RENDICONTI del Seminario Matematico della Università di Padova

D. BAINOV

V. PETROV

Oscillation and asymptotic behaviour of neutral equations with distributed delay

Rendiconti del Seminario Matematico della Università di Padova, tome 95 (1996), p. 253-261

<a>http://www.numdam.org/item?id=RSMUP_1996__95__253_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 95 (1996)

Oscillation and Asymptotic Behaviour of Neutral Equations with Distributed Delay.

D. BAINOV(*) - V. PETROV(**)

ABSTRACT - Consider the neutral differential equation

$$\left[x(t) + \int_{0}^{\sigma(t)} x(t-s) d_{s} r_{1}(t, s)\right]' + \int_{0}^{\sigma(t)} x(t-s) d_{s} r_{2}(t, s) = 0.$$

The asymptotic properties of the nonoscillatory solutions of the equation are studied. Sufficient conditions are also given to guarantee that all solutions oscillate.

1. - Introduction.

In the recent few years a considerable number of papers were published, devoted to the oscillatory properties of first order linear neutral differential equations. Up to now equations of the following form have been investigated

$$[x(t) + px(t - \tau)]' + qx(t - \sigma) = 0,$$

$$[x(t) + p(t)x(t - \tau)]' + q(t)x(t - \sigma) = 0,$$

$$\left[x(t) + \sum_{i=1}^{k} p_i x(t - \tau_i)\right]' + \sum_{i=1}^{m} q_i x(t - \sigma_i) = 0,$$

$$\left[x(t) + \sum_{i=1}^{k} p_i(t)x(t - \tau_i)\right]' + \sum_{i=1}^{m} q_i(t)x(t - \sigma_i) = 0.$$

(*) Indirizzo dell'A.: Academy of Medicine, Sofia, Bulgaria.

(**) Indirizzo dell'A.: Higher Institute of Mechanical and Electrical Engineering, Centre of Mathematics, Plovdiv, Bulgaria. To these equations the papers [1]-[3], [6]-[10] were devoted. We shall note that nonautonomous neutral differential equations with distributed delay have not been studied up to now.

In the present paper the equation

(1)
$$\left[x(t) + \int_{0}^{\sigma(t)} x(t-s) d_{s} r_{1}(t, s)\right]' + \int_{0}^{\sigma(t)} x(t-s) d_{s} r_{2}(t, s) = 0$$

is investigated with initial function $\varphi(t) \in C([a, t_0], \mathbb{R})$, $(a = \inf_{\substack{t \ge t_0}} \{t - -\sigma(t)\})$, where the integrals in (1) are in the sense of Riemann-Stieltjes. Some ideas of [2] are developed, the asymptotic behaviour of (1) is investigated and sufficient conditions for oscillation of all solutions of (1) are obtained.

2. – Preliminary notes.

We shall say that conditions (A) are met if the following conditions hold:

A1)
$$\sigma(t) \in C([t_0, \infty), (0, \infty)),$$

A2) $\lim_{t \to \infty} (t - \sigma(t)) = \infty.$

Conditions (A) imply that $a = \inf_{t \ge t_0} (t - \sigma(t)) > -\infty$. Introduce conditions (B):

B1)
$$x \in C([a, \infty), \mathbb{R}),$$

B2) $x(t) + \int_{0}^{\sigma(t)} x(t-s) d_s r_1(t, s) \in C^1([t_0, \infty), \mathbb{R}).$

Consider equation (1) with the initial condition

(2)
$$x(t) = \varphi(t), \quad t \in [a, t_0].$$

DEFINITION 1. The function x(t), satisfying conditions (B) is said to be a solution of the initial value problem (1)-(2) if x(t) satisfies (1) for $t \ge t_0$ and if the relation (2) holds.

Introduce the following conditions (C):

- C1) $r_i(t, 0) = 0, t \in [t_0, \infty), i = 1, 2.$
- C2) $r_i(t, \sigma(t)) \in C([t_0, \infty), \mathbb{R}), i = 1, 2.$
- C3) $r_1(t, s)$ is continuous at s = 0 for any fixed $t \in [t_0, \infty)$.

C4) The functions $v_i(t) = \sup_{s \in [0, \sigma(t)]} |r_i(t, s)|, t \ge t_0, i = 1, 2$ are bounded.

C5) For any fixed $t \ge t_0$, $r_i(t, s)$ are functions of bounded variation with respect to s in $[0, \sigma(t)]$. $\min_{\{\sigma(t_1), \sigma(t)\}}$

C6)
$$\lim_{t_1 \to t} \int |r_i(t_1, s) - r_i(t, s)| ds = 0, \ i = 1, 2.$$

LEMMA 1. Let conditions (A) and (C) hold. Then for any initial function $\varphi(t) \in C([a, t_0], \mathbb{R})$ the initial value problem (1)-(2) has an unique solution.

Lemma 1 is obtained as a corollary of [4]. Introduce the following conditions (D):

D1) $r_1(t, s)$ is nonincreasing with respect to s for $s \in [0, \sigma(t)]$. D2) $r_2(t, s)$ is nondecreasing with respect to s for $s \in [0, \sigma(t)]$. D3) $\int_{t_0}^{\infty} r_2(t, \sigma(t)) dt = \infty$.

DEFINITION 2. The solution x(t) of (1) is said to oscillate if there exists an increasing sequence $\{t_n\}_1^{\infty}$, such that $\lim_{n \to \infty} t_n = \infty$ and $x(t_n) =$

= 0, $n \in \mathbb{N}$. Otherwise it is said to be nonoscillatory.

DEFINITION 3. The function x(t) is said to eventually have the property K, if there exists t_0 such that for $t \ge t_0$ the function has the property K.

By Definition 3 the nonoscillatory solutions of (1) are characterized as being eventually positive or eventually negative.

Let

(3)
$$z(t) = x(t) + \int_{0}^{\sigma(t)} x(t-s) d_s r_1(t,s) d_s$$

Then

(4)
$$z'(t) = -\int_{0}^{\sigma(t)} x(t-s) d_s r_2(t,s).$$

We shall prove several lemmas which are essentially used in the proof of the main results.

LEMMA 2. Let conditions (A), (C) and (D) hold and let

(5) $r_1(t, \sigma(t)) \ge p > -1.$

If x(t) is an eventually positive solution of (1), then x(t) is a bounded function.

PROOF. Let x(t) be an eventually positive solution of (1). From (4) it follows that $z'(t) \leq 0$ eventually and z(t) is a nonincreasing function. D3) implies that z(t) is not an eventually constant function and thus either z(t) < 0 or z(t) > 0 eventually. Suppose that z(t) < 0. Then from (3), (5), C1) and D1) there follows the estimate

$$0 > x(t) + \int_{0}^{\sigma(t)} x(t-s) d_{s} r_{1}(t,s) \ge x(t) - \max_{[t-\sigma(t),t]} x(s) v_{1}(t) =$$
$$= x(t) + \max_{[t-\sigma(t),t]} x(s) r_{1}(t,\sigma(t)) > x(t) - \max_{[t-\sigma(t),t]} x(s) .$$

From the above inequalities it follows that there exists $t_1 > t_0$, such that for $t > t_1$ the inequality

(6)
$$x(t) < \max_{[t - \sigma(t), t]} x(s)$$

holds. By virtue of condition A2) we can choose \overline{t} such that $t - \sigma(t) \ge t_0$ for $t \ge \overline{t}$. Then from (6) we have

(7)
$$x(t) < \max_{[t - \sigma(t), t]} x(s).$$

Suppose that x(t) is unbounded. Then $\limsup_{n \to \infty} x(t) = \infty$ and there exists a sequence $\{t_n\}_{n=1}^{\infty}$, such that $\lim_{n \to \infty} t_n = \infty$, $\lim_{n \to \infty} x(t_n) = \infty$ and $\max_{[t_n, t_n]} x(s) = x(t_n)$. The last inequality however contradicts (7).

Let z(t) > 0 eventually. Since z(t) is a nonincreasing function, there exists the finite limit $\lim_{t\to\infty} z(t) = c \ge 0$. We shall prove that $\liminf_{t\to\infty} x(t) = 0$. Suppose that this is not true, i.e. $d = \liminf_{t\to\infty} x(t) > 0$. There exists $\overline{t} \ge \overline{t}$ such that x(t) > d/2 for $t \ge \overline{t}$. From (4) and D2) it follows that

$$z'(t) \leq -\min_{[t-\sigma(t), t]} x(s) r_2(t, \sigma(t)).$$

By virtue of A2) we can choose \tilde{t} such that $t - \sigma(t) > \overline{t}$ for $t \ge \tilde{t}$. Then

256

from the above estimate we have

$$z'(t) < -\frac{d}{2}r_2(t, \sigma(t)), \quad t \ge \tilde{t}.$$

Integrate the last inequality from \tilde{t} to t and obtain

$$z(t) \leq z(\tilde{t}) - \frac{d}{2} \int_{t}^{\tilde{t}} r_2(s, \sigma(s)) ds.$$

D3) implies that $\lim_{t\to\infty} z(t) = -\infty$, which contradicts the inequality z(t) > 0 eventually. Thus $\liminf_{t\to\infty} x(t) = 0$. Suppose that x(t) is an unbounded function. As above we choose a sequence $\{t_n\}_1^\infty$ with the respective properties. Since $\liminf_{t\to\infty} x(t) = 0$, there exists a sequence $\{\tau_k\}_1^\infty$, such that $\lim_{k\to\infty} \tau_k = \infty$ and $\lim_{k\to\infty} x(\tau_k) = 0$. Let $n, k \in \mathbb{N}$ be large enough and such that $t_n > \tau_k$. Then the following estimate is valid:

$$z(t_n) - z(\tau_k) > x(t_n) - x(\tau_k) + \int_0^{\sigma(t_n)} x(t_n - s) d_s r_1(t_n, s) \ge$$
$$\ge x(t_n) - x(\tau_k) + \max_{[t_n - \sigma(t_n), t_n]} x(s) r_1(t_n, \sigma(t_n)) \ge x(t_n) - x(\tau_k) + px(t_n)$$

Thus we have

$$z(t_n) - z(\tau_k) > x(t_n)(1+p) - x(\tau_k).$$

The choice of the sequences $\{t_n\}$ and $\{\tau_k\}$ and (5) imply that $z(t_n) - z(\tau_k) > 0$ and since $t_n > \tau_k$, we get to a contradiction with the fact that z(t) is an eventually nonincreasing function.

LEMMA 3 ([5]). Let $p, \tau \in C([t_0, \infty), (0, \infty))$ and $\lim_{t\to\infty} (t - \tau(t)) = \infty$. If

$$\liminf_{t\to\infty}\int_{t-\tau(t)}^t p(s)\,ds>\frac{1}{e},$$

then the inequality

$$y'(t) + p(t)y(t - \tau(t)) \leq 0$$

has no eventually positive solutions.

257

).

3. – Main results.

THEOREM 1. Let conditions (A), (C), (D) and (5) hold. Then each non-oscillatory solution x(t) of (1) tends to 0 as $t \to \infty$.

PROOF. Let x(t) be an eventually positive solution of (1). From Lemma 2 it follows that the function x(t) is bounded. Then b = $= \limsup_{t \to \infty} x(t) < \infty$. We shall prove that b = 0. Suppose that this is not true and choose $\varepsilon > 0$ so that $\varepsilon < (b(1 + p))/(2 - p)$. There exists a sequence $\{t_n\}_1^{\infty}$ such that $\lim_{n \to \infty} t_n = \infty$ and $\lim_{n \to \infty} x(t_n) = b$. Then we can choose $\overline{t} \ge t_0$ and N so that $|x(t_n) - b| < \varepsilon$ for n > N and $x(t) - b < \varepsilon$ for $t > \overline{t}$. Since x(t) is a bounded function, z(t) is bounded too. Then the fact that z(t) is a nonincreasing function implies the existence of the finite limit $\lim_{t \to \infty} x(t) = c$. As in the proof of Lemma 2 it is shown that $\liminf_{t \to \infty} \tau_k = \infty$ and $\lim_{k \to \infty} x(\tau_k) = 0$. There exists K such that for k > K we have $x(\tau_k) < \varepsilon$. From the sequences $\{t_n\}_1^{\infty}$ and $\{\tau_k\}_1^{\infty}$ choose the pair τ_j , t_i so that j > K, i > N, $\tau_j < t_i$ and $t_i - \sigma(t_i) > t_0$. Then the following estimate is valid:

$$\begin{aligned} z(t_i) - z(\tau_j) &= x(t_i) - x(\tau_j) + \\ &+ \int_0^{\sigma(t_i)} x(t_i - s) \, d_s \, r_1(t_i, \, s) - \int_0^{\sigma(\tau_j)} x(\tau_j - s) \, d_s \, r_1(\tau_j, \, s) \ge \\ &\ge x(t_i) - x(\tau_j) + \int_0^{\sigma(t_i)} x(t_i - s) \, d_s \, r_1(t_i, \, s) \ge \\ &\ge x(t_i) - x(\tau_j) + \max_{[t_i - \sigma(t_i), \, t_i]} x(s) \, r_1(t_i, \, \sigma(t_i)) \ge \\ &\ge b - \varepsilon - \varepsilon + p(b + \varepsilon) > 0 \,. \end{aligned}$$

(The last inequality follows from the choice of ε .) Thus, for $\tau_j < t_i$ we obtained that $z(\tau_j) < z(t_i)$, which contradicts the fact that the function z(t) is nonincreasing. Hence $\limsup_{t \to \infty} x(t) = 0$ and $\lim_{t \to \infty} x(t) = 0$. If x(t) is an eventually negative solution of (1), then since (1) is a linear equation, -x(t) is an eventually positive solution of (1), which implies that in this case as well $\lim_{t \to \infty} x(t) = 0$.

In the same way the following theorem is proved:

THEOREM 2. Let conditions (A), (C), D2) and D3) hold and let $r_1(t, s)$ be nondecreasing with respect to s for $s \in [0, \sigma(t)]$.

If $r_1(t, \sigma(t)) \leq p < 1$, then each nonoscillatory solution of (1) tends to 0 as $t \to \infty$.

REMARK 1. Theorem 1 generalizes or generalizes and extends a number of known results, for instance Theorem 3 iv) ([2]), Theorem 1 ([10]), Theorem 5 ([7]), Corollary 3b ([1]).

REMARK 2. The condition $r_1(t, \sigma(t)) \leq p < 1$ in Theorem 2 is essential. We shall illustrate this fact with the following example:

EXAMPLE 1 [8]. Consider the equation

(8)
$$[x(t) + x(t-2)]' + q(t)x(t) = 0,$$

where

$$q(t) = rac{(1/t^2) + 1/(t-2)^2}{\psi(t) + 1/t}$$

and $\psi(t)$ is the 4-periodic function

$$\psi(t) = \begin{cases} 0, & t \in [0, 1], \\ t - 1, & t \in (1, 2], \\ 1, & t \in (2, 3], \\ 4 - t, & t \in (3, 4]. \end{cases}$$

Clearly, equation (8) is a particular case of (1), moreover $r_1(t, \sigma(t)) \equiv 1$. It is immediately verified that $x(t) = \psi(t) + 1/t$ is a nonoscillatory solution of (8), yet the limit $\lim_{t \to \infty} x(t)$ does not exist. On the other hand all

conditions of Theorem 2, except the condition $r_1(t, o(t)) \leq p < 1$ are met.

The question whether the assertion of Theorem 2 is still valid without the condition $r_1(t, \sigma(t)) \leq p < 1$, if D3) is replaced with the more restrictive condition $r_2(t, \sigma(t)) \geq m > 0$, $t \geq t_0$, is open. For example, this is true (Theorem 2 ([2])) for the equation

$$[x(t) + p(t)x(t - \tau)]' + q(t)x(t - \sigma) = 0,$$

where p, q are continuous, nonnegative functions and τ , $\sigma \ge 0$. (In

this case D3) reduces to $\int_{t_0}^{\infty} q(t) dt = \infty$ and the condition $r_2(t, \sigma(t)) \ge m > 0$ reduces to $q(t) \ge q > 0$.) Define the function $\tau(t)$

$$\tau(t) = \sup \{ s \in [0, \sigma(t)] / r_2(t, s) = 0 \}, \quad t \ge t_0.$$

THEOREM 3. Let conditions (A), (C), (D) and (5) hold and let $\tau(t) \in C([t_0, \infty), (0, \infty))$. If

(9)
$$\liminf_{t\to\infty}\int_{t-\tau(t)}^{t}r_2(s,\,\sigma(s))\,ds>\frac{1}{e}\,,$$

then each solution of (1) is oscillatory.

PROOF. Suppose that (1) has at least one nonoscillatory solution x(t). Without loss of generality, let x(t) be eventually positive. From Theorem 1 it follows that $\lim_{t\to\infty} x(t) = 0$. (3), (5) and D1) imply that $\lim_{t\to\infty} z(t) = 0$. On the other hand, z(t) is an eventually nonincreasing nonconstant function. Hence z(t) > 0 eventually. (3) implies that z(t) < x(t) and then from (1) we have

$$z'(t) + \int_{0}^{\sigma(t)} z(t-s) d_s r_2(t,s) \leq 0.$$

By virtue of the definition of $\tau(t)$, the last inequality takes the form

$$0 \ge z'(t) + \int_{\tau(t)}^{\sigma(t)} z(t-s) d_s r_2(t,s) \ge z'(t) + z(t-\tau(t)) r_2(t,\sigma(t)).$$

Thus we obtained that the eventually positive function z(t) is a solution of the inequality

$$y'(t) + r_2(t, \sigma(t)) y(t - \tau(t)) \leq 0$$
.

Then, by condition (9) we get to a contradiction with the assertion of Lemma 3. \blacksquare

REMARK 3. Theorem 3 generalizes Theorem 5 ([2]).

260

Acknowledgments. The authors would like to thank the referee for her/his very helpful comments and suggestions. The present investigation was partially supported by the Bulgarian Ministry of Education, Science and Technologies under grant MM-422.

REFERENCES

- Q. CHUANXI M. KULENOVIC G. LADAS, Oscillations of neutral equations with variable coefficients, Radovi Matematicki, 5 (1989), pp. 321-331.
- [2] M. GRAMMATIKOPOULOS G. LADAS Y. SFICAS, Oscillation and asymptotic behaviour of neutral equations with variable coefficients, Radovi Matematicki, 2 (1986), pp. 279-303.
- [3] E. GROVE G. LADAS A. MEIMARIDOU, A necessary and sufficient condition for the oscillation of neutral equations, J. Math. Anal. Appl., 126 (1987), pp. 341-354.
- [4] J. HALE, Forward and backward continuation for neutral functional differential equations, J. Diff. Equations, 9 (1971), pp. 168-181.
- [5] R. KOPLATADZE T. CHANTURIJA, On the oscillatory and monotone solutions of the first order differential equations with deviating arguments, Differentcial'nye Uravnenija, 18 (1982), 1463-1465.
- [6] M. KULENOVIC G. LADAS A. MEIMARIDOU, Necessary and sufficient conditions for oscillation of neutral differential equations, J. Austral. Math. Soc., Ser. B, 28 (1987), pp. 362-375.
- [7] G. LADAS Y. SFICAS, Oscillations of neutral delay differential equations, Canadian Math. Bull., 29 (1986), pp. 438-445.
- [8] V. PETROV, On a problem stated by Gyori and Ladas, Mathematica Balkanica, vol. 9 (to appear).
- [9] J. RUAN, Oscillations of neutral differential difference equations with several retarded arguments, Sciential Sinica (A), 10 (1986), pp. 1132-1144.
- [10] SV. STANEK, Oscillation behaviour of solutions of neutral delay differential equations, Casopis pro Pestovany Matematiky, 115 (1990), pp. 92-99.

Manoscritto pervenuto in redazione il 12 agosto 1993 e, in forma revisionata, il 25 agosto 1994.