{2}(q), R=\left\{a_{2}, a_{3}, a_{2}+a_{3}, 2 a_{2}+\right.$ $\left.+a_{3}\right\}$ if $S={ }^{2} F_{4}(q), R=\left\{a_{1}, a_{2}, a_{1}+a_{2}, 2 a_{1}+a_{2}, 3 a_{1}+a_{2}, 3 a_{1}+2 a_{2}\right\}$ if $S={ }^{2} G_{2}(q) . R$ is a simple set and the structure of X_{R}^{1} is described in [3], Proposition 13.6.3 and 13.6.4; using the same terminology as in [3], the elements of X_{R}^{1} can be represented in the form $x_{R}(t, u)$, with $t, u \in \mathbb{F}$, in the first two cases, in the form $x_{R}(t, u, v)$, with $t, u, v \in \mathbb{F}$, in
the third case. In all these cases there exists an epimorphism $\gamma: X_{R}^{1} \rightarrow$ $\rightarrow(\mathbb{F},+)$ which maps $x_{R}(t, u)$, or respectively $x_{R}(t, u, v)$, to t. Choose t such that $u=t+t^{\sigma}+\ldots+t^{\sigma^{m-1}} \neq 0$ and take $x \in X_{R}^{1}$ with $\gamma(x)=t$: $(\sigma x)^{m}=\widetilde{x}$ with $\gamma(\widetilde{x})=u$; so p divides $\left|(\sigma x)^{m}\right|$ and $|y x|_{p} \geqslant p m_{p}=$ $=p|y|_{p}$.

This was the last step, and the Lemma is proved. We shall need the following

Corollary. Let S be a finite non abelian simple group. There exists a prime r which divides $|S|$ and has the property: for every $y \in$ \in Aut S there exists an element $x \in S$ such that $x y \neq 1$ and, for every integer m, coprime with r, y^{m} and $(x y)^{m}$ are not conjugate in Aut S.

Proof. If $y \notin S$, by the lemma there exists $x \in S$ with $|x y|_{r} \neq|y|_{r} ;$ in particular, for every integer m, coprime with $r,\left|(x y)^{m}\right|_{r} \neq\left|y^{m}\right|_{r}$, so $(x y)^{m}$ and y^{m} cannot be conjugate in Aut S. Furthermore $x y \neq 1$, otherwise we would deduce $y \in S$. Now let $y \in S$: it suffices to prove that there exists $z \in S$ such that $z \neq 1$ and z^{m} is not conjugate with y^{m} in Aut S for every integer m with $(m, r)=1$. It is enough to consider a non trivial $z \in S$ such that: $|z|_{r}=1$ if $|y|_{r} \neq 1,|z|_{r} \neq 1$ if $|y|_{r}=1$.

REFERENCES

[1] M. Aschbacher - R. Guralnick, Some applications of the first cohomology group, J. Algebra, 90 (1984), pp. 446-460
[2] J. H. Conway - S. P. Norton - R. P. Parker - R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).
[3] R. W. Carter, Simple Groups of Lie Type, J. Wiley and Sons, New York (1972).
[4] F. Dalla Volta - A. Lucchini, Generation of almost simple groups, J. Algebra, 178 (1995), pp. 194-233.
[5] W. Gaschütz, Die Eulersche Funktion Endlicher Ausflösbarer Gruppen, Illinois J. Math., 3 (1959), pp. 469-476.
[6] A. Lucchini, Generators and minimal normal subgroups, Arch. Math., 64 (1995), pp. 273-276.

Manoscritto pervenuto in redazione il 21 novembre 1995
e, in forma revisionata, il 2 aprile 1996.

