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Localization of Differential Operators

and of Higher Order de Rham Complexes.

GABRIELE VEZZz0SI (*)

ABSTRACT - We study localization properties of some algebraic differential com-
plexes associated to an arbitrary commutative algebra which are higher or-
der (in the sense of differential operators) analogues of the ordinary de Rham
complex. These results should be considered, in the spirit of [11], as prelimi-
naries to the study of the cohomological invariants provided by these higher
de Rham complexes for singular varieties.

K:
A.

Ens:
[C, CT:
Ob(0C):

A-Mod:
K-Mod:
DIFF,:

Notations and Conventions.

a commutative ring with unit;

a commutative, associative K-algebra with unit;
the category of A-modules;

the category of K-modules;

the category whose objects are A-modules and whose mor-
phisms are differential operators (Section 1), of any (finite)
order, between them;

the category of sets;
the category of functors C — C, C being any category;

the objects of C, C being any category; we will write C e
€ Ob(C) to mean that C is an object of C;

(A, A)-BiMod: the category of (A, A)-bimodules, whose objects are or-

dered couples (P, P*) of A-modules and whose morphisms
are the usual morphisms of bimodules;

(*) Indirizzo dell’A.: Scuola Normale Superiore, P.zza dei Cavalieri, Pisa,

Italy.
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114 Gabriele Vezzosi

K(A-Mod) (resp. K(K-Mod), resp. K(DIFF,)): the category of com-
plexes in A-Mod (resp. K-Mod, resp. DIFF,);

If © is a full subcategory of A-Mod, a functor 7: D — D will be said
strictly representable in D if it exists T € Ob(D) and a fune-
torial isomorphism T = Homy(t, -) in [D, D];

If T, and T, are strictly representable functors ® — 9 with representa-
tive objects 7, and 7,, respectively, and ¢: T, — T, is a mor-
phism in [D, D] then its dual (representative) is the mor-
phism ¢V = @(7,)(id; ) € Homg (73, 71);

(A, A)>-BiMody, (resp. K(DIFF, o)) will be the subcategory of
(A, A)-BiMod whose objects are couples of objects in D (re-
sp. the subcategory of K(DIFF,) whose objects are com-
plex of objects in D);

A sequence T; — Ty — T3 of functors T;: D — D, i = 1, 2, 3, (and functo-
rial morphisms) with ®© an abelian subcategory of A-Mod,
will be said exact in [D, D]if it is exact in D when applied to
any object of D.

1. - Introduction.

In [14] A. M. Vinogradov associated to any commutative algebra A
and any differentially closed (see Section 1) subcategory © of A-Mod,
some natural algebraic differential complexes that generalize the well
known de Rham and Spencer’s ones (see for example [7] or [1]). One of
their features is the fact that their differentials may be differential op-
erators of arbitrary, finite, order. Recently, in [11] (see also [10] or the
shorter version [12]), it has been proved that under appropriate
smoothness assumptions on the ambient subcategory of A-Mod (satis-
fied, with appropriate choices of ©, for example, by smooth real mani-
folds of finite dimension and by regular affine varieties over alge-
braically closed fields of zero characteristic), the «higher» de Rham
complexes are all quasi-isomorphic to the usual (differential-geometric
and algebraic) one. This result suggests to look at the «tower» of all
these higher de Rham cohomologies in the singular case, to understand
which kind of informations and invariants they yield. This article is in-
tended as a preliminary step in this direction. In fact, we prove a rather
elementary and intuitive result: the higher de Rham complexes (of the
whole algebra A) «localized» with respect to an arbitrary multiplicative
part S are isomorphic to the higher de Rham complexes of the localized
algebra Ag. Therefore these cohomologies can be associated unique-
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ly ®) to a given singularity. This result also shows that the construc-
tions of all these higher complexes fit in the framework of sheaf
theory.

We address the reader to [2], where similar questions about singu-
larities are considered and localizations’ results for ordinary Spencer
cohomology are stated.

2. — Definitions.

We briefly recall the relevant definitions from [14] and [11] (see also
[10]). Let K be a commutative ring with unit and A a commutative, as-
sociative unitary K-algebra.

If P and Q are A-modules and a € A we define:

d,: Homg (P, Q) — Homg (P, Q),
D= {6,D:p—> DP(ap) — ad(p)}, peP,

(where juxtaposition indicates both A-module multiplications in P and
Q). For each a € A, 6, is a morphism of K-modules, and A being commu-
tative, we get:

0g 004 =0g00,, Va,aeA.
DEFINITION 2.1. A (K-)differential operator (DO) of order <s

from the A-module P to the A-module Q, 1is an element Ae
e Homg (P, Q) such that:

[0y 004 0...00,,1(A) =0, V{ay,ay,...,a,}CA.

The set Diff, (P, Q) of differential operators of order < k from P to @
comes equipped with two different A-module structures:

(i) (Diff, (P, Q), ©) = Diffi, (P, Q) (left),
7: A X Diff,, (P, Q) — Diff, (P, Q): (a, A)—>1(a, 4): p>ad(p);
(i) (Diff (P, Q), v") = Diff, (P, Q) (right),
1+ A X Diff, (P, Q) = Diff,, (P, Q): (a, A)—>1* (a, A): p—> A(ap).

() Remember that (higher) de Rham cohomologies are K-modules and not
A-modules, if A is a K-algebra, so we cannot directly localize them with respect to
a multiplicative part of A.
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We will often write, to be concise, 7(a, 4) = ad and 7% (a, 4) =
= a* 4. As easily seen, (Diff, (P, Q), (t, %)) = Diff{*’ (P, Q) turns out to
be an (A, A)-bimodule.

REMARK 2.2. Since
04,(4) =0 A(ayp) = aydp, VYa,e A, VpeP

we have Diffy(P, Q) = Homy (P, Q) in Ens and also Hom, (P, Q) =
= Diffy (P, Q) = Diffy" (P, Q) in A-Mod.

The obvious inclusions (of sets):
Diff (P, Q) > Diffy(P, @), k<l
induce monomorphisms of (A, A)-bimodules:
Diffi? (P, Q) > Diffi (P, @), ksl;

which form a direct system (over N) in (A, A)-BiMod (the category of
(A, A)-bimodules):

Diff§ V' (P, Q)= Diff (P (P, Q) ... > Diff{ (P, Q) ...
whose direct limit is the (4, A)-bimodule:
dir lig}) Diff{" (P, Q) = l;Jo Diff P (P, Q) = Diff ) (P, Q)

filtered by {Diff{" (P, Q)}nso0-
Using the two canonical forgetful functors:

Pr: (A, A) — BiMod — A-Mod: (P, P* )~ P,
Pr*: (A, A) — BiMod —» A-Mod: (P, P*)—P™,

we get the two filtered A-modules (Pr and Pr* commutes with direct
limits):

Pr(Diff (P, Q) =
= Diff(P, Q) = dir lim Diff,(P, @) = U Diff, (P, Q),
Pr (Diff (P, Q) =
= Diff* (P, Q = dir lim Difi,' (P, @ = U Diffyt (P, Q)

(where direct limits are to be understood, now, in A-Mod).
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Putting Diff, (4, Q) = Diff,,Q and Diff (A, Q) = Diff;" @, we obtain
the functors (3):

Diffi: Q = Diffi,Q,

Diffy" : Q— Diffy’ Q,

from A-Mod to itself. Remark 2.2 implies Diff;" = Diffy = Idsmod-

Defining D, (Q) = {4 e Diff, Q| 4(1) = 0}, which is an A-submodule
of Diff, Q but not of Diff;” Q, we get a functor Dy,: A-Mod — A-Mod,
together with the short exact sequence:
@ 0 —> Dy —> Diffy > Idsmoa —> 0
in [A-Mod, A-Mod], where %, is the obvious functorial inclusion and p;
is defined by:

Pe(Q): Diff, @ > Q: 4-4(1), A e Diff,Q

for any A-module Q. The functorial monomorphism Idgpeq =
= Diffy — Diff; splits (1), so that Diff;, = D,y @ Idamoq - D1y (Q) coincides
with the A-module Der,x(Q) of all @-valued K-linear derivations on A
(see [3], for example).

Let P and P* be the left and right A-modules corresponding to an
(A, A)-bimodule P‘*)=(P,P*) (P and P* coincide as K-modules,
hence as sets). Let’s denote by Diffy (P*) (resp. D, (P *)) the A-mod-
ule which coincides with Diffi, (P *) (resp. Dy (P *)) as a K-module and
whose A-module structure is inherited by that of P (and not of P*) (3).
For an A-submodule S c P we define submodules:

Diffd (ScP*)={4 e Diff g (P*)|4(A) c S} 2 G Dif2(P*),

DG (ScP*)={4eDj (P*)|A(A)cS} S DG, (P).

DEFINITION 2.3. Let 6 = (04, 03, ...0,,...) e NT =inv lirr})N’i . Writ-
n >

ing o(n) for (o,,...,0,), we define inductively, the functors
D,y : A-Mod — A-Mod, by:

Da(l) iD(Ol) ’
Dyny: P> Dy (Do, ..., 0,0 (P) € Diffy, . 5. (P)),
(®) We omit the obvious rules on morphisms.

(3) These A-module structures are well defined due to the fact that
(P, P*)=P™ is a bimodule.
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where, to simplify the motation, we put Diff;, ., in place of
Diff, o ... o Diff ;. .

For each e N7 and each n» e N,, we have an exact sequence in
[A-Mod, A-Mod]:

Io(my ° o To(n)
@ 0—> Da(n) > DO(n—l) °D"ﬁcon > D(ul,...,on-z,on-l +0n)

where I, is the natural inclusion and 7, arises from the «glueing»
functorial morphism

gon_l,a":Diﬁ‘ot,_l ODWUZ_)DW(J:_1+(1” ’
(95, ., 0, (P)1(4)a)=[4(a)](1),
AeDiffy (Difif(P), acA, PecOb(A-Mod).

Let © be a differentially closed subcategory of A-Mod (4) ([11]) and
P e Ob(D): the functor © — D: Q — Diff;, (P, Q) is then (strictly) repre-
sented by JX(P)eOb(D) and there is a universal DO j (P)e
e Diff, (P, J£(P)) such that the map

h+>hoj® (P)

establishes an A-module isomorphism between Hom, (J£(P), Q) and
Diff, (P, Q), natural in Q. J £ (P) is called the k-jet module of P in ® (or,
in Grothendieck’s terminology, [5], the module of principal parts of or-
der k of P); note that JX =J£(A) has also another A-module struc-
ture:

AXJESTE: (ay, a(GR(A)D)) = a(GR (AN agh), ag,a,beA,

which is denoted by J% , and makes (J&,Jg ,) into an object of
(A, A)-BiModg, .

The (strictly) representative objects AZ™ of the functors D, in D
are likewise defined (D being differentially closed) by

D,y = Hom, (AZ™, )

in[D, D] and are higher order analogues of the standard modules of dif-
ferential forms ([14], [10]). We also put, for the sake of uniformity,

(*) This means that © is full, abelian and all the differential functors
A-Mod — A-Mod, when restricted to ®, have values and are strictly representa-
ble in ®. A-Mod is itself differentially closed.
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AL =A. D is called smooth if A{’ is a projective A-module of finite
type.

ExampLE 24. () If © = A-Mod and o(n)=(1,...,1) (n times)
then AZ™ coincides with Q% ([4] and [9]) and AP =I/I¥*1, T being
the kernel of the multiplication A ®xA — A;

(i) If K = R (the field of real numbers), A= C* (M; R) (the alge-
bra of real valued smooth functions on a differentiable (°) manifold
M), D is the category of geometric (6) A-modules and o(n) = (1, ..., 1),
then AZ™ is the C = (M; R)-module of n-th order differential forms on
M. Note however that if o is arbitrary, we may have AZ™ = (0) even if
n > dlmRM ;

(iii) If A is noetherian (resp. complete local noetherian) then
D = A-Mody, the subcategory of moetherian A-modules (resp. D =
= A-Mod, , the subcategory of complete separable A-modules) is differ-
entially closed ([2]).

REMARK 2.5. If A is the affine algebra of a regular algebraic vari-
ety over a characteristic zero field (resp. the algebra of Example 2.4
(il)) then D = A-Mod (resp D of Example 2.4 (ii)) is smooth (7).

Now we can associate to any o e N7 a de Rham-like complex of dif-
ferential operators dR,(®) e K(DIFF, o) as follows:

D D
) dR,(D):0—>A 2% ALV —>A§<">d"‘”—*>” AZHD 5
with d§n+1) ﬁIanJrl) °j¢§n+1) (Aig(n)), Ia\(/n+1):-’s§;>1"+1(A£(n))—>A@0(n+l)
being the dual-representative of I, . 1) in (2). The «<higher» differential
dX, .1 is a differential operator of order < g, ., and dR,(D) is called
the higher de Rham complex of type o in D.

In the situations of the above examples, (8) coincides with the
canonical «algebraic» ((i)) and «differential geometric» ((ii)) de Rham
complex, respectively. We emphasize that the complexes dR, (D), ® be-
ing the category of geometric C® (M; R)-modules, are natural in the
category of smooth manifolds.

(®) Our differentiable manifolds are Hausdorff and with a countable basis.
() A C*(M; R)-module P is called geometric if each of its elements is uni-
quely defined by its values on the points of M = Spec(C~(M; R)) ie. if
ﬂ_ pP = (0), see Section 5.
peM
(") For the algebraic part, see [6] or [9].
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We also mention that the modules AJ”, 7 = 1, may be used to define
n-th order connections on A-modules, in exactly the same way as it is
usual with n = 1, both in the algebraic and in the differential geometric
context.

In [11] (see also [12] and [10]) it is proved that if © is smooth then all
the complexes dR, (D) are quasi-isomorphic: this is the case (see Re-
mark 2.5), for example, of a regular affine algebraic variety over a field
of characteristic zero with ® = A-Mod, A being the corresponding
affine algebra, or of a differentiable manifold M of finite dimension with
D = A-Mod,,,, A = C* (M; R).

REMARK 2.6. We give here three equivalent descriptions of differ-
ential operators between (strict) representative objects.

We work in a fixed differentially closed subcategory ® of A-Mod; all
representative objects will be wunderstood in D. Let F, and F,
be strict representative object of the functors F and F, respectively.
Suppose that F has an associated functor(®) Fy, with domain
(A, A) — BiMody,, such that F3 oDiffi*) is strictly representable
by JE(F,): this is the case, for example, of F = D,y or Diff,. Let

(4) A:Fl—)Fz

be a DO of order <k. Then, there exists a wunique A-Mod-mor-
phism

6)) <PA:Jk(F1)—>F2

which represents 4 by duality. Since J*(F,) is a representative object
of F o Diffi?, @4 gives a unique morphism in [D, DI

(6) @2 F— F? o Diffi .

Formulas (4), (5) and (6) give us three different descriptions of a DO
between (strict) representative objects. Formula (6) allows us to identi-
fy it with a functorial morphism which, as a rule, may be established
i a straightforward way and can, then, be used to get a natural DO
using (4). The following examples show this procedure at work in two
canonical cases; we assume for simplicity © = A-Mod

(®) For a more rigorous statement, see [11].
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() Higher de Rham differential d(,,.

If & = Dyny, F =Dy -1y and k = o, we can take as (6) the natural
inclusion

Dyny @ Dgn -1y © Diffo-; ;
(4) is then dye: AT~ D 5 Ao

(ii) «Absolute» jet-operator jj.

In this almost tautological case, F = Hom, (4, ‘) and & = Diff, =
= Hom} (4, ) o Diffi ; if we start from the identity

Id: HomS, (4, ) Diff" = Diff, — HomS (4, ) o Diffy’ = Diff,
then (4) becomes j,: A — J*.

The A-modules AZ™ are generated by elements d,)(a;dye - 1)-
(ag...dyy(ay)...), a1, @z, ..., a, € A (reference to D will be omitted,
unless it will be necessary).

ExampLE 2.7. If A= K[x,,...,x,], K being any commutative
ring, and q > 0, then ALyoa =1/19"" is a free A-module on the set of
monomials (n={1,...,n}cN):

{ld(x;)), [d(x;,) - d(@)], ..., [d(,,)...d@ )|, ..., 7pem,
J1SJes e, SRS L S}

where d:A—>I:a—~1Qa—a®1 and [E] denotes the class modulo
I9%! of an element & of I. Moreover, setting

g, =[d@y)), ., &r, .y = d(@y,)...d(,)],
we have for any fe A:
) dp(F) =SV (Peg+ o + SV (Pen 0

where the elements Vi (f), ..., V, . (f)eA are defined by the fol-
lowing identity:

f(xl + t17 ceey T + tn) —f(xlv xn) =
=2V (Nt + .+ 2V, (Ot

(for example, if n = 1, we have V, _ ; (x°) = (j) " and Vy  iisa

1 limes t trmes
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derivation of order <1i). A9 is also free over the set:

{dig @:), dig) (@}, ), ..., digy (X, )Ty, ooy Ty EM,
SJe,,mSres . <7}

and there is a more complicated formula analogous to (7).

If 0, T e N3 with 0 = 7 (i.e. 0; = 1;, Vi = 1), then we have a sequence
of monomorphisms in [D, D], D,y < Dy (since a DO of order <k is
also a DO of order < k', Vk' = k); this induces a sequence of ®-epimor-
phisms AZ™ — AZ™, on representatives. All these epimorphisms, Vn >
> (0, commutes with higher de Rham differentials and so define a mor-
phism in K(DIFF, o)

® dR,(D) - dR. (D)

(if 0 = 7). We may then consider the (®-epimorphic) inverse system
{dR;(D)},.n- and give the following:

DEFINITION 2.8. The infinitely prolonged (o7, simply, infinite) de
Rham complex of the K-algebra A in D, is the complex in
K(DIFF, o)

dR, (D; A)=inv lim dR,(D),
(9) geN?

d(e) A, =)
dR.(D; A):0>A —> AL —> AL 2> S AL s

where AS™ - =inv (limNn AZ™, n > 0.

The cohomology of this complex (or of some «finite» (°) version of
this) should contain interesting differential invariants of the singulari-
ty (see the Introduction), when A is taken to be the corresponding local
ring: we plan to return on this question in a subsequent article.

3. — Change of rings and localization of differential operators.
From now on, every rebresentative object will be tacitly referred to

the whole category of A-(B-)modules, ie. @ = A-Mod (B-Mod),
AR = Ay and AP = A

(®) «Finite» in the sense that we may take the inverse limit only over boun-
ded (resp. bounded in the derived category) higher dR-complexes.
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Let K—>A—">B be unitary commutative ring morphisms,
dig, ik A— ADy and d gy :B— AY) be the canonical derivations
and C4p: B-Mod — A- Mod be the «change of ring»-functor. The func-
tor D a4k ©Ca\p: B-Mod — A-Mod can be viewed as a functor
B-Mod — B-Mod (1) and, in this form, it is strictly representable (see
Proposition 6 of the Appendix) by B ®4AY):

D), 4k © Cars = Homp (B ®4AY),, ).

The B-Mod-morphism dual to:

Pq, AIB
Dy, six —> Do), 4k © Carg

V'—>V0h,
is just:
@V = @) y5 BO,AL — Af)

b® d(q)A/K (a)—b- d(q), B/K (h(a)).

PROPOSITION 3.1. @, 45 has a left inverse (hence is monic) iff
VP € Ob(B-Mod) and VV e D) 4x(Ca\g(P)), there exists an «exten-
sion» V of V to B, i.e. a Ve Dy pg(P) such that

A—LP

h -
v
B
18 commutative.
Proor. It is a corollary of Proposition 6 of the Appendix. ®
REMARK 8.2. If i, AY) — coker (¢, 4p) is the natural epimor-
phism, it is easy to verify that the couple (B, A, 0d ) px) is universal
with respect to B/K-derivations V of order < q from B to a B-module P

such that Voh =0: each of these derivations factorizes unmiquely
through a B-homomorphism fy as V =fyo(Adg0dyg) pk). Since the

(19 Using the B-module structure of the argument.
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canonical B/A-differential of order < q
dig), a’ B— A

is also a B/K-derivation of order <gq, by the wuniversalily of
(B, A4 0d), Bk), we get a canonical B-homomorphism

Yg: coker (@) 4 5) — AQ,

which is epic since AY), is generated over B by {dy), pia(b)|b € B}. Note,
however, that while for q =1 (ordinary derivations) ¥, is also monic
([9]) and hence an isomorphism of B-modules, this is no longer true for
q>1.

We prove now an elementary (and intuitively obvious) result on lo-
calization of differential operators:

PropPOSITION 3.3. Let P and @ be A-modules and S a multiplica-
tive part of A. For each A € Diffy, 4k (P, Q) there exists a unique Ag e
€ Diffy, ayx (Ps, Qs) such that the following diagram is commutative:

P—A>Q

|

Py — Qg
4g

(where the vertical arrows denote localization morphisms).
MOTeOUe'r, ’Lf Ae D(k), A/K(Q) then AS € D(k), AS/K(QS)'

PRrROOF. Uniqueness. We use induction on the order k of 4. For k =
= 0 the statement is standard; let us suppose the uniqueness proved for
any DO of order <k. If 435 and 4g are two elements in

Diffi 11, agix (Ps, Qs) satisfying (10) for a given A4 e Diffy ;1 ax (P, Q),
we have

s-ap(2)=0, vpep.
Let §=p/sePs, pe P, seS; then (45— A5)(sp/s) =0 so that:
(45— A5)(spls) = [63/1<As—49+ %("S_Aé)](%) =0.

The commutativity of (10) implies that both 6,/ 45 and 6,/ 4 satisfy
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the commutativity of (10) when 4 is replaced by 6,4 (which is of order
< k): the induction hypothesis then gives 6,/ (45— 45)(p/s) =0. So
we get (s/1)(dg — Ag)(p/s) = 0 and therefore (45 — Ag)(p/s) =0: Ag =
= Ag.

Existence. We again use induction on ke N.

For k = 0, 4 is an A-homomorphism and A4y is the usual localization
Ag-homomorphism.

Suppose we have defined A5 for each 4 e Diff, 4x(P, Q). Let
A4 € Diffy + 1, ax (P, Q) and define for pe P, se S

ay As(g)ié[A(m—(asA)s(%)]

which makes sense by induction hypothesis. We first prove that
(11) is well defined: if & = p/s = ¢/r, p, g€ P, r, s € S then there exists
t € S such that trp = tsq; consider

A(trp) (644)(p) + trA(p)

A2) —5— ~ 04 d)s(8) = 1 1

— (04 A)5(8).
Localizing the identity ad, + b* d, =04, a, be A, we get:

+
(@6,4 + b7 0,4)5= L (8,05 + (—1"—) (8ad)s = (bupd)s

which can be used in (12), with a =tr, b = s, to get

(6,4)(p) + trA(p)
1 1

= (01 A)5(8) =

_ (8,4)p) N tr A(p)
- 1 1

- &.6,205(8) - (04 2)5(58)

(8, 4)(p)

but 1

= (6”41)5(—’{—) = (6"A)S(%), by induction, and then

).

— (04 A)s(E) and using the same

A(t trA
(1”’) — (B d)s(E) = ’T(p) -2

» |3

(63A)S(%) = trsAs(

But

A(t A(t
(1”’) — Bur A (£) = (fq)
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method we get:

A(tsq) _tsA(p) s q\ _ q
L @ = " - B 6, a)(L) = treas( L)

so that Ag(p/s) = A5(q/r). This prove that (8.11) is well defined.

It is straightforward to verify that (3.11) is then a DO of order
<k +1 from the Ag-module Pg to the Ag-module Qg.
The last assertion of the Proposition follows from A4g(1/1) = A(1)/1 =
=0. =

COROLLARY 34. If A e Diffy ax(P, Q) and V € Diff; 4x(Q, T) then
(V oA)S = VS oAS;

Proor. It follows immediately from the uniqueness part of the pre-
vious proposition. ®

Therefore the usual localization functor Locg: A-Mod — Ag-Mod
extends to a functor DIFF, — DIFF 4.

COROLLARY 3.5. Let S be a multiplicative part of A and P be an
Ag-module. Then every V € Dy, 4x(P) (P viewed as an A-module via
the localization morphism locg: A — Ag) admits a unique «extension»
VS € D(k), AS/K(P) such that V = VS OIOCS.

ProoF. Apply Proposition 3.3, observing that the localization with
respect to S of P, viewed as an A-module via locg, coincides with P (as
an Ag-module). ®

The previous results enable us, 4 — A4 being additive, to build, for
any multiplicative part S of A and o e N7, the S-localized de Rham
complex of type o of A/K:

(do(1))s

(13)  (dR,, 4x)s: 0 — Ag —> (AZD)s —

o) (do(n + 1))s on+1)
= ... = (AYK)s —> (AYx 7 )s— ...
4. - Localization of Higher de Rham Complexes.

In this Section we prove the main result of this paper (Proposi-
tion 4.3).

PROPOSITION 4.1. Let S be a multiplicative part of A. Then:
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@) for any ce N and n =1 we have a canonical Ag-Mod-iso-
morphism @§™: (AZR)s = AGvk;

(i) Vk=1 we have a natural Ag-Mod-isomorphism (J%x)g=
= Jz’fls/K .

Proor. We merely sketch the argument. (ii) is a consequence of (i)
for n = 1, since J%x = A¥% @ A. To prove (i) we proceed by induction
on n: let us show that (i) holds for » = 1. Consider the morphism in
[As-Mod, Ag-Mod]:

® = @0y, 454" Dioy), asik = Doy, aik © Caras »
@(P)V) =Volocg,

(14)

(locg: A — Ag being the localization morphism), and its dual Ag-Mod-
morphism (recall Proposition 6.3):

PV =@V (AfR)s = As®a ALY — ALl )
(15) ( Qg

?) ® dio,), wk (@) H(%O’)d(ol),A/K(%)-

Now, Corollary 3.5 tells us that (14) is an isomorphism (the exis-
tence part gives surjectivity while the uniqueness gives injectivity)
and so, by Proposition 6.1, (15) is an isomorphism, too.

Suppose now that (i) holds for each o and each n < k. We use the
functorial isomorphism:

JE @5 () =J*(),

(where the upper bold dot over ® indicate that the A-module structure
on the tensor product is inherited by J* (1)), the short exact sequences
dual to (2):

\
T o(n)

A‘(‘ir/(lgt~2),0n—1+un) > JZ}LK(AZQ— 1)) —_— AZ%()_,Q
and standard properties of localization, to get

s Aqk-D o e polk—1)

(AR g = dlk, + ®adux s _ T, + BasAagix
A (Y, ) )
‘no(n),A/K S a(n), AIK))S

(1) Remember that (J*, J%) is an (A, A)-bimodule.
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(in the last passage, we used induction hypothesis and (ii)). By
localizing

Vv
To(n)
(o(n —2), _1+0y) (0] ok —1)
Agg " Ehommir o) — Jih (AQ 0k )

with respect to S, using the induction hypothesis and (i) we finally
get

. —~ . _1 V —~ .
(m (7 3y, ik ))s = 1M (S (7 Yy k) = M (7 Sy, ag/) -

The explicit expression of @§™ is, then

o Aon), 4K (al Aon - 1), A/K (G»z N (" docr), a/k (Qy ). )) ) _

a(n)
(16) @g 3

) a; (17 ay —1 a,,
=?do(n),AS/K Tda(n—l),As/K(T---(Tda(l),As/K(T))"') . n

REMARK 4.2. In [16] Proposition 4.1 (i) is stated in the particular
case 0 =(1,...,1, ...) and S = {s" }, >0 with s non nilpotent.

We are now ready to prove the main fact:

PROPOSITION 4.3. Let S be a multiplicative part of A. Let, for each
0e N3, (dR, 4k)s, respectively dR, 4., denote the complex (13), resp.
the complex dR,(Ag-Mod). Then the faomily of Ag-Mod-morphisms
{@3™ |n = 0} defined in Proposition 4.1, realizes an isomorphism:

(dR, 4x)s =dR, sk

of complexes in DIFF 4.

Proor. By functoriality of dR-complexes, every k-algebras mor-
phism %: A — B defines a morphism of complexes

h. : dRo, AK ™ dRo, B/K »

such that 2° = h in the following way. Fix an % > 0 and consider the A-
module Cy\g(AZY); since D, ax: A-Mod — A-Mod is strictly repre-
sentable by A%, we have an isomorphism of A-modules

1) Dy, ak (Carg (AZR)) = Homy (ALY, Ca\p(AZR)) .
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In the lhss. of (17) there is a distinguished element 9, gk
(Bomy, Brark (@1))... )ay) =

= o, 5 (@) Ao - 13, 5k (R (O — ) oy, 515 (... (R (02) Ay, g (R(a2)))....)))
whose image via (17) we define to be
R ALR > AR
then, explicitly
ho™ (ag (doguy, ik (@1 - doqr), wk (@n)...))) =
= 1) Aoy, i (A(@1).... (R (A - 1) oy, i (R (@r)))....) .

It is then immediate to verify that A°® = {h°™ |n = 0} is a morphism of
complexes as we claimed.
Taking & = locg, we get a diagram (Vn = 0):

da'( +1),A/K
Oy ————— >

Aa’(n a(n + 1)
loiy A Aire \13:33
(A57) locg locg  (AFH Vg
@%‘"’\4 ( ;/so?s‘“ D
AL ——> AZED
Qon + 1), 45/K

in which the square is commutative and also the two lateral triangles
are proved, by a straightforward calculation using formula (16), to be
commutative. Therefore, by the uniqueness part of Proposition 3 the
family {@¢™ |» =0} defines a (iso)morphism of complexes. ®

Therefore there is only one natural way to study, via the higher de
Rham complexes, an algebraic singularity: we can either localize the
«global» dR,-complex or equivalently localize the algebra A and then
consider its «global» dR complex.

5. - Geometric modules.
We prove that Proposition 4.3 still holds if we restrict ourselves to

the subcategory of (prime) geometric modules. This case is crucial for
differentiable manifolds (see Example 2.4 (ii) or [15]).
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DEFINITION 5.1. IfA is a K-algebra, an A-module P is (prime) ge-
ometric if

(18) N pP=(0).

p e SpecA

Therefore, for a geometric A-module each element is uniquely de-
fined by its «values» at every prime of A. The full subcategory of
A-Mod, whose objects are the geometric modules is denoted by
A-Mod,,,. If A is reduced then A is geometric as an A-module and
A-Mod,,,, is differentially closed ([11]): we will suppose from now on
that A is reduced.

There is an obvious geometrization functor:

(')geom, 4:A-Mod — A'MOdgeom

. P
P (P)geom, A=
N pP
p e SpecA
and moreover we have
Ajl(-ﬁ;odmm = (Ag(—rl\bfzod)ge()m, A> VoeN o: ’ Vn >0 )

T Motgen B = (Vi oa PVgeom, 4, Yk >0, VP € Ob(A-Modgeor) .

Thus the geometrization functor can be used to build all the representa-
tive objects we need. We will then denote by dR, seom, 4x the complex
dR,(A-Mod,,, ), for any 0 e N7 .

We have a result similar to that of Proposition 4.3, in A-Mod,eom:

PROPOSITION 5.2. Let A be a reduced K-algebra, S a multiplicative
part of A and o € N3 . Then, keeping the notation of Proposition 4.3, we
have an isomorphism in K(DIFF, As-Modgeqm):

(dRa, geom, A/K)S = (dRa, AS/K)geom = dRa (AS 'MOdgeom) .

The proof of Proposition 5.2 is a direct consequence of Proposition
4.3 and of the following

LEMMA 5.3. The S-localization functor «commutes» with the ge-
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ometrization functor, i.e. the diagram of functor

(')geom, A
A-Mod —"25 A-Mod,,,,

Locg l l Locg| 4-Modyeon

As'Mod _éAs'Modgeom
*)geom, Ag

s commutative.

ProoF. Since the S-localization functor Locg commutes with quo-
tients, is exact and commutes with inductive limits (and then with ar-
bitrary intersections, [8] p. 16), we have canonical isomorphisms

P P
Locs (P)geom, 4) = L= .
( n QP) N psPs
s

p  SpecA p e SpecA

Since p~>pg establishes a bijection between {p e SpecA|p NS =g}
and SpecAg and for each ideal a in A, ag=Ag iff aN S = @, we get
N psPs= NpPs

p e SpecA p e SpecAg
and the thesis of the Lemma immediately follows. =

REMARK 54. In fact, Propositions 4.3 and 52 are concrete in-
stances of a more general principle which may be loosely stated in the
Sollowing way: if D c A-Mod is a «good» (i.e. preserved under «appro-
priate» (12) changes of algebras) differentially closed subcategory then
the S-localizations of the higher jet-Spemcer ([11], [10]), higher de
Rham'’s etc. complexes are isomorphic to the higher jet-Spencer, higher
de Rham’s etc. complexes of the localized algebra Ag.

c

6. — Appendix.

ProposITION 6.1. Let T, T, and T be strictly representable func-
tors A-Mod — A-Mod with representative objects 7., T, and t3, respect-
wely. Then:

(1%) What is «appropriate» depends on the geometry we are dealing with: if
we are doing algebraic geometry we may allow all changes of algebras, only flat
ones, only étale ones, etc.; if we are doing differential geometry, we may limit
ourselves to changes of algebras which arise as pullbacks of smooth morphisms of
manifolds.
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\%2
@A 0->T L T, is exact iff T, L 7, — 0 is exact and right-
splits (i.e. there exists r:t,—> Ty such that FY or =1id,);
A\
(i) T, A Ty — 0 is exact iff 0 — 1, A T, 18 exact and left-
splits (i.e. there exists 1: v, — T, such that oGV = id,,);
\% \Y%
(i) 0T, LT, %5 T, 0 is exact iff 015 > 75 —>
L 7, — 0 is exact and splits (left or right, since left <> right).
REMARK 6.2. Observe, however, that none of these splittings is
canonical.

Proor. (i) is dual to (ii) and (iii) follows from known facts about
Homy, (-, -) and (i). Let us prove (ii).

Suppose G is epic, then G(rp): Homy, (7, 72) > Homy, (74, 7,) is
epic, so it exists an le Homy (7, 7o) such that G(zr3)()) =1l.GVY =
=id,,.

C(Z)nversely, suppose that GV has a left inverse . Let P be an
A-module:

G(P): Homy (11, P) —» Homy (z,, P);
pick a y € Homy (15, P), then 9ol is sent by G(P) to w. B

PROPOSITION 6.3. Let K—A —'> B be morphisms of commutative
rings with unit, n >0 and Cu\p: B-Mod — A-Mod be the «change-of-
rings» functor. Then:

(i) Dny, ak o Ca\g: B-Mod — B-Mod s strictly representable by
B® A AX;}( ’

(ii) Diff, ak o Ca\g: B-Mod — B-Mod is strictly representable by
BQ®J%k-

Proor. The two proofs are analogous: we prove (i). The canonical
A-Mod-morphism

Diuy, ik (Carg (P)) = Homy (ATY, Ca\z(P))

is also a B-Mod-morphism and we conclude using the canonical
B-Mod-isomorphism:

Hom, (Q, C4\(P)) = Homg (B ®4Q, P),
Y9 b®q—by(g),
with inverse ;\ée— X
1@ =x(1®q)
where @ is any A-module, be B and g Q. ®
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