
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

B. DWORK
Cohomological interpretation of hypergeometric series
Rendiconti del Seminario Matematico della Università di Padova,
tome 90 (1993), p. 239-263
<http://www.numdam.org/item?id=RSMUP_1993__90__239_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1993, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1993__90__239_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Cohomological Interpretation
of Hypergeometric Series.

B. DWORK (*)

Introduction.

In joint work with F. Loeser [D-L1, 2] we have given a cohomologi-
cal interpretation of generalized hypergeometric series by means of ex-
ponential modules. In this note we give a new explanation of this rela-
tion. This new exposition involves § 5, 6 and in particular Proposi-
tion 5.6. This article is based on lectures given at Oklahoma State Universi-
ty during the fall of 1992. We take this opportunity to thank the Mathe-
matic Department of OSU for its hospitality.

1. The arithmetic gamma function.

For 1,E Z we define (z)i E Q(z) to be (r(z + The following
properties are trivial:

We conclude that:

(1.4) the function takes finite values in C if we insist that for

zEN x , l should be in N;

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura ed Applicata, Via
Belzoni 7, Padova (Italy).
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(1.5) the function takes values in Cx if in addition we insist
that for should lie in - N;

then as elements of 

and each factor takes values in C if we insist that x + y E - N
whenever x E Z and z E - N x -

2. Hypergeometric series.

Let A be an m x n matrix with coefficients in Z and let ll, ... , 1. be
Z-linear forms in (sic, ... , sn ) defined by

Let a = (aI, ..., am) E C’ satisfy the condition (cf. (1.4)):

Subject to this condition we define a formal power series in t =
= ... tn ) with coefficients 

For comparison with classical formulae it is sometimes convenient to
let ~1 U 52 be a partition of 11, 2, ..., m} and rewrite this last factor by
means of

Let ai = tj 1j n. Let [aI, ... , We define
to be the left ideal of lll containing all e e a such that 0y(a, t ) = 0 .
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3. Exponential modules.

We associate with hypergeometric series two exponential modules.
Let

L et g E R’

differential operator on R’ . We
define an Q(t)/Q-connection a on R’ by

The operators Da,1, t , ... , Da, m, t , ... an commute. We define W’a, t =
with connection induced by ~. Then

t is a left (~,1 = S2 ( t ) [ ~ 1, ... , The non-commutative

ring ~,1 is isomorphic to the ring 1R of § 2 under the mapping

Let 2fl (a) be the annihilator in ~,1 of [ 1 ], the class of 1 in The ob-

ject of this note (cf. Corollary 6.5) is to give a new, possibly more ele-
mentary, proof of Theorem C of[D-L2] which shows that under certain
conditions 2f1 (a) is isomorphic via 7 to 2f(a).

3.2. To construct the second exponential module associated with hy-
pergeometric series, let S 1 U S2 be a partition of {I, 2, ...,m} satisfy-
ing the condition:

(Thus if N x for some j then
of R’). Let Ho be the subset

(the support

Let R be the subring of R’ consisting of the S2(t)-span of IXu I u E 
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By (3.2.1), g E R and the differential operators
are stable on R. We define which is again a left

Let 1 be the class of 1 in t . Let 2t 1 (a) denote the annihilator of 1
in tJt1.

4. Dual modules.

4.1. We construct a space adjoint to R’ . Let

(not a ring) whose elements include infinite sums over
Ho ( _ We have a pairing R ’ * x R ’ -~ S~ ( t ) given by

By this pairing we identify R ’ * with Hom (R ’ , Q (t)) and adjoint to
Da, i, t we have

The connection on R ’ * takes the form

and we have the basic relation

We define t t to be the annihilator of

We have a connection on t induced by the restriction of

{c*j}1jn.
It is known [D, chap. 9] that ~~ t is a finite and if ~ * =

= 2 B.(llXu), satisfies the conditions that 
uezm 

- - - - - 

’ ’

4.2. The 0-space ~,a, o is easily described. If is of dimension 1; we de-
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scribe a basis If a satisfies the condition

then we may take

If on the contrary 6 is the set of all i such that ai E NX and Q5’ is the
complementary set in ~ 1, 2, ... , m) then a basis is given by

We now put

We conclude that

Therefore E*a, t is a horizontal element of

PROPOSITION 4.2.5.

(4.2.5.1 ) If a satisfies (4.2.1 ) then

(4.2.5.2) If a satisfies 2.1 but not (4.2.1) then

PROOF. The first assertion follows by a routine calculation using
(4.2.2) The second assertion follows from the fact that if al E NX then
by (4.2.3) the support of i g o lies in 1 while by (2.1) the support of
g(t, X ) - g(O, X) lies in ul ; 0 and hence the same holds for

The assertion now follows from the defini-
tions.

PROPOSITION 4.2.6. If a satisfies (4.2.1) then c ~C(a).
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PROOF. If 0 e 1R then by 1

REMARK 4.2.6.1. We say that «y is a period of[I]».

REMARK 4.2.6.2. The conclusion of the proposition need not hold if
, , I ,

(4.2.1) is not satisfied. Thus if m then

(cf. Proposition 7.4).

4.3. Adjoint of R. Let

The pairing of R ’ * with R’ restricts to a pairing of R * with R by which
R * may be identified with Hom (R, S2(t)). The injection R 4 R’ has an
adjoint mapping, f - of R ’ * onto R * , a projection

The adj oint of Da, i, t is now

and the connection on R * is given by

We again have the relation

We defme :Xa, t to be the annihilator of

We have a connection on %a, t induced by
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4.4. We describe the 0-space o . It is of dimension 1. If a satisfies
the condition

then the basis element of ia,o may be chosen to be

(The formula is the same as in (4.2.2) but the sum is over a smaller set).
By (1.4) this series is well defined. If on the contrary 61 
where ai it N~ for all i E T and ai E N x for all i E then the basis ele-
ment may by chosen to be

We now put

We conclude that

PROPOSITION 4.4.5. If a satisfies both (2.1) and (4.4.1 ) then

If a fails to satisfy (4.4.1) but does satisfy (2.1) then
fI1’"

PROOF. The proof is the same as that of Proposition 4.2.5, except
that for the first assertion we must use (3.2.1)
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PROPOSITION 4.4.6. If a satisfies both (2.1) and (4.4.1) then

i. e. y( a, t) is a period of f , the class of 1 in Wa, t .

PROOF. The proof is the same as that of Proposition 4.2.6.

REMARK 4.4.7. Trivially W 1 (a) c U1 (a).

5. Differential relations.

The symbols A, a, &#x26;, 1R are as in § 2.

NOTATION 5.0. For let

For 1 ~ j ~ n we define m-tuples in

Thus

We defme

PROPOSITION 5.1. If a satisfies (2.1) then Li (a, t, a) E %(a).

PROOF. It is enough to check that for s E 1

where Ej is the unit vector in the j-th direction in n-space. The second
relation follows from Vi(J) - = Ui(J) . .
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PROPOSITION 5.2. For w e subject to 2.1, we have

PROOF. If a satisfies (2.1) then so does a - w and hence both y( a, t)
and y( a - w, t ) are well defined. The assertion follows from (1.8), from
which we deduce (ai - wi + Li (s))wi (ai - wi)4. (s) wi)wi for
all seNB 

REMARK 5.2.2. If, say, al e -N~ 1 + then the right
hand side in 5.2.1 is zero.

PROPOSITION 5.3.

PROOF. If is enough to check that

PROPOSITION 5.4. If a E C’ then

PROOF. The assertion is equivalent to the two identities in the
commutative ring 

Discarding the obviously identical factors on the two side of these as-
sertions, we reduce, using = to the assertions

These assertion are implied by the identity
b E N.
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PROPOSITION 5.5. For

m

PROOF. We use induction on 2 vj = weight (v). The assertion is
i=’

trivial for weight (v) = 0 and the case of weight (v) = 1 is given by
Proposition 5.4. By that proposition (with a replaced by a + v)

Multiplying on the right by the left side becomes Lj (a + v +
while the right side becomes 

which by the induction hypothesis is

which coincides with

DEFINITION 5.5.1. For or= 0[t, a] viewed as a polynomial ring in
t = (t1, ... , tn) with coefficients in Q[a1 let

a left ideal in d2[t, 8].

PROPOSITION 5.6. Let a

an elements of There exists P E 0[,61 such that

The assertion remains valid if w is replaced by w + u for any
UE 

PROOF. The assertion is trivial if rank 0 = 0. We use induction on
the rank of 0. We may assume degtl e ; 1. We write
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where P1, P2 E 8], with degtlP2 = 0 and

Multiplyng on the right we obtain

It follows from these formulae that

and hence P4  rank 0. Letting w’ = w - v(1) and applying the induction
hypothesis to a - v ~ 1 ~ ,

where P E S~ [ ~ ]. Multiplying (5.6.3) on the right by hw , (a - v ~ 1 ~ - w’ , ~ )
and applying Proposition 5.3 with (a, u, v) replaced by (a-v(1)-
- w , w , v(1) we obtain

Applying Proposition 5.5 with (a, v,j) replaced by (a - w, w’ , 1) we
see that the first term on the right side of (5.6.7) lies in 1B(a - w). By
(5.6.6) the second term lies in P + 1B(a - w). This completes the proof
of the proposition.

PROPOSITION 5.7. If a satisfies (2.1) and if 6 E ~(a) f1 Q[t, 8] then
the operator P of Proposition 5.6 lies in ~,C(a - w) fl 

PROOF. It follows from Proposition 5.1 that 1B(a - w) c 111(a - w).
It follows from Proposition 5.2 that w) E 2t(a - w). The asser-
tion is now clear.

6. Differential relations for cr.

We consider hu ( a, to-) and to-) elements of ~,1 defined as in
5.0 but with 31atj replaced by cr j for 1 ~ j ~ n.
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PROPOSITION 6.1.

PROOF. We observe that

Thus

Thus for

and so (6.1.1) is a consequence of the calculation for u E ~Tm

The proof of (6.1.2) is precisely the same except that (6.1.4) now takes
the form

the class in

for all v E Ho and in particular for all

PROPOSITION 6.2.

PROOF. It follows from the definition and Proposition 6.1 that we
need only show the vanishing of the class of This is

trivial since

REMARK 6.2.3. Proposition 6.2 together with (4.4.5) gives a second
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proof of Proposition 5.1. (We may assume (2.1) and then choose 62 so
that (3.2.1) and (4.4.1) are satisfied).

PROPOSITION 6.3. If 0 E lll(a) f1 ~] then subject to the condi-
tions

we have

where w is defined in Proposition 5.6.

PROOF. It follows from (1.5) and the hypotheses that y( c~ - w, t) =
= E C(s) t s where C(s) E C x for all s E N’ . The point is that by (4.2.1 ),

sENn

by (6.3.1).
Since the operator P of Proposition 5.6 lies in and by Proposi-

tion 5.7 must annihilate y( ac - w, t), we conclude that 0 = P( s ) C(s) for
all s E and so P = 0, which completes the proof.

PROPOSITION 6.4. If a satisfies (4.2.1) and (6.3.1) then

PROOF. Let 6 E Without loss in generality we may assume 0 E
E 6]. Hence by Proposition 6.3, letting w be as in Proposition 5.6;
9o/~(a-~~)e~B(a-~). Thus by (6.2.1), replacing by o,

Thus by (6.1.1)

Now multiplication by commutes with o- and this multiplication
in R’ induces a mapping of t into t . We conclude that

This completes the proof.

COROLLARY 6.5. ,Subject to (4.2.1) and I
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PROPOSITION 6.6. Subject to (2.1), (4.4.1) and (6.3.1), a period
z = E C(s)t8 of f in is uniquely determined by C(O).

sENn

PROOF. It follows from (6.2.2) that Lj (a, t, e) z = 0 and hence

C(s + Èj) is fixed by C(s). This completes the proof.

COROLLARY 6.7.1. Subject to (2.1 ), (4.4.1 ), (6.3.1 ), y( a, t) is up to a
constant factor the unique period in of 1, the class of 1 in

Wa, t .

REMARK 6.7.2. We know under the hypotheses of the corollary
that 8(a). We believe but have not shown equality of W
and lll i .

7. Examples.

We give some examples involving a E Z3. In particular we give an
example in which [1] = 0.

Let

Let C be the cone in Q3 generated by êl, ê2, ê3 and A( = ( 1, 1, -1 )) .
This cone is identical with the cone defmed by the inequalities fi (u) &#x3E; 0
(i = 1, 2, 3, 4) where

Let Ho be the intersection C n Z3. It coincides with the monoid gener-
ated bY3êl, ê2, C3, A. Let R be the 0(t) span of and let t 

=

= R / 2 Da, i R . The mapping of t into t induced by the inj ection
I=1 

’ ’ ’
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R 4 R’ is known to be an isomorphism subject to condition [D, § 6.4.1]

Furthermore we know that ( gl, g2, g3) is a regular sequence in R (for
t ~ 0, 1, ~ ) and that any set of representatives in R of a basis of
R / 1 gi R also represents a basis of Wa, t and hence represents a basis
of subject to (7.2). In and { 1, ZJ rep-
resent bases of t subject to (7.2).

PROPOSITION 7.3. ~C1 ( 0) is ideal generated by (t~)2 , §ll(0) is
generated by 6 and so 111(0) § llli (0).

PROOF. The operator L1 = ~ ( a3 - 8 ) + t( al + 6) (02 + ~ ) takes the
form L1 = (t - 1 ) ~ 2. Hence by Proposition 6.2

Since t~1 = Xl in t (Proposition 6.1) and since 1, Xl represent a ba-
sis of t , it follows that [ 1 ] cannot be annihilated by any operator of
degree 1 in ~. Hence llli ( 0) is generated by (ta)2. The assertion for 
follows from y( 0, t) = 1.

PROPOSITION 7.4.

Therefore

PROOF. Let b = ( 1, 1, -1 ). By Proposition 6.1 and Proposition 7.3

Multiplication by X3/X1X2 in R’ induces an isomorphism of t onto
t. Hence

But by Proposition 6.1

Since is a basis element (and hence non zero) in t the iso-
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morphism shows 1 ~ 0 in Thus is generated by 1 + ta. The
assertion for follows form y( b, t ) = E + s) which cannot be
annihilated by a first order operator but is annihilated by L1.

PROPOSITION 7.5.

PROOF. By Proposition 6.1, X2 = (1 + t~) 1 = 0 in t where b =
= (1, 1, -1) as in Proposition 7.4. Multiplication by 1 /X2 induce an iso-
morphism of t onto ’~’~ 1, 2, -1 &#x3E;, t thus [ 1 ] = 0 as asserted. 

°

8. Delsarte sums.

The object of this section is to show that very general exponential
modules have hypergeometric series as periods. We fill in some lacunes
in the corresponding treatment in [D-L2].

Let w(1), ... , w(m) be a set of elements of Z’ which are linearly inde-
m

pendent over Q. Let A be the lattice 2 Let
i=1

viewed as element of ...Xm, Xi-1, ... , Xm 1 ] = R’ . Let L1, ... , Lm
be 0-linear forms in m variables.

Let R be the 0 span of Let ti be a set of representatives of
Zm /A. Then R’ 0 XI R as 0-spaces. For i = 1, 2, ..., m let D,,, i = Ei +

uEd 

PROPOSITION 8.1. Da, i is stable on R and on cosets XU R.

PROOF. The assertion in easily verified. For later use we state
some formalities. We observe that
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and hence

where if then Li (h) We write

Ci, k Da, k and observe that 
’

PROPOSITION
Then

PROOF. The assertion follows from the direct sum decomposition of
R’ into cosets X’°R and from the commutativity relation

PROPOSITION 8.3.

PROOF. Let Then for v E Z’ we compute

Thus putting b E = Li (a) we reduce to the case in which - h(X) =
= Xl + ... + Xm and we must show that is of dimension 1. Summa-

rizing a well known method, we first let R = ... , Xm]. We know
that 1 R hi is a maximal ideal of R and that

Furthermore (hl, ... , hm ) is a regular sequence in R and hence any re-
m

lation 0 = I Pi hi where Pi is homogeneous of degree 1 must be trivial
i=1

in the sense that
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where each q~ is a homogeneous element of R of degree 1 - and 
- - qk2 . Thus if ~ lies in l~ , deg ~ = 1 &#x3E;- 1, then its homogeneous part of

m

maximal degree may be written in the form 1 Xi Zi where Zi is homo-
~=i

geneous of degree l - 1 and so E Xi Zi = 2 + 1 (bj + Ei ) Zi
which reduces the degree of ~ modulo E Da, i ~, . This shows that

To show that E Da, iii, suppose otherwise. So 1 = E and let
1 = sup deg ~i . Thus ~i = Pi + Zi where Pi is homogeneous of degree 1
and 1. We show that 1 cannot be minimal. Clearly
0 = E Pi Xi and homogeneous of degree 1 - 1, =

- - q~, i ( 1 ~ i, j ; m) such that 
’

where 1. = pi + Zi . Then

This then shows that = 1 without condition on a. To contin-
ue our demonstration we introduce the hypothesis.

This will not be needed for the final proof. Subject to 8.3.2 we show
that for U E ~Tm

Let v E Nm . If v - u E N~ the X v E X u R there is nothing to prove. Sup-
pose that v, - ul  0. Then = (al - (ul - Xl X v and
so we may replace X v by mod E provided ul - v, E

E N~. By iteration, assertion 8.3.3 is clear. 
-

This shows that subject to (8.3.2) the mapping of into in-
duced by multiplication by X u is surjective. The dimensions are equal
and hence the mapping is an isomorphism. Hence subject to (8.3.2) we
have
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Dividing by X’ we deduce for all u E Nm .

Since we deduce

Thus subject to (8.3.2) the natural mapping of R into R’ induces an
isomorphism of W~ with This proves the assertion subject
to (8.3.2).

But given a E C’ there exists u E N~ such that a - u satisfies

(8.3.2). Hence W’a-u is of dimension one.
But multiplication in R’ by induces an isomorphism of 

with This completes the proof.

PROPOSITION 8.4.

(a) dimension of = index of A in Z"~,

PROOF. Part (a) follows from the proceding proposition. As noted
before Li (D) = Li (a) + Li (E ) - Assertion (b) follows by comput-

m

ing Li(D)XV. Assertion (c) follows from (b) by induction on E ri .
i=l

We now introduce the hypothesis (for a particular v E 

COROLLARY 8.6. Subject to (8.5)
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PROOF. It follows from 8.4(b) replacing v by v - W(i) that

The assertion now follows by induction on 2 .

8.7. We now assume that Li (a + v) w Z for any v E Z’ and any 1 ~
; I 5 m. This is equivalent to the hypotheses that Li ( a + Z for any
u E a. Let

We define

where DIJJ j i = - Ei + a2 + hi . Then ~,a is dual to and a dual basis in-
dexed by u E rz is given by

Multiplication by

gives an injection of ~,a into k§ t and the image consists of
horizontal elements, the connection being given by

Let

Then for v E tl, [xvi is an element of t = 1R’ / 1 Da, i, t ~,’ (here 1R’ =
_ ~ (t) [X, ..., X; 1]) with periods Cu, v (for each u E a),

We fmd
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where

This condition means that

This means that we must restrict s E ~Tn so that

We choose N E N such that Li = NLi is a Z-linear form. Having defined
Li , the condition on s is that s E ~Tn and

Fixing u, v this has a finite set of solutions for s mod N. Let S be the set
of representatives of these solutions in the box 0 ~ s~  N, 1 ~ j ~ n. If
s is any solution of the congruence in ~Tn then there exists a unique
representation

Thus

Here

where
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and

Now

i.e.

where To complete the description we use the
Gauss multiplication formula to compute (s + for E ~N, n =
= 1. We have

and so dividing by the same formula with A = 0,

Thus
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where

9. More exponential modules.

_ 

We mention two more exponential modules, each more natural than
*,,, t of § 3.2 which may be useful in the case in which condition (4.2.1)
is not satisfied.

Let ~Co be the monoid generated by c ... ~ m, A ~ 1~ , ...,A (n) . Let
~C = ~m n C, where C is the cone in R~ generated by
ê1, 9 .. ,elm, I A (1) 9 ... , We construct R (resp: R ), the 0(t) span of all
X u for (resp: The operators Da, t, i , aj operate on these

spaces and the definition of the modules t (resp: Xa, t ) is clear. The
adjoint spaces R * and R * are defined as § 3.2 and likewise for Xa t and

the construction of the being obvious.
If a satisfies the condition

(9.1) if ai E Nx then C lies in the region ui &#x3E; 0 ,

then the basis element of (resp: is, 0) may be taken to be

with a similar formula for :, o . We note that condition (9.1 ) is implied
by 2.1. 

’

If condition 9.1 is not satisfied then a basis may be constructed

using the condition that E Bu-1/Xu lies in and only if
uEH0

The condition for is similar. We put
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The formula for i* t is similar. Subject to (2.1) we have

Letting 1 (resp: 1 ) denote the class of 1 in Wa, t (resp: t) we conclude

that y is a period of 1 (resp: 1 ). 
- -

Let U1 (a) (resp: U1 (a)) denote the annihilator of 1 (resp: 1 ) in 
The inclusion R c R c R ’ implies

and subject to (2.1) we have U1 c The advantage of the present sec-
tion is that for all a E C’, i is a cyclic element of W, t .
We do not know ... , gm ~ is a regular sequence in R (more

precisely ... , is a regular sequence in the graded ring associ-
ated with R by means of the grading given by the polyhedron of g) but
we do know that the dimension of t t is bounded by the volume of this
polyhedron. _

If however R and R coincide, then (as explained to us by A.
Adolphson) the regular sequence property does follow from the work of
Kouchnirenko. In particular this holds if

An example has been brought our attention by Kita [K1, 2] who has
studied the hypergeometric function that we would associate with

where m&#x3E;n~ 1.
If R = li then we may conclude that Wa t is a differential module-

generated by 1 and has dimension given by the volume of the polyhe-
dron of g. The dimension of ~ ~ t would be the same but we know [1] to
be a generator (as 8t1-module) only subject to the conditions of[D,
equation 6.13].
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