N. D. Kalamidas

Chain conditions and continuous mappings on $C_p(X)$

Rendiconti del Seminario Matematico della Università di Padova, tome 87 (1992), p. 19-27

<http://www.numdam.org/item?id=RSMUP_1992__87__19_0>
Chain Conditions and Continuous Mappings on $C_p(X)$.

N. D. KALAMIDAS(*)

ABSTRACT - Let X, Y Tychonoff spaces and $\mathcal{B}: C_p(X) \rightarrow C_p(Y)$ a one-to-one, continuous linear mapping. We prove that if Y satisfies a certain kind of chain conditions (caliber, c.c.c. e.t.c.) so does X. As a consequence of this, we prove $\{0, 1\}^\tau$ (τ regular) cannot be embedded into $C_p(X)$, if X has τ caliber. More generally, we prove that if X has τ caliber then $C_p(X)$ does not contain compact subspaces of weight τ. It follows, subject to GCH, that if B is a Banach space and (B, w) has ω_1 and ω_2 calibers then B is separable. Finally we prove that $C_p(X)$ with X dyadic of weight τ (of uncountable cofinality) does not admit a strictly positive measure.

All topological spaces are assumed to be infinite Tychonoff spaces. In the notations and terminology left unexplained below, we follow [4]. The symbols X, Y, Z always denote spaces and the symbols τ, λ denote infinite cardinals. The cofinality of a cardinal τ, denoted by $\text{cf} \tau$, is the least ordinal β, such that τ is the cardinal sum of β many cardinals each smaller than τ. A cardinal τ is regular if $\tau = \text{cf} \tau$. The symbol \mathbb{N} stands for the set of all positive integers and the symbols k, l, m, n are used only to denote members of \mathbb{N}. Further d is the density, w is the weight and $|\cdot|$ is the cardinality. A space X satisfies τ.c.c. if there is no family $\gamma \subset \mathcal{F}^*(X)$ (the set of all non-empty, open subsets of X) of pairwise disjoint elements with $|\gamma| = \tau$. We set c.c.c. for ω_1.c.c.. A space X has (τ, λ) caliber (pre-caliber) if for every family $\gamma \subset \mathcal{F}^*(X)$ with $|\gamma| = \tau$ there is a subfamily $\gamma_1 \subset \gamma$ with $|\gamma_1| = \lambda$ and $\cap \gamma_1 \neq \emptyset$ (γ_1 is centered). We set τ caliber for (τ, τ) caliber. A space X satisfies property K, if for every family $\gamma \subset \mathcal{F}^*(X)$ with $|\gamma| = \tau$, there is a subfamily $\gamma_1 \subset \gamma$ with $|\gamma_1| = \tau$ with the 2-intersection property. It is well known that if X has

(*) Indirizzo dell'A.: Department of Mathematics, University of Athens, GR-15781 Panepistimiopolis, Athens, Greece.
\(\tau \) caliber then \(X \) has also \(cf \tau \) caliber, and so \(cf \tau > \omega \). If \(F = \{ U_1, \ldots, U_n \} \) is a non-empty, finite subfamily of \(\mathcal{F}^*(X) \), then \(\text{cal}(F) \) is the largest \(\kappa \) such that, there is \(S \subset F \) with \(|S| = \kappa \) and \(\cap S \neq \emptyset \). If \(J \subset \mathcal{F}^*(X) \) then \(\kappa(J) = \inf \{ \text{cal}(F)/|F| : F \subset J, \text{finite} \} \). A space \(X \) satisfies property (**) if \(\mathcal{F}^*(X) \) can be written in the form, \(\mathcal{F}^*(X) = \bigcup_{n \in \mathbb{N}} \mathcal{J}_n \), with \(\kappa(\mathcal{J}_n) > 0 \), for all \(n = 1, 2, \ldots \). A space \(X \) admits a strictly positive measure, if there is a non-negative Borel probability measure \(\mu \) on \(X \) with \(\mu(U) > 0 \) for all non-empty open \(U \). For a compact space, Kelley (see [4]), proved that property (**) is equivalent with the existence of a strictly positive measure on the space. It is well known that if \(X \) admits a strictly positive measure then it has \((\tau, \omega)\) caliber for every cardinal \(\tau \) with \(cf \tau > \omega \), [4].

If \(X \) is a space, \(C_p(X) \) is the space of all real-valued continuous functions on \(X \) with the topology of pointwise convergence. For different points \(x_1, \ldots, x_\kappa \) in \(X \) and \(E_1, \ldots, E_\kappa \) non-empty, open intervals of \(\mathbb{R} \), let

\[
V(x_1, \ldots, x_\kappa : E_1, \ldots, E_\kappa) = \{ f \in C_p(X) : f(x_i) \in E_i, \text{ for } i = 1, \ldots, \kappa \}.
\]

It is clear that \(V(x_1, \ldots, x_\kappa : E_1, \ldots, E_\kappa) \) form a base of \(C_p(X) \). It is well known that \(C_p(X) \) is a dense subspace of \(\mathbb{R}^{[X]} \) the set of all real-valued functions on \(X \) with the topology of pointwise convergence. It follows from well known properties of \(\mathbb{R}^{[X]} \), that \(C_p(X) \) has pre-caliber \(\tau \), for every cardinal \(\tau \) with \(cf \tau > \omega \) and also satisfies property (**) In the case of a compact space \(X \) with \(w(X) = \tau \) and \(cf \tau > \omega \), Arhangel’skii and Tkacuk in [3], proved that \(C_p(X) \) does not have \(cf \tau \) caliber and also by a result of Tulcea [9], it follows that \(C_\omega(X) \) (the space \(C(X) \) with the weak topology) does not admit a strictly positive measure, although it satisfies property (**).

For \(A \subset X \) and \(f \in C_p(X) \) we set \(f|_A \) for the restriction of \(f \) on \(A \), and \(\text{supp} f = \{ x \in X : f(x) \neq 0 \} \) for the support of \(f \).

THEOREM 1. Let \(\vartheta : C_p(X) \to C_p(Y) \) be a 1-1, continuous mapping. Then we have the following:

(a) \(d(X) \leq d(Y) \),

(b) Let \(\tau, \lambda \) be cardinals with \(\tau \) regular, \(\tau \geq \lambda \) and \(cf \lambda > \omega \).

We suppose that \(Y \) has \((\tau, \lambda)\) caliber. Then \(X \) has \((\tau, \lambda)\) caliber.

PROOF. (a) We can suppose that \(\vartheta(0) = 0 \). Let \(D \) be a dense subset of \(Y \). For every \(y \in D \) and \(n \in \mathbb{N} \), it follows from the continuity of \(\vartheta \) at \(0 \in C_p(X) \) that there exist \(x_1^{y, n}, \ldots, x_{2^n}^{y, n} \), pairwise different elements of
We claim that the set $A = \bigcup_{y \in D} \bigcup_{n \in \mathbb{N}} \{x^{y, n}_{k, n}, \ldots, x^{y, n}_{k, n}\}$ is dense in X and since $|A| \leq |D|$, (a) follows. Indeed, let $x_0 \in X \setminus \overline{A}$, then there exists $f \in C_p(X)$ with $f(x_0) \neq 0$ and $f|_{\overline{A}} = 0$. But then $f|_{\{x^{y, n}_{k, n}, \ldots, x^{y, n}_{k, n}\}} = 0$ for every $y \in D$ and $n \in \mathbb{N}$ and so $\partial(f)|_D = 0$ so $\partial(f) = 0$. This is contradiction since ∂ is one-to-one.

(b) Let $\{U_i : i < \tau\} \subset \partial^*(X)$. For every $i < \tau$ we choose $f_i \in C_p(X)$ with $f_i \neq 0$ and $\text{supp} f_i \subset U_i$ and set $V_i = \{y \in Y : \partial(f_i)(y) \neq 0\}$. From the regularity of τ, it follows that either exists τV_i's equal elements or τ pairwise different. In both cases, since Y has (τ, λ) caliber, it follows that there exists $\Lambda \subset \tau$, $|\Lambda| = \lambda$ and $y_0 \in \cap \{V_i : i \in \Lambda\}$. Since $\partial f_i(y_0) \neq 0$ for every $i \in \Lambda$ it follows that either there exists $\Lambda_1 \subset \Lambda$, $|\Lambda_1| = \lambda$ and $r_1 > 0$ such that $\partial(f_i)(y_0) \geq r_1$, for every $i \in \Lambda_1$, or $\Lambda_2 \subset \Lambda$, $|\Lambda_2| = \lambda$ and $r_2 < 0$ such that $\partial(f_i)(y_0) \leq r_2$ for every $i \in \Lambda_2$. We can suppose that we have the first. From the continuity of ∂ at $0 \in C_p(X)$ there exist x_1, \ldots, x_κ pairwise different elements of X, and E_1, \ldots, E_κ open intervals of \mathbb{R} containing $0 \in \mathbb{R}$, such that

$$
\partial(V(x_1, \ldots, x_\kappa : E_1, \ldots, E_\kappa)) \subset V(y_0 : (-r_1, r_1)).
$$

Then $f_i \notin V(x_1, \ldots, x_\kappa : E_1, \ldots, E_\kappa)$ for every $i \in \Lambda_1$ and so $\{x_1, \ldots, x_\kappa\} \cap U_i \neq 0$ for every $i \in \Lambda_1$. Now (b) follows immediately.

REMARK. We note that the (a) of the above theorem follows also from well known results [7]. We also note that in the (b) of the above theorem the assumption that Y has (τ, λ) caliber cannot be relaxed to have pre-caliber. Indeed, since $C_p(X)$ is contained homeomorphically into $C_p(C_p(C_p(X)))$ and $C_p(C_p(X))$ has τ pre-caliber if $\text{cf} \tau > \omega$, however X in general does not satisfy c.c.c..
$C_p(C_p(X))$. The «if» part follows from the fact that $C_p(X)$ is contained homeomorphically into $C_p(C_p(C_p(X)))$ and Th. 1(b).

COROLLARY 3. Let X be a space with τ caliber, τ regular. Let, also, $\delta_i \in \mathbb{R}^\tau$ with $\delta_i = (\delta_{ij})_{j < \tau}$, $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$. Then there is no, one-to-one continuous mapping from the compact subspace $\{\delta_i: i < \tau\} \cup \{0\}$ of \mathbb{R}^τ into $C_p(X)$ and so there is no, one-to-one, continuous mapping from $\{0, 1\}^\tau$ into $C_p(X)$.

PROOF. On the discrete space τ, we consider the family $\{\{i\}: i < \tau\}$ and the set of continuous functions $\{\delta_i: i < \tau\}$ and repeat the argument of Th. 1(b).

REMARK. In the case that X is compact the above corollary follows also from well known arguments. Indeed in the case that X is compact and has τ caliber, if there exists $\delta: \{\delta_i: i < \tau\} \cup \{0\} \to C_p(X)$, a one-to-one continuous mapping then $\delta(\{\delta_i: i < \tau\} \cup \{0\})$ would be a compact subspace of $C_p(X)$, of weight τ, contradiction (see [3]). Also, if X is compact and $\{0, 1\}^\tau \subseteq C_p(X)$ homeomorphically then $\{0, 1\}^\tau$ would be Eberlein compact and since it satisfies c.c.c., would be metrizable [6].

In connection with the above we prove the following stronger result.

THEOREM 4. Let X be a space and we suppose that there exists some $F \subset C_p(X)$ compact with $\omega(F) = \tau$ and $\text{cf} \tau > \omega$. Then X has not $\text{cf} \tau$ caliber.

PROOF. Let $\{\mu_j: j < \tau\}$ be a $||\cdot||$-dense subset of $C(F)$. We claim that for every $i < \tau$, there exist $f_i, g_i \in F$, $f_i \neq g_i$ and $\mu_j(f_i) = \mu_j(g_i)$ for all $j < i$. This follows easily from Stone-Weierstrass Theorem. Since $f_i \neq g_i$, there exist $r_i \in \mathbb{Q}$, $\delta_i > 0$ such that either

$$f_i^{-1}(-\infty, r_i) \cap g_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset,$$

or

$$g_i^{-1}(-\infty, r_i) \cap f_i^{-1}(r_i + \delta_i, +\infty) \neq \emptyset.$$

Since $\text{cf} \tau > \omega$, without loss of generality, we can suppose that there exist $A \subset \tau$, $|A| = \tau$ and $r \in \mathbb{Q}$, $\delta > 0$ such that

$$U_i = f_i^{-1}(-\infty, r) \cap g_i^{-1}(r + \delta, +\infty) \neq \emptyset,$$

for every $i \in A$. Let $\{i_\eta: \eta < \text{cf} \tau\} \subset A$ with $i_\eta < i_{\eta'}$, if $\eta < \eta' < \text{cf} \tau$ and $\sum_{\eta < \text{cf} \tau} i_\eta = \tau$. We
suppose, if possible, that X has $\text{cf} \tau$ caliber. Then there is a cofinal $B \subset \{i_\gamma: \gamma < \text{cf} \tau\}$ with $|B| = \text{cf} \tau$ and $\cap \{U_i: i \in B\} \neq \emptyset$. In case that there are no $\text{cf} \tau$ pairwise different elements in $\{U_i: \gamma < \text{cf} \tau\}$, this follows immediately. Otherwise this follows from the assumption that X has $\text{cf} \tau$ caliber. Let $x \in \cap \{U_i: i \in B\}$. Then $\delta_x \in C(F)$ and so there exists $i_0 < \tau$ such that

$$\|\mu_{i_0} - \delta_x\| < \frac{\delta}{4}.$$

If $i \in B$ with $i > i_0$ we have $\mu_{i_0}(f_i) = \mu_{i_0}(g_i)$ and so $|f_i(x) - g_i(x)| < \delta/2$ contradiction, since $f_i(x) \in (-\infty, r)$ and $g_i(x) \in (r + \delta, +\infty)$.

Corollary 5. (Arhangel’skii and Tkacuk, [3]). Let X be a compact space with $w(X) = \tau$ and $\text{cf} \tau > \omega$. Then $C_p(X)$ does not have $\text{cf} \tau$ caliber.

Proof. It follows from the fact that X is contained homeomorphically into $C_p(C_p(X))$ and Th. 4.

Corollary 6. Suppose that $2^{\omega_1} = \omega_2$. Then we have the following:

(a) If X has ω_1 and ω_2 calibers, every compact $F \subset C_p(X)$ is metrizable.

(b) If X is compact and $C_p(X)$ has ω_1 and ω_2 calibers then X is metrizable.

Proof. (a) We claim that F is separable. If not, there exists $\{f_i: i < \omega_1\} \subset F$ such that $f_j \notin \{f_i: i < j\}$. Then $w(\{f_i: i < \omega_1\}) = 2^{\omega_1} = \omega_2$ and so $w(\{f_i: i < \omega_1\}) = \omega_1$ or ω_2 contradiction by Corol. 5. Therefore F is separable and so $w(F) \leq 2^{\omega_1} \leq 2^{\omega_1} = \omega_2$. It follows as before from Corol. 5 that F is metrizable.

(b) It follows from the fact $X \subset C_p(C_p(X))$ homeomorphically and (a).

Note 1. I have recent information that Th. 4 follows also Corol. 5 and results in [8].

Note 2. The (b) of the above corollary has already been proved in [3].

Note 3. The above theorem is not valid if the assumption τ caliber is relaxed to pre-caliber. Indeed, in general $X \subset C_p(C_p(X))$ and $C_p(X)$ has τ pre-caliber if $\text{cf} \tau > \omega$, although X may have weight τ.
Theorem 7 (GCH). If B is a Banach space, such that the space (B, w) has ω_1 and ω_2 calibers, then B is separable.

Proof. It is well known that (S_{B^*}, w^*) the unit ball of B^* with the w^*-topology is contained homeomorphically into $C_p(B, w)$, and also that B is contained isometrically into $C(S_{B^*}, w^*)$. The result follows from Corol. 6.

For a set Γ we set $\Sigma(\mathbb{R}^\Gamma) = \{t \in \mathbb{R}^\Gamma : \{\gamma : t(\gamma) \neq 0\} \text{ is countable}\}$ with the relative topology in \mathbb{R}^Γ.

Proposition 7. We assume that $C_p(X)$ has ω_1 caliber and there exists $\partial : C_p(X) \to \Sigma(\mathbb{R}^\Gamma)$, a 1-1, continuous mapping. Then X is separable.

Proof. We claim that there exists a countable $A \subset \Gamma$ such that $\partial(f)(\gamma) = 0$ for every $\gamma \in \Gamma \setminus A$. Indeed, if not, there exists $\gamma_\xi, \xi < \omega_1$ in Γ and $f_\xi, \xi < \omega_1$ in $C_p(X)$ with $\partial(f_\xi)(\gamma_\xi) > 0$ for every $\xi < \omega_1$. We may suppose that $\partial(f_\xi) \supset r$ for some $r \in \mathbb{R}$. Since $C_p(X)$ has ω_1 caliber there exist $B \subseteq \omega_1, |B| = \omega_1$ and $f \in C_p(X)$ such that $\partial(f) \in \bigcap_{\xi \in B} V(\gamma_\xi : (r, + \infty))$ contradiction, because $\partial(f) \in \Sigma(\mathbb{R}^\Gamma)$.

It follows that the continuous mapping $f \to \partial(f)|_A$ remains 1-1, and the result follows from Th. 1(a).

In Corol. 2 we have that $C_p(\mathbb{R}^\tau)$ has not τ caliber, if τ is an uncountable regular cardinal. In connection with this we have the following stronger result.

Proposition 8. Let τ be a cardinal with $\text{cf}\; \tau > \omega_1$ then the space $C_p(\mathbb{R}^\tau)$, does not have (τ, ω) caliber (and so it does not admit a strictly positive measure).

Proof. For every $i < \tau$, let $\delta_i \in \mathbb{R}^\tau$ with $\delta_i = (\delta_{ij})_{j < \tau}$, and $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$. Then the family

$$V(\delta_i, \delta_{i+1} : (0, 1), (2, 3))$$

does not contain an infinite subfamily with non-empty intersection. Indeed, let $A \subset \tau$ and $f \in \bigcap_{i \in A} V(\delta_i, \delta_{i+1} : (0, 1), (2, 3))$. We set $0 = (0)_i < \tau$.

We may assume that $f(0) \notin (0, 1)$. We consider $r > 0$ with $(f(0) - r, f(0) + r) \cap (0, 1) = 0$. From the continuity of f at 0 there exist i_1, \ldots, i_κ in τ and I_1, \ldots, I_κ open intervals of \mathbb{R}, containing 0 such that $f(\pi^{-1}_i(I_1) \cap \cdots \cap \pi^{-1}_\kappa(I_\kappa)) \subset (f(0) - r, f(0) + r)$. If $i \in A \setminus \{i_1, \ldots, i_\kappa\}$ then $\delta_i \in \pi^{-1}_i(I_1) \cap \cdots \cap \pi^{-1}_\kappa(I_\kappa)$ and so $f(\delta_i) \notin (0, 1)$, contradiction.
COROLLARY 9. Let X be a dyadic space with $w(X) = \tau$ and $\text{cf} \tau > \omega$. Then $\mathbb{C}_p(X)$ does not have (τ, ω) caliber, so it does not admit a strictly positive measure.

PROOF. By a result of Efimov, [5], it follows that $\{0, 1\}^\tau \subseteq X$. If we repeat the proof of Prop. 8 we can prove that $\mathbb{C}_p(\{0, 1\}^\tau)$ does not have (τ, ω) caliber. Now the mapping $\varnothing: \mathbb{C}_p(X) \to \mathbb{C}_p(\{0, 1\}^\tau)$ with $\varnothing(f) = f|_{\{0, 1\}^\tau}$, is continuous, linear and onto. So if $\mathbb{C}_p(X)$ had (τ, ω) caliber, then $\mathbb{C}_p(\{0, 1\}^\tau)$ would have (τ, ω) caliber, contradiction.

The above theorem gives a partial answer to the following.

PROBLEM. Is there a non-metrizable compact Hausdorff space such that $\mathbb{C}_p(X)$ has a strictly positive measure?

D. Fremlin in note of 10 Oct. 1989 proved that this problem is connected with the following

PROBLEM. (A. Bellow). Is there a probability space (Z, Σ, ν) with a $Y \subseteq \ell^0(\Sigma)$ (= the space of real-valued measurable functions on Z) such that Y is compact and non-metrizable in the topology of pointwise convergence and any pair of distinct members of Y differ on a non-negligible set?

THEOREM 10. Let $\varnothing: \mathbb{C}_p(X) \to \mathbb{C}_p(Y)$ be a 1-1, continuous, linear mapping and τ be an uncountable regular cardinal. Then we have the following implications.

(a) If Y has (τ, ω) caliber, so does X.

(b) If Y admits a strictly positive measure then X has (τ, ω) caliber and satisfies property K_τ.

PROOF. (a) Let $\{U_i: i < \tau\}$ be a family of non-empty open sets in X. For every $i < \tau$ we find $f_i \in C_p(X)$ with $\text{supp} f_i \subseteq U_i, f_i \neq 0$ and set $V_i = \{y \in Y: \varnothing(f_i)(y) \neq 0\}$. From the regularity of τ, it follows that either there exist τ V_i’s equal elements, or τ pairwise different. In both cases there exists $\Lambda \subseteq \tau$, infinite and $y_0 \in \cap \{V_i: i \in \Lambda\}$. Then there exist x_1, \ldots, x_κ pairwise different elements in X, and E_1, \ldots, E_κ open intervals of \mathbb{R} each containing 0 such that

$$\varnothing(V(x_1, \ldots, x_\kappa: E_1, \ldots, E_\kappa)) \subseteq V(y_0: (-1, 1)).$$

We claim that if $f|_{\{x_1, \ldots, x_\kappa\}} = 0$ then $\varnothing(f(y_0)) = 0$. Indeed, if $\varnothing(f(y_0)) \neq 0$, there is a $\lambda \in \mathbb{R}$ such that $\varnothing(\lambda f)(y_0) = \lambda \varnothing(f)(y_0) \notin (-1, 1)$, by the linearity of \varnothing, but $\lambda f \in V(x_1, \ldots, x_\kappa: O_1, \ldots, O_\kappa)$, contradiction.
(b) If Y admits a strictly positive measure μ, then Y has (τ, ω) caliber and so X has (τ, ω) caliber by (a).

In the following we shall prove that X satisfies property K_τ. We suppose, if possible, that there exists a family $\{U_i: i < \tau\}$ of non-empty, open subsets of X which does not contain subfamily of the same cardinality with the 2-intersection property. Let f_i, V_i, $i < \tau$ as in (a). We can suppose that $\mu(V_i) \geq \delta$ for all $i < \tau$, for some $\delta > 0$.

For every $A \subset \tau$, $|A| = \tau$ we set

$$\mathcal{A}_A = \{B \subset A: \text{the family } \{U_i: i \in B\} \text{ has the 2-int-property}\}.$$

The set \mathcal{A}_A is non-empty by (a), partially ordered by inclusion and satisfies the assumptions of Zorn’s Lemma. Let B_A be maximal. Then $|B_A| < \tau$. For every $i \in A \setminus B_A$ there exists $j_i \in B_A$ with $U_i \cap U_{j_i} = \emptyset$. Then

$$A = B_A \cup \bigcup_{j \in B_A} \{i \in A: j_i = j\}.$$

From the regularity of τ, there exists $j_1 \in B_A$, such that the set $A_1 = \{i \in A: j_i = j_1\}$ has cardinality τ. We repeat the same argument with A_1 in place of A.

Inductively we find $j_1, j_2, \ldots, j_m, \ldots$ pairwise different elements of τ, such that $U_{j_l} \cap U_{j_m} = \emptyset$, for every $l \neq m$, $l, m = 1, 2, \ldots$. Now since $\mu(V_{j_l}) \geq \delta$, $l = 1, 2, \ldots$ it follows that there exists a $B \subset \mathbb{N}$, infinite with $\bigcap_{l \in B} V_{j_l} \neq \emptyset$. Now similar arguments as in (a) lead to contradiction.

Corollary 11. Let τ be an uncountable regular cardinal. If X admits a strictly positive measure, there is no, 1-1, linear continuous mapping from \mathbb{R}^τ into $C_p(X)$.

Remark. Let X, Y be compact spaces and $\varphi: C_p(X) \to C_p(Y)$ be a one-to-one, continuous linear mapping, then the mapping $\varphi: (C(X), \|\|) \to (C(Y), \|\|)$ is also continuous (see Arhangel’skii [2]). However the existence of a 1-1, continuous linear mapping $\varphi: (C(X), \|\|) \to (C(Y), \|\|)$ does not imply the existence of a 1-1, continuous $\varphi: C_p(X) \to C_p(Y)$. By Dixmier’s Theorem $L^\infty[0, 1] = C(\Omega)$ where Ω is a compact extremelly disconnected space. On the other hand $L^\infty[0, 1]$ is isomorphic to $C(\beta\mathbb{N})$. The space Ω is not separable, so from Th. 1(a) there exists no a one-to-one, continuous $\varphi: C_p(\Omega) \to C_p(\beta\mathbb{N})$.
REFERENCES

[8] V. V. Tkáčuk, The smallest subring of the ring $C_p(C_p(X))$ containing χ_U is everywhere dense in $C_p(C_p(X))$, Vestnik Moskovskogo Universiteta Matematika, 42, No. 1 (1987), pp. 20-23.

Manoscritto pervenuto in Redazione il 4 giugno 1990.