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On the Euler Equations
with a Singular External Velocity Field.

CARLO MARCHIORO (*)

ABSTRACT - We study the Euler equations for an incompressible fluid in
presence of a singular external velocity field produced by fixed point
vortices. We prove the existence and the uniqueness of the solution.

1. Results.

In this paper we study the existence and the uniqueness of the
time evolution of a two dimensional incompressible ideal fluid in pres-
ence of a singular external velocity field. The motion is governed
by the Euler equations:

(1.2) V . u(x, t) = 0 (continuity equation) , y
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where

u = (ui, ’U2) is the velocity field, m the vorticity, E(x, t) an
external velocity field that is assumed to satisfy the divergence-
free condition

If the velocity field decays at infinity, y we can reconstruct it by
means of co:

where

The problem can be studied by the well known iterative method [1]
and an existence and uniqueness theorem can be easily established
when the external field is smooth and the initial datum is smooth
and has a compact support. Equation (1.1) has no meaning for non
smooth coo and E; however a weak version of the Euler equations
can be introduced for the time evolution of a class of non smooth
initial data (see for instance [6]). We do not enter here in this
(standard) point. We note only that a similar generalization does
not work when the external field E is the sum of a smooth part El
and a singular part E2 produced by N vortices of intensity ai fixed
in the points zi, i = 1, ... , N. We want to study this problem in
the present paper. The physical meaning of this model will be dis-
cussed in the following section.
We consider eqs. (1.1)-(1.5) in the case in which

where
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and

where z a = (Zl,i, z2, i ) .
We suppose the initial datum wo(x) regular and with a compact

support which does not overlap the singularities of E2; that is

The main result of this paper is given by the following theorem.

THEOREM. For any T &#x3E; 0 and 0 c t c T, we consider the Euler

equations (1.1)-(1.5) with the external field E(x) given by (1.10)-(1.12)
and with initial vorticity ay satis f ying conditions (1.13), (1.14). Then

they have a solution unique in the class of f unction C2(R2) with a com-
pact support.

PROOF. The difficulty of the proof lies in the singularity of the
velocity field E2 . Otherwise, substituting E by a mollified version EE :

the Theorem can be proved by the standard iterative method used
in ref. ( 1) . We do not repeat them here but we keep in mind the
result under the assumption (1.15).

Of course, as long as supp w(x, t) remains far away from the point
vortices the external field felt by the fluid is smooth as in the previous
case (1.15). But, a priori, the fluid can arrive in where the field
becomes singular and the methods of ref. ( 1) fail to be valid. In this
note we will prove that this cannot happen.

Actually the external field E and the velocity field produced by
the fluid can push the fluid near the vortices z; . In this region the
fluid particles keep turning around zi very fastly and the particle
paths become quasi-circular while the time-average of the velocity
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field becomes very small due to the divergence-free of the velocity
field and the Gauss-Green Lemma.

We give a simple rigorous proof of this fact. (A proof that perhaps
does not outline the real average property.) For the sake of simplicity
we suppose the presence of only a single vortex of intensity one in
the origin

As usual, we introduce the characteristics of eqs. (1.1). We denote
by x(t, xo) the trajectory of the particle of fluid initially in %0’ which
satisfy the equations

The solution is obtained by the invariance of the vorticity along the
particle paths:

For the moment we suppose that a unique solution exists in [0, T]
and we follow the time evolution of a particle initially in the support
of the vorticity:

We prove that this particle path cannot arrive in the origin, that is

for any T &#x3E; 0.
To prove that d is strictly positive, we introduce a suitable Lia-

punov function H(x, t) :
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where !P = PI + If2 is the stream function defined as

It is easy to see that IH(x, t) ~ I becomes infinite if and only if x = 0.
In fact the velocity field produced by the fiuid itself is bounded:

where

(meas denotes the Lebesgue measure). Moreover in the (1.26) we
have used the equality (consequence of (1.20))

Moreover for large E(x, t) is bounded, so that the fluid remains
in bounded regions during finite time, and in this region

Furthermore is bounded in a bounded region, because of 
is bounded.

Finally we note that
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Therefore condition (1.14) implies that H( x, 0) is bounded. We want
to prove that H(x, t) remains bounded for every time which implies
(1.22).

For any t, 0  t  T, we have

along the curve x = x(t, 
Hence it is enough to prove that

We have

by the equations of motion (1.17)-(1.19) and the identity

Equation (1.32) means that the « potential energy &#x3E;&#x3E; .H is a constant
of motion a part the explicit time dependence of the velocity field.

We evaluate 

The regularity properties of E1 imply that is bounded. Moreover

We suppose, for the moment, that condition (1.22) holds so that the
integrand is smooth and we can integrate by parts. The boundary
term vanishes and by (1.2) and (1.5) we obtain:
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We study these terms separately:

We study the last term.

where a denotes the angle between y and y - x.
We consider two cases: or I x 
In the first case the integral is trivially bounded:

In the second case the double integral plays a fundamental r61e:

where we have used polar coordinates centered in the origin such that
y = x corresponds to 8 = 0 and we have also used the identity
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We perform the integral. We put z = 2r I x cos 0 and we have

where C is a constant independent of Ixl.
The last integral is bounded because of the singularity in z’ = 1

is integrable and the integrand vanishes at infinity as z’-2.
This achieves the proof of (1.22).
The further steps for a rigorous proof are straightforward. We

substitute E by EE so that the solution do exist unique. The solu-
tion we look for in this paper corresponds to E --~ 0. In fact when

all solutions corresponding to different Ee satisfy the same prop-
erty (1.22) and then they coincide.

2. Comments.

a) The regularity properties on Wo are not essential and the
technique of this paper can be applied to a weak form of the Euler
equations with initial data in Ll r1 E as well. (For a weak form of
the Euler equations without an external field with such initial data
see for instance [6].)

b ) In the present paper we have assumed that the fluid moves
in D = .1~2, but the result holds unchanged in bounded domain: of
course we must suppose that the vortices xi do not belong to the
boundary aD.

c) The hypothesis (1.14) is essential in our proof at most for
the uniqueness. The existence of the solution can be proved in gen-
eral by compactness arguments starting from the solutions relative
to the field Eg and using the Ascoli-Arzelà Lemma as e --~- 0.
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0’) The present technique still work if we replace condition

(1.14) by the assumption of the existence of a neighborhood of zi in
which roo ( x) is equal to 

d) The present problem is a mathematical schematisation of the
interaction between point vortices and a fluid with smooth vorticity
(the so called vorttex-wave problem). Here we have supposed the
vortices fixed. Another scheme (perhaps more realistic) supposes that
a vortex moves in the velocity field produced by the smooth vorticity
and by other vortices (but not by itself). In this case we can prove
a result analogous to Theorem I assuming as Liapunov function the
distance between the particle path and the vortices and using the
quasi-Lipschitz property of the velocity field [7]. Generalization like c)
can also be done [7].

Finally we note that rigorous connections between point vortices
and Euler equations have been widely studied [2, 3, 4, 5, 6, 8].
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