On total differential inclusions
Rendiconti del Seminario Matematico della Università di Padova, Volume 92 (1994), pp. 9-16.
@article{RSMUP_1994__92__9_0,
     author = {Bressan, Alberto and Flores, Fabi\'an},
     title = {On total differential inclusions},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {9--16},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {92},
     year = {1994},
     zbl = {0821.35158},
     mrnumber = {1320474},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1994__92__9_0/}
}
TY  - JOUR
AU  - Bressan, Alberto
AU  - Flores, Fabián
TI  - On total differential inclusions
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1994
DA  - 1994///
SP  - 9
EP  - 16
VL  - 92
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1994__92__9_0/
UR  - https://zbmath.org/?q=an%3A0821.35158
UR  - https://www.ams.org/mathscinet-getitem?mr=1320474
LA  - en
ID  - RSMUP_1994__92__9_0
ER  - 
%0 Journal Article
%A Bressan, Alberto
%A Flores, Fabián
%T On total differential inclusions
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1994
%P 9-16
%V 92
%I Seminario Matematico of the University of Padua
%G en
%F RSMUP_1994__92__9_0
Bressan, Alberto; Flores, Fabián. On total differential inclusions. Rendiconti del Seminario Matematico della Università di Padova, Volume 92 (1994), pp. 9-16. http://www.numdam.org/item/RSMUP_1994__92__9_0/

[1] A. Bressan, The most likely path of a differential inclusion, J. Diff. Eqs., 88 (1990), pp. 155- 174. | MR | Zbl

[2] A. Cellina, On minima of a functional of the gradient: sufficient conditions, Non Linear Analysis : T.M.A., 20 (1993), pp. 343-347. | MR | Zbl

[3] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer-Verlag, Berlin (1989). | MR | Zbl

[4] G. Pianigiani - F. S. DE BLASI, Differential inclusions in Banach spaces, J. Diff. Eqs., 66 (1987), pp. 208-229. | MR | Zbl

[5] S. Saks, Theory of the Integral, Dover, New York (1964). | JFM | MR