Mittag-Leffler Modules And Semi-hereditary Rings.

ULRICH ALBRECHT(*) - ALBERTO FACCHINI(**)(***)

1. - Introduction.

In [2] it was demonstrated that many properties of torsion-free abelian groups carry over to non-singular right modules over right strongly non-singular, right semi-hereditary rings, where a ring R is called right strongly non-singular if the finitely generated non-singular right modules are precisely the finitely generated submodules of free modules. A complete characterization of right strongly non-singular right semi-hereditary rings can be found in [9, Theorem 5.18]. In particular, it was shown that right strongly non-singular, right semi-hereditary rings are left semi-hereditary too, so that we shall call such rings right strongly non-singular semi-hereditary. Examples of this type of rings are the semi-prime semi-hereditary right and left Goldie rings, for instance Prüfer domains, as well as infinite dimensional rings like \mathbb{Z}^ω.

Following [10], we call a right R-module A a Mittag-Leffler module if the natural map $A \otimes_R \left(\prod_{i \in I} M_i \right) \rightarrow \prod_{i \in I} (A \otimes_R M_i)$ is a monomorphism for all families $\{M_i\}_{i \in I}$ of left R-modules. Mittag-Leffler modules can be characterized as those modules M for which every finite subset is contained in a pure-projective pure submodule. Moreover, the Mittag-Leffler torsion-free abelian groups are precisely the \aleph_0-free groups [4]. In this note we show that this characterization extends to modules over

(*) Indirizzo dell'A.: Department of Mathematics, Auburn University, Auburn, AL 36849, U.S.A.
(**) Indirizzo dell'A.: Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy.
(***) Partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Fondi 40% e 60%), Italy. This author is a member of GNSAGA of CNR.
right strongly non-singular semi-hereditary rings. Our results particularly generalize recent work by Rothmaler on flat Mittag-Leffler modules over RD-domains [11]. We show that every RD-Ore-domain is a right strongly non-singular semi-hereditary Goldie ring, and give an example that the converse need not to hold.

2. – Non-singularity and purity.

It is easy to see that (1) non-singular right modules over right strongly non-singular semi-hereditary rings are flat, (2) S-closed sub-modules of non-singular modules are pure (recall that a submodule U of a module M is said to be S-closed in M if M/U is non-singular), and (3) finitely presented modules over a semi-hereditary ring have projective dimension ≤ 1. Our first result describes the right strongly non-singular semi-hereditary rings R for which these three statements can be inverted.

Theorem 1. The following conditions are equivalent for a right strongly non-singular semi-hereditary ring R:

(a) R has no infinite set of orthogonal idempotents.
(b) R has finite right Goldie dimension.
(c) A finitely generated right R-module is finitely presented if and only if it has projective dimension ≤ 1.
(d) R has no proper right ideals which are essential and pure.
(e) A right R-module is flat if and only if it is non-singular.
(f) A submodule of a non-singular right R-module is S-closed if and only if it is pure.

Proof. $(a) \Rightarrow (b)$ Suppose that R has infinite right Goldie dimension. Since R is a right non-singular ring, it contains a strictly ascending chain $\{I_n\}_{n < \omega}$ of S-closed right ideals [9, Proposition 2.4 and Theorem 3.14]. For every n the right R-module R/I_n is finitely generated and non-singular, hence projective, so that I_n is a direct summand of R_R. If J_n is a right ideal such that $I_n \oplus J_n = R_R$, then $I_n \oplus (J_n \cap I_{n+1}) = I_{n+1}$, so that $\{J_n \cap I_{n+1} \mid n < \omega\}$ is an independent infinite set of direct summands of R_R. But then R has an infinite set of non-zero orthogonal idempotents.

$(b) \Rightarrow (c)$ We have to show only that if (b) holds, then every finite-
ly generated module of projective dimension 1 is finitely presented. Let
\(M = R^m / U \) be a finitely generated module with \(U \) projective. Since \(R \) is
semi-hereditary, \(U \) is a direct sum of finitely generated submodules [1].
But \(R_R \) has finite Goldie dimension, and therefore \(U \subseteq R^m \) must have
finitive Goldie dimension. Hence the direct sum has a finite number of
summands, that is, \(U \) is finitely generated.

(c) \(\Rightarrow \) (b) If \(R \) has infinite right Goldie dimension, \(R_R \) contains an
infinite independent family of non-zero principal right ideals \(r_\lambda R, \lambda \in \).
Then \(\bigoplus_{\lambda \in \Lambda} r_\lambda R \) is a projective right ideal of \(R \), so that \(R/ \bigoplus_{\lambda \in \Lambda} r_\lambda R \) is a
cyclic right \(R \)-module of projective dimension \(\leq 1 \), which is not finitely
presented because \(\bigoplus_{\lambda \in \Lambda} r_\lambda R \) is not finitely generated [9, p. 9].

(b) \(\Rightarrow \) (d) Suppose that \(I \) is an essential, pure right ideal of \(R \).
Since \(R \) has finite Goldie dimension and is right non-singular, its
maximal right quotient ring \(Q \) is semi-simple Artinian [9, Theorem
3.17]. Furthermore, \(IQ \) is an essential right ideal of \(Q \) [9, Proposition
2.32]. Since \(Q \) is semi-simple Artinian, this is only possible if \(IQ = Q \).
Hence \((R/I) \otimes_R Q \equiv Q/IQ = 0 \). But \(I \) is pure in \(R \), so that \(R/I \) is flat.
Therefore we obtain the exact sequence 0 \(\rightarrow (R/I) \otimes_R R \rightarrow (R/I) \otimes
Q = 0 \), which gives \(I = R \).

(d) \(\Rightarrow \) (e) It remains to show that a flat module \(M \) is non-singular.
Let \(x \) be an element of a flat module \(M \). Since \(R \) is right semi-hereditary, \(xR \) is flat [9, p. 11]. But \(xR \equiv R/\text{ann}_R(x) \), so that the right ideal
\(\text{ann}_R(x) \) is pure in \(R \). Therefore either \(\text{ann}_R(x) = R \) or \(\text{ann}_R(x) \) is not
essential in \(R \). This shows that \(Z(M) = 0 \).

(e) \(\Rightarrow \) (f) Let \(U \) be a pure submodule of the non-singular module
\(M \). Since \(M \) is flat, we know that \(M/U \) is a flat \(R \)-module. By (e), \(M/U \) is
non-singular, i.e. \(U \) is \(s \)-closed in \(M \).

(f) \(\Rightarrow \) (a) Suppose that (f) holds and \(R \) contains an infinite family
\(\{ e_n | n < \omega \} \) of non-zero orthogonal idempotents. Set
\(I = \sum_n e_n R = \bigoplus_n e_n R \). The right ideal \(I \) is pure in \(R \) because it is the union of the di-
rect summands \(\bigoplus_{i=0}^n e_n R \) of \(R_R \). If (f) holds, then \(I \) is \(s \)-closed in \(R \), so
that the non-singular cyclic right \(R \)-module \(R/I \) is projective. Then \(I \) is
a direct summand of \(R \). It follows that \(R_R \) is a direct sum of infinitely
many non-zero right ideals, which is a contradiction.

Example 2. There exists a right strongly non-singular semi-
hereditary ring \(R \) that does not satisfy the equivalent conditions of
Theorem 1.
PROOF. Consider the strongly non-singular, semi-hereditary ring $R = \mathbb{Z}_\omega$ (see [2]). Obviously R does not have finite Goldie dimension.

COROLLARY 3. The following conditions are equivalent for a ring R without infinite families of orthogonal idempotents:

(a) R is right strongly non-singular and semi-hereditary.

(b) R is left strongly non-singular and semi-hereditary.

Moreover, if R satisfies these conditions, then R is a right and left Goldie ring.

PROOF. Let R be right strongly non-singular and semi-hereditary. By Theorem 1, R has finite right Goldie dimension. Since the maximal right quotient ring Q of R is flat as a right R-module [9, Theorem 5.18], we obtain that the left and right maximal ring of quotients of R coincide [9, Exercise 3.B.23]. Observe that R is a right p.p. ring without infinite families of orthogonal idempotents. In view of [5, Lemma 8.4], such a ring has to be left p.p. too. But every left p.p. ring is left non-singular. In order to show that R is left strongly non-singular, it therefore remains to show that Q is flat as a left R-module by [9, Theorem 5.18] since the multiplication map $Q \otimes_R Q \to Q$ is an isomorphism. By [9, Theorem 3.10], a sufficient condition for this is that every right ideal of R is essentially finitely generated, i.e., R has finite right Goldie dimension. Thus, R is left strongly non-singular.

It remains to show that R has the a.c.c. for right annihilators. But this follows immediately from Theorem 1 and [5, Lemma 1.14].

In view of Theorem 1 and the left/right symmetry proved in Corollary 3 we shall call the rings characterized in Theorem 1 strongly non-singular semi-hereditary Goldie rings. Note that the left/right symmetry may fail if R has an infinite set of orthogonal idempotents (see [9]).

EXAMPLE 4. A strongly non-singular semi-hereditary Goldie ring need not be semi-prime.

PROOF. Let R be the ring of lower triangular 2×2-matrices over a field F, so that R is right and left hereditary and Artinian [3]. It is easy to see that R is essential as a right and as a left submodule of $Q = \text{Mat}_2(F)$. By [9, Proposition 2.11], Q is the maximal right and the maximal left ring of quotients of R. Since R is right Artinian, we have that every right ideal of R is essentially finitely generated. [9, Theorem
yields that $\mathbb{R}Q$ is flat and that the multiplication map $Q \otimes_{\mathbb{R}} Q \rightarrow Q$ is an isomorphism. Thus, \mathbb{R} is right and left strongly non-singular, but is not semi-prime.

3. – Mittag-Leffler modules.

We now turn to the discussion of Mittag-Leffler modules over strongly non-singular semi-hereditary rings. In order to adapt the notion of an \aleph_1-free module to modules over strongly non-singular semi-hereditary Goldie rings, a reformulation of the definition used in abelian groups becomes necessary. Otherwise it may happen that \mathbb{R} itself may be not \aleph_1-free unless \mathbb{R} is right hereditary. We say that a non-singular right module M over a right strongly non-singular Goldie ring \mathbb{R} is \aleph_1-projective if the S-closure of every countably generated submodule of M is projective. From the next result it follows immediately that every projective module over a strongly non-singular semi-hereditary Goldie ring is \aleph_1-projective.

Theorem 5. The following three conditions are equivalent for a right strongly non-singular right Goldie ring \mathbb{R}:

(a) \mathbb{R} is semi-hereditary.

(b) A right \mathbb{R}-module M is pure-projective if and only if $M/Z(M)$ is projective and $Z(M)$ is a direct summand of a module of the form $\bigoplus_{i \in I} N_i$ where each N_i is a finitely generated singular module of projective dimension 1.

(c) The following conditions are equivalent for a right \mathbb{R}-module M:

(i) M is a non-singular Mittag-Leffler module.

(ii) M is \aleph_1-projective.

(iii) Every finite subset of M is contained in a S-closed projective submodule of M.

Proof. (a) \Rightarrow (b) Let M be a pure-projective module. We know that M is a direct summand of a direct sum of finitely presented modules, say $M \oplus N \cong \bigoplus_{i \in I} V_i$ for some \mathbb{R}-module N where each V_i is finitely presented. Since \mathbb{R} is strongly non-singular, $V_i/Z(V_i)$ is projective, say $V_i = P_i \oplus Z(V_i)$. Then $[M/Z(M)] \oplus [N/Z(N)] \cong (M \oplus N)/Z(M \oplus N) \cong \bigoplus_{i \in I} P_i$ yields that $M/Z(M)$ is projective. Moreover, $Z(M) \oplus Z(N) \cong$
\[\bigoplus_{i \in I} Z(V_i) \text{ where each } Z(V_i) \text{ is finitely presented as a direct summand of a finitely presented module. We write } Z(V_i) \cong R^{n_i}/U_i \text{ for some } n_i < \omega \text{ and finitely generated submodule } U_i \text{ of } R^{n_i}. \text{ Since } R \text{ is a non-singular semi-hereditary ring, } U_i \text{ is projective, and } Z(V_i) \text{ has projective dimension } 1. \]

The converse holds by Theorem 1.

(b) \Rightarrow (a) Let \(I \) be a finitely generated right ideal of \(R \). Since \(R/I \) is finitely presented, it is the direct sum of a projective module and a module of projective dimension at most 1 by (b). Hence \(I \) has to be projective.

(a) \Rightarrow (c): (i) \Rightarrow (ii) Let \(U \) be a countably generated submodule of a non-singular Mittag-Leffler module \(M \). By [10] there is a pure-projective, countably generated pure submodule \(V \) of \(M \) that contains \(U \). By Theorem 1 and the already proved implication (a) \Rightarrow (b) of this theorem, \(V \) is an \(S \)-closed projective submodule of \(M \). In particular, \(V \) contains the \(S \)-closure \(U_* \) of \(U \). By [2, Proposition 2.2] the module \(V/U_* \) has projective dimension at most 1. Since \(V \) is projective, this yields that \(U_* \) has to be projective too.

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i) By [10] it is enough to show that every finite subset of \(M \) is contained in a pure-projective pure submodule of \(M \). But \(S \)-closed submodules are pure by Theorem 1.

(c) \Rightarrow (a) Let \(I \) be a finitely generated right ideal of \(R \). Consider an exact sequence \(0 \to U \to R^n \to I \to 0 \) of right \(R \)-modules where \(n < \omega \). Since \(R \) has finite right Goldie-dimension, \(U \) contains a finitely generated essential submodule \(V \). Furthermore, \(R^n \) is a non-singular Mittag-Leffler module. By (c), the \(S \)-closure \(W \) of \(V \) in \(R^n \) is projective [5, Proposition 8.24] yields that \(W \) is finitely generated. Since \(U \) is \(S \)-closed in \(R^n \) and \(V \) is essential in \(U \), it follows that \(U = W \). Thus \(I \) is finitely presented, and in particular, a Mittag-Leffler module. By (c), finitely generated non-singular Mittag-Leffler modules are projective.

Since every ideal of a Noetherian integral domain is a Mittag-Leffler module, the ring \(\mathbb{Z}[x] \) is an example of a domain over which there exist torsion-free Mittag-Leffler modules which are not \(\aleph_1 \)-projective.

In [11, Section 6.3] Rothmaler studies the structure of flat Mittag-Leffler modules over a right hereditary \(RD \)-Ore-domain, i.e., a right hereditary right and left Ore-domain for which purity and relative divisibility coincide. An \(RD \)-Ore-domain is right and left
semi-hereditary, hence it is a strongly non-singular semi-hereditary Goldie ring. From Example 4 we thus have

Example 6. Every RD-Ore-domain is a strongly non-singular semi-hereditary Goldie ring, but the converse is not true in general.

We can use Theorem 5 to determine the projective dimension of Mittag-Leffler modules:

Corollary 7. Let R be a ring.

(a) R is right semi-hereditary if and only if for every Mittag-Leffler right R-module M and every integer $n \geq 0$, if M can be generated by $\leq \aleph_n$ elements then $\operatorname{proj. dim.} M \leq n + 1$.

(b) If R is a strongly non-singular semi-hereditary Goldie ring and M is a non-singular Mittag-Leffler module generated by $\leq \aleph_n$ elements, then $\operatorname{proj. dim.} M \leq n$.

Proof. If every countably generated Mittag-Leffler right R-module M has projective dimension ≤ 1, then $\operatorname{proj. dim.} R/I \leq 1$ for every finitely generated right ideal I of R, so that R is right semi-hereditary.

Conversely, suppose that R is right semi-hereditary and argue by induction on $n \geq 0$. If $n = 0$, a Mittag-Leffler right R-module generated by $\leq \aleph_0$ elements is pure-projective, and therefore it has projective dimension ≤ 1 because every finitely presented right R-module over a right semi-hereditary ring has projective dimension ≤ 1. And if $n = 0$ and M is a non-singular Mittag-Leffler module over a strongly non-singular Goldie ring generated by $\leq \aleph_0$ elements, then M is projective by Theorem 5.

Suppose $n > 0$. Let M be a Mittag-Leffler right R-module generated by a set $\{x_\nu | \nu < \omega_n\} \subseteq M$. For every finite subset X of M fix a pure, countably generated, pure-projective submodule V_X of M containing X. Define a submodule W_α of M generated by $\leq \aleph_{n-1}$ elements by transfinite induction on $\alpha \in \omega_n \times \omega_0$, where $\omega_n \times \omega_0$ denotes the lexicographic product of ω_n and ω_0, in the following way. Set $W_0 = 0$. If $\alpha \in \omega_n \times \omega_0$ is a limit ordinal, set $W_\alpha = \bigcup_{\beta < \alpha} W_\beta$. If $\alpha \in \omega_n \times \omega_0$ is not a limit ordinal, then $\alpha = (\nu, r + 1)$ for some $\nu < \omega_n$ and some $r < \omega_0$. If ν is a limit ordinal, set $W_\alpha = W_{(\nu, r)}$. If ν is not a limit ordinal, then $\alpha = (\mu + 1, r + 1)$. In this case let X_μ be a set of generators of $W_{(\mu + 1, r)}$ of cardinality $\leq \aleph_{n-1}$ and set $W_\alpha = \sum \{ V_X \cup \{x_\nu\} \mid X \subseteq X_\mu, X \text{ finite} \}$. Note that W_α has a set of generators of cardinality $\leq \aleph_{n-1}$.

It is clear that $W_0 \subseteq W_1 \subseteq \ldots \subseteq W_n \subseteq \ldots$, $\alpha \in \omega_n \times \omega_0$, is an ascending chain of submodules of M. We claim that $W_{(v, 0)}$ is pure in M for every ordinal $v < \omega_n$. In order to prove the claim, let A be a $k \times m$ matrix over R, Z a $1 \times k$ matrix over M and $Y = (y_1, \ldots, y_m)$ a $1 \times m$ matrix over $W_{(v, 0)}$ such that $ZA = Y$. We must show that there exists a $1 \times k$ matrix Z' over $W_{(v, 0)}$ such that $Z'A = Y$. Since $y_1, \ldots, y_m \in W_{(v, 0)}$ and $(v, 0) \in \omega_n \times \omega_0$ is a limit ordinal, there exists $\beta < (v, 0)$ such that $y_1, \ldots, y_m \in W_{\beta}$. Let $\beta \leq \beta$ be the least ordinal such that $y_1, \ldots, y_m \in W_{\beta}$. Then β is not a limit ordinal, and β must be of the form $(\omega + 1, r + 1)$. Let X be a finite subset of the set $X_{(\omega + 1, r + 1)}$ of generators of $W_{(\omega + 1, r + 1)}$ such that y_1, \ldots, y_m belong to the submodule XR of M generated by X. The pure submodule $V_{X \cup \{x_0\}}$ of M is contained in $W_{(\omega + 1, r + 2)}$ and contains y_1, \ldots, y_m. Therefore there exists a $1 \times k$ matrix Z' over $V_{X \cup \{x_0\}}$ such that $Z'A = Y$. This concludes the proof of the claim, because $V_{X \cup \{x_0\}} \subseteq W_{(\omega + 1, r + 2)} = W_{\beta + 1} \subseteq W_{(v, 0)}$.

Since the modules $W_{(v, 0)}$ are generated by $\leq \kappa_{n-1}$ elements and pure submodules of Mittag-Leffler modules are Mittag-Leffler modules, it follows that the inductive hypothesis can be applied, so that proj. dim. $W_{(v, 0)} \leq n$ (and proj. dim. $W_{(v, 0)} \leq n - 1$ if R is a strongly non-singular semi-hereditary Goldie ring and M is non-singular) for every $v < \omega_n$. By Auslander's Theorem, the projective dimension of M cannot exceed $n + 1$ (or n if R is a strongly non-singular semi-hereditary Goldie ring and M is non-singular).

If we restrict our discussion to semi-prime rings, the equivalences in Part (c) of Theorem 5 can be further improved. Observe that the semi-prime strongly non-singular semi-hereditary rings without infinite sets of orthogonal idempotents are precisely the semi-prime right and left semi-hereditary Goldie rings. Moreover, if R is a semi-prime right Goldie ring, then a right ideal of R is essential if and only if it contains a regular element [5, Lemma 1.11 and Cor. 1.20], so that $Z(M) = \{ x \in M | xc = 0 \text{ for some regular element } c \in R \}$ for any right R-module M. In particular if N is a submodule of a non-singular right module M over a semi-prime semi-hereditary Goldie ring, then N is pure in M if and only if $Mc \cap N = Nc$ for every regular element $c \in R$.

Corollary 8. Let R be a semi-prime, right and left semi-hereditary Goldie ring. The following conditions are equivalent for an R-module M:

(a) M is a Mittag-Leffler module.

(b) $Z(M)$ is a Mittag-Leffler module, and $M/Z(M)$ is κ_1-projective.
PROOF. Since the class of Mittag-Leffler modules is closed with respect to pure submodules and pure extensions, Theorems 1 and 5 reduce the problem to showing that $M/Z(M)$ is Mittag-Leffler whenever M is Mittag-Leffler. For this, let U be a finitely generated submodule of M, and choose a pure-projective pure submodule V of M which contains U. By Theorem 5, $V = P \oplus Z(V)$ for some projective submodule P of M. Since $[U + Z(M)]/Z(M) \subseteq [P \oplus Z(M)]/Z(M)$, the corollary will follow once we have shown that $P \oplus Z(M)$ is S-closed in M. Suppose that $x \in M$ satisfies $x c \in [P \oplus Z(M)]$ for some regular element $c \in R$. We can find $y \in P$ and a regular $d \in R$ such that $x c d - p d = 0$. But P is pure in V and V is pure in M, so that P is pure in M. Thus $x c d = p d \in P \cap \cap M c d = P c d$, and $x \in P \oplus Z(M)$.

The rest of this Section is devoted to completely recover Lemmas 6.10, 6.11, 6.12, Theorem 6.13 and Corollary 6.14 of [11] for the more general class of rings discussed in this paper.

PROPOSITION 9. Let R be a strongly non-singular semi-hereditary Goldie ring and M an R-module with the property that every countably generated submodule of M is projective. Then M is a non-singular Mittag-Leffler R-module and every finite subset of M is contained in a finitely generated projective pure submodule of M.

PROOF. Let M be a module satisfying the hypotheses of the statement. It is obvious that M is non-singular.

We claim that if X is a finitely generated submodule of M, then the S-closure C of X in M is finitely generated. In order to prove the claim it is sufficient to show that each countably generated submodule N of C containing X is finitely generated. Any such N is projective, hence $N = \bigoplus_{i < \omega} N_i$, where the N_i are isomorphic to finitely generated right ideals of $R[1]$. So it is enough to show that $N = \bigoplus_{i = 0}^{n} N_i$ for some $n < \omega$. Choose $n < \omega$ such that $X \subseteq \bigoplus_{i = 0}^{n} N_i$ and set $N' = \bigoplus_{i = 0}^{n} N_i$. We have $X \subseteq N' \subseteq N \subseteq C$.

Since C modulo the submodule generated by X is singular, $N/N' \cong \bigoplus_{i > n} N_i$ also is singular. But the N_i's are isomorphic to right ideals of R, and therefore $N/N' \cong \bigoplus_{i > n} N_i$ is non-singular. Therefore $N' = N$, and N is finitely generated. This proves our claim.

Since every finitely generated submodule of M is projective, it is now clear that the S-closure of every finitely generated submodule of M is a finitely generated projective pure submodule of M. In particular M is a Mittag-Leffler module (Theorem 5).
LEMMA 10. Let R be a right strongly non-singular right Goldie ring, C a non-singular right R-module and P a finitely generated submodule of C. If C/P is singular, then C has finite Goldie dimension.

PROOF. Since P is a finitely generated non-singular module over a right strongly non-singular ring, P is a submodule of a finitely generated free module. In particular, P has finite Goldie dimension. Since C is non-singular and C/P is singular, P is an essential submodule of C. This shows $\text{dim } C = \text{dim } P < \infty$.

THEOREM 11. The following four conditions are equivalent for a right strongly non-singular right Goldie ring R:

(a) R is a right hereditary ring.
(b) R is a right noetherian, right hereditary ring.
(c) R is a right semi-hereditary ring and all submodules of non-singular Mittag-Leffler right R-modules are Mittag-Leffler modules.
(d) The following conditions are equivalent for a right R-module M:
 (i) M is a non-singular Mittag-Leffler module.
 (ii) Every countably generated submodule of M is projective.
 (iii) Every finite subset of M is contained in a finitely generated projective pure submodule of M.
 (iv) M is non-singular and every finite subset of M is contained in a finitely presented pure submodule of M.
 (v) M is non-singular and every submodule of M of finite Goldie dimension is a finitely generated projective module.

PROOF. (a) \Rightarrow (d) Suppose that R is right hereditary.

(i) \Rightarrow (ii) is proved in [11, Cor. 6.3].

(ii) \Rightarrow (iii) is proved in Proposition 9.

(iii) \Rightarrow (iv) If every element of M is contained in a projective module, M must be non-singular. Moreover, every finitely generated projective submodule is finitely presented.

(iv) \Rightarrow (v) Suppose that (iv) holds and let N be a submodule of M of finite Goldie dimension. Let $X = \{x_1, x_2, \ldots, x_n\}$ be a finite subset of N such that $\sum_{i=1}^{n} x_i R = \bigoplus_{i=1}^{n} x_i R$ is an essential submodule of N. Then $N/\sum_{i=1}^{n} x_i R$ is a singular submodule of $M/\sum_{i=1}^{n} x_i R$, so that if C denotes the \mathcal{S}-closure of $\sum_{i=1}^{n} x_i R$ in M, then $N \subseteq C$. By (iv) the subset X is con-
tained in a finitely presented pure submodule D of M. Since M is non-singular, D also is non-singular, hence flat, hence projective. Thus X is contained in the finitely generated projective pure submodule D of M. Therefore C is a submodule of D. Hence N is contained in the projective module D, and N is projective because R is right hereditary. By [1] N is isomorphic to a direct sum of finitely generated right ideals. But N has finite Goldie dimension, and therefore N itself is a finitely generated projective module.

(v) \Rightarrow (i) Suppose that (v) holds. In order to prove that M is a Mittag-Leffler module it is sufficient to show that every finite subset X of M is contained in a pure-projective pure submodule of M [4, Th. 6]. Let P be the submodule of M generated by a finite subset X of M and C be the S-closure of P in M, so that C is pure in M. By Lemma 10 the module C has finite Goldie dimension. By Hypothesis (v) C is a finitely generated projective module.

(d) \Rightarrow (c) Assume that R has the property that the five conditions are equivalent for every right R-module M. Let us show that R is right hereditary. If I is a right ideal of R, then I is a submodule of the non-singular Mittag-Leffler module R_R, which is of finite Goldie dimension. By (d) I is a finitely generated projective module.

Since M is a non-singular Mittag-Leffler module if and only if every countably generated submodule of M is projective, every submodule of a non-singular Mittag-Leffler module is a non-singular Mittag-Leffler module.

(c) \Rightarrow (b) In order to show that R is right noetherian, it is sufficient to show that if I is a countably generated right ideal of R, then I is finitely generated. Since R_R is a non-singular Mittag-Leffler module, every right ideal of R is a non-singular Mittag-Leffler module. Hence every countably generated right ideal I of R is a non-singular pure-projective module, that is, it is projective. Then R/I is a finitely generated module of projective dimension ≤ 1, and therefore it is finitely presented (Theorem 1). Hence I is finitely generated.

(b) \Rightarrow (a) is obvious.

4. – Prüfer rings and indecomposable Mittag-Leffler modules.

Recall that a commutative integral domain is semi-hereditary if and only if it is a Prüfer ring, that is, all its localizations at maximal ideals are valuation domains. If R is an integral domain, for every R-module M the submodule $Z(M)$ is exactly the torsion submodule $t(M)$ of M, so that a module is non-singular if and only if it is torsion-free. Hence The-
orem 5 gives a complete description of torsion-free Mittag-Leffler modules over Prüfer domains: a torsion-free module over a Prüfer domain is a Mittag-Leffler module if and only if it is \(\kappa_1 \)-projective. More generally, a module \(M \) over a Prüfer domain is a Mittag-Leffler module if and only if \(M/t(M) \) is \(\kappa_1 \)-projective and \(t(M) \) is a torsion Mittag-Leffler module. The structure of torsion Mittag-Leffler modules over a Prüfer domain \(R \) depends heavily on the properties of \(R \). For instance, in [4, Prop. 7] it is shown that a torsion abelian group \(G \) is a Mittag-Leffler \(\mathbb{Z} \)-module if and only if \(\bigcap_{n>0} nG = 0 \). In the next Proposition we describe torsion Mittag-Leffler modules over almost maximal valuation domains and arbitrary Mittag-Leffler modules over maximal valuation rings. Recall that an \(R \)-module is cyclically presented if it is isomorphic to \(R/aR \) for some \(a \in R \).

Proposition 12. Let \(M \) be a torsion module over an almost maximal valuation domain \(R \) or an arbitrary module over a maximal valuation ring \(R \). The following conditions are equivalent:

(a) \(M \) is a Mittag-Leffler \(R \)-module.

(b) Every finite subset of \(M \) is contained in a direct summand of \(M \) that is a direct sum of cyclically presented modules.

(c) Every element of \(M \) is contained in a direct summand of \(M \) that is a direct sum of cyclically presented modules.

Proof. (a) \(\Rightarrow \) (b) Let \(X \) be a finite subset of \(M \). Then \(X \) is contained in a pure-projective pure submodule \(P \) of \(M \) [4, Th. 6]. The pure-projective module \(P \) is a direct sum of cyclically presented modules [8, Th. II.3.4 and Prop. II.4.3]. Hence \(P \) decomposes as \(P = P' \oplus P'' \), where \(X \subseteq P' \) and \(P' \) is a finite direct sum of cyclically presented modules. By [8, Th. XI.4.2] \(P' \) is pure-injective. Since \(P' \) is pure in \(M \), \(P' \) must be a direct summand of \(M \).

(b) \(\Rightarrow \) (c) is obvious.

(c) \(\Rightarrow \) (a) Let \(X \) be a finite subset of \(M \). By [4, Th. 6] it is sufficient to prove that \(X \) is contained in a pure-projective pure submodule of \(M \). By [8, Prop. XIII.2.4] the module \(M \) is separable, that is, every finite set of elements of \(M \) can be embedded in a direct summand which is a direct sum of uniserial modules. Hence it is enough to prove that every uniserial direct summand \(U \) of \(M \) is cyclically presented. Let \(x \) be a non-zero element of a uniserial direct summand \(U \) of \(M \). By (c) there exists a direct summand \(P \) of \(M \) such that \(P \) is a finite direct sum of cyclically presented modules and \(x \in P \). Let \(W \) and \(Q \) be direct complements of \(U \) and \(P \), so that \(M = U \oplus W = P \oplus Q \). Since \(P \) has the exchange property...
There are submodules $U' \leq U$ and $W' \leq W$ such that $M = P \oplus U' \oplus W'$. Since $0 \neq x \in P \cap U$, $P \cap U$ is an essential submodule of the uniserial module U. But $(P \cap U) \cap U' = 0$, so that $U' = 0$ and $M = P \oplus W'$. Then U is a direct summand of $U \oplus \oplus (W/W') \cong (U \oplus W)/W' = M/W' \cong P$. In particular U is pure-projective, that is, U is a direct sum of cyclically presented modules. Hence the uniserial module U must be cyclically presented.

Therefore over an almost maximal valuation domain R the indecomposable torsion Mittag-Leffler modules are only the cyclically presented modules R/aR''s, $a \neq 0$, and over a maximal valuation ring R the indecomposable Mittag-Leffler modules are only the cyclically presented modules R/aR's, $a \in R$. The last result of this paper addresses the question whether there exist arbitrarily large indecomposable non-singular Mittag-Leffler modules.

Example 13. Let R be a strongly non-singular semi-hereditary Goldie ring whose additive group is cotorsion-free. Then there exists a proper class of pairwise non-isomorphic, indecomposable, non-singular Mittag-Leffler R-modules.

Proof. Let κ be an infinite cardinal. Since R has a cotorsion-free additive group, there exists an \aleph_1-projective left R-module M of cardinality at least κ such that $\text{End}_R(M) \cong \text{R}^{op}$ by [6]. By Theorem 5, M is a non-singular Mittag-Leffler module whose R-endomorphism ring is $\text{Center}(R)$. Since R does not contain any infinite family of orthogonal idempotents, the same holds for $\text{Center}(R)$. We write $1 = e_1 + \ldots + e_n$ where $\{e_1, \ldots, e_n\}$ is a family of orthogonal, primitive idempotents of $\text{Center}(R)$. Then $M_i = e_i(M)$ is an indecomposable Mittag-Leffler module. Since $|M| > \kappa$ and $M = \bigoplus_{i=1}^{n} M_i$, at least one of the M_i's has cardinality at least κ.

The ring of algebraic integers is an example for a ring as in Example 13.

REFERENCES

Manoscritto pervenuto in redazione il 30 gennaio 1995.