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*-Multilinear Polynomials with Invertible Values.

O. M. DI VINCENZO - A. VALENTI (*)

Let R be a ring with involution * and S and K the sets of symmetric
and skew elements respectively. Several authors have related the alge-
braic structure of S or K to that of R. For instance, in [3, Theorem 2.18]
the hypothesis that all non zero traces x + x* are invertible determines
the structure of R. Similar results have been obtained for the skew
case.

In this paper we will examine a more general situation. In fact we
consider the case when all the non zero valuations of a *-multilinear po-
lynomial f are invertible in R.

More precisely, let X = xi , ... , xn , xn , ... ~ be a countable set of
unknows and F{X, *} be the free associative algebra with involution *
in the xi’s and The elements *} are called *-polynomials. A

xn , xi , ..., e 7~{Z. * } is multilinear if, for each
i =1, ... , n, either xi or Xi*, but non both, appears in each monomial
of f.

We shall denote by D a division ring, Z(D) its center, Dm the ring of
m x m matrices over D and Dm its opposite ring. Notice that Dm O Dm
has a natural exchange involution given by (x, y)* = ( y, x).

We shall prove the following result.

THEOREM. Let F be of characteristic different from two such
that |F|&#x3E;5. Let R be a semiprime F-algebra with involution * and
let f = f(xl , ..., xn , xi , ..., be a *-multilinear polynomial such that
f or every rl , ... , rn in R either .An~..~~~...~)=0 or

... , rn , -..~~) ~ invertible in 72.
If f(x1 , ..., xn , xi , ..., not a *-polynomial identity for R then

there exists a division ring D such that R is either

(*) Indirizzo degli AA.: 0. M. DI VINCENZO: Istituto di Matematica, Univer-
sità della Basilicata, Via N. Sauro 85, 85100 Potenza; A. VALENTI: Dipartimento
di Matematica, Università di Palermo, Via Archirafi 34, 90123 Palermo.
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1) Dm where if m ; 2 then is finite and f is a *-central
polynomial for m ; 3; or

2) Dm O Dm with exchange involution, where if m &#x3E; 2 then
is finite and f is a *-central polynomial.

The conclusion of the Theorem is not surprising, because one cannot
to expect that f is a *-central polynomial even if m ~ 2. Infact the po-
lynomial f = fix, x*) = x - x* is not a *-central polynomial in the ring R
of 2 x 2 matrices over a field F with transpose type involution but it
still takes zero or invertible values. The same conclusion holds for f and
the ring with exchange involution.

We also remark that if R is a ring and f is a multilinear polynomial
an analogous theorem was proved in [1].

Throughout this paper F will be a field with more then five

elements, char. F ~ 2, R will be an associative F-algebra with 1
and Z = Z(R) its center. Also, f(xl , ..., x,,,, xt , ..., xn ) will be a multi-
linear *-polynomial such that for every rl , ... , rn in R either

f (rl , ... , rn , ri , ... , rn ) = 0 or f (rl , ... , rn , ri , ... , rn ) is invertible in R;
moreover we will assume that f is not a *-polynomial identity for R.

We begin by looking the case when R is a simple artinian ring.

In this case R = Dm is the ring of m x m matrices over a division
ring D and two different types of involutions are defined in R:

1) The transpose type involution: let - : D - D be an involution
in D and X = diag { c 1, ... , Cn I E Dm such that 0 ~ ci = ci for all i.

If A = E Dm then * is given by

2) The symplettic type involution: in this case D = F is a field,
m = 2~ is even and * is given by (A2~ ) * _ (A ~z ), where the are

2 x 2 matrices over F with involution given by

Given a sequence u = (A,,..., An ) of matrices from Dm , the value of
u is defined to be 

,
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Now, let Z2 = {1,* I be the group with two elements, Sn the sym-
metric group of n symbols and Hn = Z2 - Sn the wreath product of Z2
and Sn.

Also, if we write

Let eij be the usual matrix units of D~ (i, j = 1, ... , m). We recall
that a sequence u = (a1 ei1j1’ ... , where ai E D, is called simple.
Moreover a simple sequence u is even if there exists (1, a) E Hn such
that lu(1,o-) = beii 0 0, for some b E D; u is odd if lu(l, 0-) = ~ 0 for so-
me (1, a) E Hn , b E D and i (see [5]).

For any simple sequence u = (a1 ei1jl’ ..., aneinjn) write l(u, t) (re-
spectively r(u, t)) for the number of occurences of the number t as a left
(respectively right) index of one of the unit matrices occuring in u. It is
proved in [5] that if u is a simple even sequence then l(u, t) = r(u, t) for
every t; and if u is an odd simple sequence then there exist two indices
i, j such that l(u, t) = r(u, t) for every t =1= i, j while l(u, i) = r(u, i) + 1
and l(u, j) = r(u, j) -1.

Also, we remark that if u is a simple sequence of matrices from Dun
with then t(u, t) - r(u, t) ~ ;1 for all t = 1, ..., m; moreover
l(u, t) - r(u, t) = l(u, t’ ) - r(u, t’ ) ~ 0 implies t = t’ = 0.

LEMMA 1. Let u be a simple sequence from Dm and (g, a) E Hn .
Then we have:

PROOF. If * is of transpose type the conclusion of the Lemma follo-
ws by [2, Lemma 1].

Suppose now that * is of symplectic type. Recall that the involution
* acts in the following way on the matrix units
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Hence, if we denote by

then for every simple sequence u and for each (g, cr) E Hn we have

This says that

and

where v = u ~’~ ~~ for some (g, cur) E Hn .
Hence

Now, let u) = 0, then as we said above r(u, t) - t(u, t) = 0, for
all t = 1, ..., m, hence we can write t) - r(v, t) = l(v, t * ) - r(v, t * ).
Since t 0 t* it follows, by the above remarks, that either v) = for
some b E D, or 

Suppose now that lul = aeij =* 0, and, first, assume that i* *j (hence
too). In this case we have:

and

Hence, in order to 0 it must happen one of the following
case

If a) holds then I v = beij for some b E D; if b) holds it follows that
for some c and c’ in D.
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Finally let i* = j. In this case we have

therefore if v ~ ~ 0, by above remarks, we must have i) - r(v, i) = 1
and ~(v, j) - r(v, j) _ -1; this implies Ivl = 
We recall the following definition which is a slight generalization of

that given above (see also [2]).

DEFINITION. Let u be a simple sequence. Then u is called even if
for some (g, a) E = be22 ~ 0, and it is odd if for some (g, a) E Hn

= beij ~ 0, where 

Since f(xl , ..., x,,, xi , ..., xn ) is a *-multilinear polynomial we may
assume that f is of the following form

where

As a consequence of the previous result we have:

LEMMA 2. Let u E Dm be a simple sequence. Then

1) If u is even,.

2) If u is odd, for some

We are now ready to prove the main result for simple artinian
ring.

LEMMA 3. Let D be a division ring of characteristic different from
two and with more then five elements. If m ; 3, then f is a *-central po-
lynomial for Dm

PROOF. Since all the nonzero valuations of f are invertible in R =
= Dm , by Lemma 2, flu, u*) = 0 for all odd simple sequences u.

Therefore, by the previous Lemma, for all A1, ..., An E Dm we
have
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where the ui are even simple sequences. This says that f takes
diagonal values in Dn .

Let W be the subalgebra of Dm generated by all the elements of the
form f(r1, ..., rn , rf , ..., r:), for all r1’...’ rn E We observe that
xWx* c W for all x unitary elements of R. Thus, if the involution * on R
is symplectic by [4, Theorem 5] we have either W = 0 or W c Z, the cen-
ter of R. The first case is impossible because f is not a *-polynomial
identity, so W c Z and f is a *-central polynomial. On the other hand, if
* is an involution of transpose type, since m~3 by [4, Theorem 17] f is
a *-central polynomial.

LEMMA 4. Let R = D2 . Then D is finite dimensionaL over its cen-
ter and, if * is the symplectic involution, f is ac *-central polyno-
miat.

PROOF. If * is of transpose type for all A E D2 we have

where - is an involution in D and the c/ are non zero symmetric ele-
ments of D. Let -~:D2013~D be the involution on D defined by
x - c1xc1-1.

Then, for all ac1, ... , an E D, we have

Since this values is not invertible in R, then f(a1, 9 an , a1 , ... , an is
zero in D, so D satisfies a *-polynomial identity and D is finite dimen-
sional over its center.

If * is the symplectic involution then D = F is a field. Moreover, if u
is an odd simple sequence, flu, u * ) = ael2 + (a - b) e12 and this
value is not invertible in R. It follows that f(u, u*) = 0 for all u odd sim-
ple sequences and so all the valuations of f are diagonal elements.

As in Lemma 3, the subalgebra W generated by flR, R*) is inva-
riant under conjugation by unitary elements of R. In particular, if we

consider the unitary then, for all we have

This implies a = b and so f

is a *-central polynomial.
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We will examine now the general case.

We shall use the notation Z + for Z n S. We have the following:

LEMMA 5. If R is any ring then Z + is afield. Moreover, if R is
prime then Z is a field.

PROOF. Let z be an element of Z + and such that

... , rn , ... , rn ) is invertible.
&#x3E; hence, &#x3E; ei-

ther f(zrl , ..., rn , 9 zr* , ..., r.* ) is invertible and this implies that z is in-
vertible or f(zrl , ... , rn , zrf, ... , r,,,* ) = 0 and it follows that z = 0.

Now, if R is a prime ring, for all z E Z - {0}. 0 # zz * E Z + and by the
above zz*, and so z, is invertible.

We continue with the following:

LEMMA 6. If R is semiprime then R is *-simple. Moreover, if R is
prime then R is sample.

PROOF. Let 0 # 1 = I * be a proper ideal of R invariant under the in-
volution *. Since the values of f(x1, ..., rn , in R are zero or

invertible, we for all rl , ... , rn E 1.
Hence f is a *-polynomial identity for I and by [3, Theorem 1.4.2]

Z(1) ~ 0. Also, by [3, Lemma 1.1.5], Z(I) C Z(R). Now, if Z(I) n S = 0
then, for all z E Z(I), z + z* = zz* = 0 and this implies Z2 = 0, a contra-
diction as R is semiprime. Hence By
Lemma 5, Z + is a field and so I = R, a contradiction again. Therefore R
is *-simple-.

Now, if R is prime, let 1 # (0) be an ideal of R; then II * is a *-ideal.
Since R is *-simple then either II* = (0) or II * = R and this implies that
1= R, that is R is a simple ring.

In the following lemma we study the case when R is a prime
ring.

LEMMA 7. If R is a prime ring, char R ~ 2, then

1) either R is a division ring, or

2) R = Dm is a finite dimensionaL central simpLe algebras and, if
m ; 3, , f(xl , ..., xl , ..., a *-central polynomial..

PROOF. By the previous Lemma, R is a simple ring. If every
symmetric element of R is nilpotent or invertible, by [3, Theorem
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2.3.3], then either R is a division ring or the ring of 2 x 2 matrices
over a field and we are done.

Therefore we may assume that there exists s E S such that s is nei-
ther nilpotent or invertible. Let R1= sRs; for all r1, ...rn E R we have
f(sr1s, ...,srns,sr;Cs, ...,sr:s) = says, since s is not invertible sas = 0
and so f is a *-polynomial identity for R1. By [3, Theorem 5.5.1] sRs sa-
tisfies an identity, hence R satisfies a generalized polynomial identi-
ty.

Since R is a simple ring with 1, R coincides with its central closure
and so, by [3, Corollary 2 to the Theorem 1.2.2] either R = Dm or, for all
m &#x3E; 1, R contains a *-invariant subring R (m) such that R 

In the first case the conclusion follows by Lemma 3 and Lemma 4.
In the second case, by Lemma 3, for all m ~ 3, f is a *-central polyno-
mial for Dm . Then, by [3, Lemma 5.1.5] Dm satisfies a polynomial iden-
tity of degree 2(deg f + 1) for all m~3, a contradiction.

We can now prove the main theorem of this note.

PROOF OF THE THEOREM. By Lemma 6, R is a *-simple ring thus ei-
ther R is simple or R has a simple homomorphic image 721 1 such that
R = R 1 O and * is the exchange involution (see [6, Proposition
2.1.12]).

In the first case the result follows from Lemma 5. We may, therefo-
re, assume that R = 72i 072p with involution *, where R 1 is a simple
ring and * the exchange involution.

By setting

we can write ..., x1 , ..., X:) as a polynomial in the symmetric
variables yi = xi + xt and in the skew variables zi = xi - x * .

then g(yl ~ ~ ~ ~ . yn ~ z 1 ~ .. ~ ~ z n ) ~ is a po-
lynomial of degree n in 2n unknowns such that, for every monomial M
of g we have

Moreover, for all substitutions

we have that g(a1 , ..., an , ... , b 1, ... , bn ) is either zero or invertible in R .
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Let h be one of the blended components of g; that is h is the sum of all
the monomials of g in which appear the variables ..., for
some partition of ~ 1, ... , n } in the disjoint subsets and

{j1, ..., js}.
Then

is zero or invertible in R.
If M is a monomial of h we indicate with M°p the opposite monomial

of M. Then

and so

It follows that h is a multilinear polynomial (without *) that assu-
mes zero or invertible values in R1

Since R1 is a simple ring with 1, by [1, Theorem] either R1 is a divi-
sion ring or Dm where m ; 2, D is a finite dimensional central divi-
sion ring and h is a central polynomial in Dm .

This leads to desired conclusion.
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