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Oscillation and Asymptotic Behaviour
of Neutral Equations with Distributed Delay.

D. BAINOV(*) - V. PETROV(**)

ABSTRACT - Consider the neutral differential equation

The asymptotic properties of the nonoscillatory solutions of the equation are
studied. Sufficient conditions are also given to guarantee that all solutions
oscillate.

1. - Introduction.

In the recent few years a considerable number of papers were publi-
shed, devoted to the oscillatory properties of first order linear neutral
differential equations. Up to now equations of the following form have
been investigated
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To these equations the papers [1]-[3], [6]-[10] were devoted. We
shall note that nonautonomous neutral differential equations with di-
stributed delay have not been studied up to now.

In the present paper the equation

is investigated with initial function

- where the integrals in (1) are in the sense of Riemann-Stieltj es.
Some ideas of [2] are developed, the asymptotic behaviour of (1) is inve-
stigated and sufficient conditions for oscillation of all solutions of (1) are
obtained.

2. - Preliminary notes.

We shall say that conditions (A) are met if the following conditions
hold:

Conditions (A) imply that
Introduce conditions (B):

Consider equation (1) with the initial condition

DEFINITION 1. The function x(t), satisfying conditions (B) is said
to be a solution of the initial value problem (1)-(2) if x(t) satisfies (1) for
t &#x3E; to and if the relation (2) holds.

Introduce the following conditions (G’~:

C3) r¡ (t, s) is continuous at s = 0 for any fixed t E [o, 00).
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C4) The functions
bounded.

C5) For any fixed t &#x3E; to , ri ( t, s ) are functions of bounded varia-
tion with respect to s in [0, ~(t)].

v

LEMMA 1. Let conditions (A) and (C) hold. Then for any initial
C([a, to], R) the initial value problem (1)-(2) has an uni-

que solution.

Lemma 1 is obtained as a corollary of [4].
Introduce the following conditions (D):

D 1 ) s ) is nonincreasing with respect to s for s E [0, a(t)].
D2) r2 ( t, s) is nondecreasing with respect to s for s E [0, a(t)].

DEFINITION 2. The solution x(t) of (1) is said to oscillate if there
exists an increasing such that nlim tn = 00 and x( tn ) =

- o, n E N. Otherwise it is said to be nonoscillatory.

DEFINITION 3. The function x(t) is said to eventually have the pro-
perty X, if there exists to such that for t a to the function has the pro-
perty K.

By Defmition 3 the nonoscillatory solutions of (1) are characterized
as being eventually positive or eventually negative.

Let

Then

We shall prove several lemmas which are essentially used in the
proof of the main results.
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LEMMA 2. Let conditions (A), (G’~ and (D) hold and let

If x(t) is an eventually positive solution of (1), then x(t) is a bounded
function.

PROOF. Let x(t) be an eventually positive solution of (1). From (4)
it follows that z’(t)  0 eventually and z(t) is a nonincreasing function.
D3) implies that z(t) is not an eventually constant function and thus ei-
ther z(t)  0 or z(t) &#x3E; 0 eventually. Suppose that z(t)  0. Then from

(3), (5), Cl) and Dl) there follows the estimate

From the above inequalities it follows that there exists t1 &#x3E; to , such
that for t &#x3E; ti the inequality

holds. By virtue of condition A2) we can choose t such that t - a(t) * to
for t ~ t. Then from (6) we have

Suppose that x(t) is unbounded. Then lim sup x(t) = 00 and there exists

a such that and

The last inequality however contradicts (7).
Let z(t) &#x3E; 0 eventually. Since z(t) is a nonincreasing function,

there exists the finite limit We shall prove that

= 0. Suppose that this is not true, i.e. d = &#x3E; 0.
2013~00 - 

_ 

2013 

There exists t * t such that x(t) &#x3E; d/2 for t * t. From (4) and D2) it fol-
lows that

By virtue of A2) we can choose t such that t - a(t) &#x3E; t for t ; t. Then
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from the above estimate we have

Integrate the last inequality from T to t and obtain

D3) implies that lim z(t) = - m , which contradicts the inequality
z( t ) &#x3E; 0 eventually. Thus Suppose that x(t) is an un-

bounded function. As above we choose a sequence with the re-

spective properties. Since lim inf x(t) = 0, there exists a sequence
t- m

such that 
i

Let n, be large

enough and such that tn &#x3E; rk. Then the following estimate is valid:

Thus we have

The choice of the sequences {tn} and and (5) imply that

z(tn) - 0 and since tn &#x3E; ik, we get to a contradiction with the
fact that z(t) is an eventually nonincreasing function.

then the inequality

has no eventually positive solutions.
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3. - Main results.

THEOREM 1. Let conditions (A), (C), (D) and (5) hold. Then each
non-oscillatory solution x(t) of (1) tends to 0 as 

PROOF. Let x(t) be an eventually positive solution of (1). From
Lemma 2 it follows that the function x(t) is bounded. Then b =
= lim sup x(t)  oo. We shall prove that b = 0. Suppose that this is not

true and choose E &#x3E; 0 so that E  (b(1 + p))/(2 - p). There exists a se-
such that 

,
Then we can

choose t &#x3E; to and N so that b I  E for n &#x3E; N and x( t ) - b  E for
t &#x3E; t. Since x(t) is a bounded function, z(t) is bounded too. Then the fact
that z(t) is a nonincreasing function implies the existence of the finite li-

As in the proof of Lemma 2 it is shown that

lim inf x( t ) = 0 and then we can choose a such that
t - oo

lim i k = 00 and lim = 0 . There exists K such that for k &#x3E; K we
k - oo

have x(zk)  E. From the sequences {tn}1oo and Irkl’ choose the pair rj,
ti so that j &#x3E; K, i &#x3E; N, rj  ti and ti - &#x3E; to . Then the following esti-
mate is valid:

(The last inequality follows from the choice of E.) Thus, for rj  ti we ob-
tained that  which contradicts the fact that the function z(t)
is nonincreasing. Hence lim sup x(t) = 0 and If x(t) is an

eventually negative solution of (1), then since (1) is a linear equation,
- x(t) is an eventually positive solution of (1), which implies that in this
case as well lim a?() = 0..

t - oo



259

In the same way the following theorem is proved:

THEOREM 2. Let conditions (A), (G’~, D2) and D3) hold and let

rl (t, s) be nondecreasing with respect to s for s E [0, «t)].
If rl (t, «t)) K p  1, then each nonoscillatory solution of (1) tends

°

REMARK 1. Theorem 1 generalizes or generalizes and extends a
number of known results, for instance Theorem 3 iv) ([2]), Theorem 1
([10]), Theorem 5 ([7]), Corollary 3b ([l]).

REMARK 2. The condition ri (t, «t)) K p  1 in Theorem 2 is es-
sential. We shall illustrate this fact with the following example:

EXAMPLE 1 [8]. Consider the equation

where

and is the 4-periodic function

Clearly, equation (8) is a particular case of (1), moreover rl (t, = 1.
It is immediately verified that x( t ) = + is a nonoscillatory sol-
ution of (8), yet the limit lim x( t ) does not exist. On the other hand all

conditions of Theorem 2, except the condition rl (t, o(t))  p  1 are met.
The question whether the assertion of Theorem 2 is still valid

without the condition o~( t )) ~ p  1, if D3) is replaced with the
more restrictive condition r2 (t, «t)) * ~n &#x3E; 0, t &#x3E; to , is open. For

example, this is true (Theorem 2 ([2])) for the equation

where p, q are continuous, nonnegative functions and i, a * 0. (In
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this case D3) reduces to and the condition r2 (t, 

Define the function i(t)

THEOREM 3. Let conditions (A), (C), (D) and (5) hold and let z(t) E
E C([to , ~ ), ( o, ~ )) . If

then each solution of (1) is oscillatory.

PROOF. Suppose that (1) has at least one nonoscillatory solution
x(t). Without loss of generality, let x(t) be eventually positive. From
Theorem 1 it follows that lim x(t) = 0. (3), (5) and Dl) imply that

t - oo

lim z(t) = 0. On the other hand, z(t) is an eventually nonincreasing
t - oo

nonconstant function. Hence z(t) &#x3E; 0 eventually. (3) implies that z( t ) 
 x(t) and then from (1) we have

By virtue of the definition of i(t), the last inequality takes the
form

Thus we obtained that the eventually positive function z(t) is a solution
of the inequality

Then, by condition (9) we get to a contradiction with the assertion of
Lemma 3.

REMARK 3. Theorem 3 generalizes Theorem 5 ([2]).
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