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A Note on Factorized (Finite) p-Groups.

MARTA MORIGI (*)

Dedicated to Prof. Zacher, on his 70-th birthday

A group G is factorized if it has the form G = AB, where A and B are
two proper subgroups of G. A lot of work has been done to investigate
how the structure of A and B influences the structure of G, and in this
direction there is a famous theorem by Ito which states that if A and B
are abelian then G is metabelian [6, p. 384]. Moreover, Kegel and
Wielandt proved that, in the case of finite groups, if A and B are nilpo-
tent then G is soluble [6, pp. 379-382].

From these results originates the following:

CONJECTURE. If A and B are finite nilpotent groups of classes a
and {3 respectively, the derived length of G is bounded by a function of a

perhaps a + {3.

Elisabeth Pennington proved the conjecture when A and B have co-
prime orders, with the function given by a + fl, and showed that the
problem of bounding the derived length of G can be reduced to the case
of p-groups [5]. But in this critical case no general result is known.
A very special situation is examined by Me Cann, who proved that if

G = AB is a finite p-group, with A abelian and B extraspecial, then the
derived length of G is at most 3 [2].

In this note we are able to be a little more general, with the
following:

(*) Indirizzo degll’A.: Universita degli Studi di Padova, Dipartimento di Ma-
tematica Pura ed Applicata, via Belzoni n.7, 35131 Padova, Italy.
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THEOREM 2. Let G = AB be a finite p-group, where A is abelian
and B’ has order p. Then one of the following must occur:

i) A G B ’ is the product of two abelian groups.
ii) B ~ G is abelian.

In both cases, the derived length of G is at most 3.

Examples of groups satisfying the assumptions and having derived
length 3 are easily constructed; for instance it is enough to consider
the wreath product of a group of order p with a non-abelian group of or-
der p 3 .

Theorem 2 can be obtained by specializing a more general proposi-
tion, which bounds the derived length of a factorized finite p-group
G = AB, where A is abelian, in terms of the order of B’, the derived
subgroup of B. More precisely, we have:

THEOREM 1. Let G = AB be a finite p-group, where A is abelian
and then the derived length of G is at most n + 2.

A theorem of the same flavour was obtained by Kazarin [4], who
proved that if G = AB is a finite p-group, such that lA’ I = pm and
I B’ = pn , then the derived length of G is at most 2m + 2n + 2. Com-
bining this with Theorem 1 it is also possible to prove:

THEOREM 3. Let G = AB be a finite p-group, such that 
and B’ ~ = p n , with m ~ n, then the derived length of G is at most
m+2n+2.

In the proof of these thorems the hypothesis that the groups consid-
ered are finite plays an essential role. Nevertheless, after having
proved Theorem 1 in the finite case, it is possible to prove it for infinite
groups as well. More precisely we have:

THEOREM 2’. Let G = AB be a group, where A, B are p-groups,
such that A is abetian then G is soluble and has derived

length at most n + 2.

Here the notation used is standard and in particular the symbol HG
denotes the normal closure of a subgroup H in a group G, i.e. the small-
est normal subgroup of G containing H. Moreover, Z( G ) denotes the
center of the group G, G ’ is the derived subgroup of G, (g) is the sub-
group generated by g E G and [x, y] is the usual commuta-
tor, for X, y E G.
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To prove the theorem, two results are needed which are probably
known but the author could not find them in the literature stated in the

following form.

LEMMA 1. Let G = AB be a group, with A abelian and Z(G) ~ 1;
then there exists a non-trivial normal subgroup N of G such that N ; A
or N~B.

PROOF. Consider 1 ~ ab E Z(G), with a E A and b E B. We may as-
sume a ~ 1 ~ b. Then for each x E A we have 1 = [ab, x] =

is a normal subgroup of G contained in B,
as we wanted.

Note that Lemma 1 is no longer true if we drop the hypothesis that
A is abelian, even for finite p-groups, as an example of Gillam
shows [3].

LEMMA. 2. Let G = AB be a group, V 5 Z(A), W 5 Z(B) such that
AW = WA and VB = BV are subgroups; then [V, W] ~ Z([A, B]).

PROOF The proof is the same as Ito’s (see [5]).
Let a E A, b E B, al E V, 61 E W, and put = a2 b2, a bl where

al E V and b3 E W. Then:

The statement now follows immediately.

Another Lemma is needed, whose proof is trivial:

LEMMA 3. Let K be a p-group such that K’ has then the
derived length of K is at rrzost k + 1.

PROOF OF THEOREM 1. The proof is by induction on n, where
.

For n = 0 the theorem is true by Ito’s result.
We now assume that it is true for each natural number less or equal

than n - 1.
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If AnB~Z(B) then is a
normal subgroup of G contained in B and such that N n B’ ~ 1.

If N is abelian then d(G) 5 n + 2 because I (BIN)’ I ~ and so by
induction + 1.

If N is not abelian then N’ a G has 1. Moreover

= so by induction t + 2. As d(N’ ) ~ t
the result follows. So w.m.a. A n B ~ Z(B).
We now prove the following statement:

There exists W ~ Z(B) such that AW = WA and 1 ~ T = AW n B’ .

Choose a maximal subgroup W ~ Z(B) such that AW is a subgroup
and assume by contradiction that AW n B’ = 1. Put K = (AW)G , the
core of AW in G. Then G/K = and AKIK is core-free. By
Lemma 1 there exists a minimal normal subgroup N/K of GIK such that
N ~ BK and so N = ZK, where Z = B n N is not contained in K. Of
course, as the groups considered are finite and nilpo-
tent. so Z  Z(B). It follows that
AWZ = AWN is a subgroup, as N N G. Moreover Z ~ W, otherwise we
would have ZK ~ = K. As WZ ~ Z(B), this contradicts the max-
imality of W, and we have proved the statement.

~Ve have T ~ AW n B = (A n B)W ~ Z(B ), and moreover TA, 
; [A, AW] _ [A, W] ~ Z([A, B]) by Lemma 2.

Consider A G = A(A G n B). If T ~ (A G n B)’, then T ~ [A, B] be-
cause A[A, B]/[A, B] = A/(A n [A, B]) is abelian. It follows that T G =
T[A, T] is abelian. By induction + 1, so d(G) ~ n + 2
Now assume T ~ (A G n B )’ and consider A G T, which is normal in G

as T ~ Z(B).
We have AG T = A(AG T n B) = A(AG n B)T, -so 

= (A  n B)’, as T ~ Z(B). Let We have I A G Tn
n B ’ ~ = p m + t , where t &#x3E; 1 because and T ~ ( (A G n
n B ) T )’ . By induction derived subgroup of

)) has order p n - cm + t~, , so 
- ( m + t ) + 1 by Lemma 3. It follows that d(G) 5 n + 2 - t + 1 5 n + 2
and the proof is complete.

PROOF OF THEOREM 2. It is enough to go through the proof of The-
orem 1 once more, considering n = 1 and keeping in mind that the sub-
group T considered is actually B ’ .

PROOF OF THEOREM 3. The proof is by induction on n .+ m and fol-
lows exactly the same steps as Kazarin’s proof [4].

PROOF OF THEOREM 2’. Note that by Corollary 7.3.10 of [1] G there
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is a soluble normal subgroup M of G such that G/M is finite. As AM/M
and BM/M are finite p-groups, G/M = (AM/M)(BM/M) is nilpotent,
thus G is soluble. From this follows that G is locally finite. Let g E
E G(n + 2~, the ( n + 2)-th term of the derived series of G. There exists a fi-
nite set X = I ai, bi aci e A, b~ E B, i = 1, ... , r; j = 1, ... , s} such that

Let Ao = ~ ac2 ~ i = 1, ... , r), Bo = (B’, = 1, ... , s ~. Then Ao and Bo
are finite and (X) % ~Ao , Bo ~. By Lemma 1.2.3 of [1] there exists a finite
subgroup H of G such that ~Ao , = Ap-
plying Theorem 2 to H we obtain that H (n + 2) = l and thus G ~n + 2~ = 1,
as g was an arbitrary element of G ~n + 2~.

The proof is now complete.
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