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Representing the Algebra of Regulated Functions
as an Algebra of Continuous Functions.

G. DE MARCO (*)

SUMMARY - We give an intuitively appealing description of the character space
of the algebra of regulated functions on a compact interval.

0. The character space of the algebra of (complex valued) regu-
lated functions on a compact interval has been described by S. K.
Berberian in the framework if Banach algebras (see [B]).

Avoiding here any Banach algebra theory we give a description
of the same space as an ordered topological space: this description
is thoroughly elementary and makes the space easy to work with.
In fact, this representation of regulated functions as continuous func-
tions is so natural that it is probably folklore in some mathematical
circles. However, it does not seem to be widely known; and since
regulated functions are useful in elementary analysis (see, e.g. [D]),
every information concerning them should be considered interesting.

1. We consider the set L = R x {- 1, 0, 11 lexicographically or-
dered (by first differences; that is (x, i)  (y, j ) means or x = y
and i C j ) . Given elements the interval they deter-
mine in L will be denoted ~a, (a, I etc. ; given x E R, the ele-
ments (x,1 ), (x, -1) E L are denoted by x +, x -, respectively, while

(*) Indirizzo dell’A.: Dipartimento di Matematica Pura e Applicata del-
l’Università degli Studi, Via Belzoni 7, 35131, Padova.
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(x, 0) is identified with x; via this identification, R and all its sub -
sets are also subsets of L; given a subset S of R, we write ~S-~- for
~x -f- : S G S) c L, analogous being the meaning of ~’ -. Note that

x - C x C x-]-, that x is the immediate successor of x -, and that

x-~-- is the immediate successor of x (in L).
We consider the interval [a, b~ of L with the order topology (see,

e.g. [E] for informations on ordered topological spaces); we have
~a, b~ == ([a, b[+) u ( [~c, b]) U ( ]ac, b] - ) as a disjoint union. We de-
scribe explicitly a neighborhood base at every point of ~a, b~ :

1) at x -~- : sets of the form:

2) at x - : sets of the form:

points x E [a, b] are isolated, = j~2013? x+ ~-
Notice that the above neighborhoods are clopen (= open and

closed).
Every subset of Ea, b~ has a supremum and an infimum in ~a, b]

(as it is trivial to prove using the order completeness of R).
Thus ~a, b~ is compact ([E]). We have seen that ~a, b~ is a com-

pact Hausdorff first countable 0-dimensional space, which has [a, b]
as a dense, open and discrete subspace.

Recall that a function /: [a, b] - C is said to be regulated if the
limits

exist in C for every x E [a, b[, x E ]a, b] respectively.
Write Rg ([a, b]) for the set of all (complex valued) regulated

functions on [a, b] ; clearly Rg ( [a, b]) is a C-algebra under point-
wise operations. For every topological space X, denote by C(X) the
C-algebra of all complex valued continuous functions on X.
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THEOREM. For every f E Rg ( [a, b]) define f : ~a, b~ - C by

C(~a, b~) . Moreover, the mapping f - f is a (supremum) norm
preserving isomorphism o f Rg ([ac, b]) onto C(~a, b]), whose inverse is

the restriction macp g - g I [a, b].

PROOF. All the statements are immediate, or at least very easy
to check; one can prove this « local» version: given a function

h: [a, b] - C, and x E [a, b[ (resp.: x E ]a, b]) h admits a continuous
extension to the subspace [a, b] U (resp. : [a, b] U ~x -~ ) of ~a, b~
if and only if h admits a right (resp.: left) sided limit at x, this limit
giving the value of the extension at x+ (resp. x-).

For the statement on norms, use the density of [a, b] in [a, b].

2. From the preceding description of the character space of

Rg ([a, b]) as an ordered space is very easy to deduce some of its

properties. Since b~ is first countable it cannot be the Stone-Cech
compactification of any of its dense subspaces (see, e.g. [GJ], Ch. 9).
This extends a result in [B]. Clearly b~ has weight (= minimum
cardinal of a base) c, the continuum, hence it cannot be metrizable
(this result is also in [B]).

The subspace [a, b[-+- (resp. ]a, b]-) is homeomorphic to [a, b[
(resp. to b]) with the right (resp. left) Sorgenfrey topology (see [E]) :
both are then hereditarily Lindel6f non metrizable spaces of weight c.

The subspace T = ([a, b [-~- ) U (]a, b] - ) = [a, b~B [ac, b], known as
the  two arrows space &#x3E;&#x3E;, ([E], 3.10.C.), is then a compact 0-dimen-
sional hereditarily Lindel6f space of weight c (hence T is also per-
fectly normal, meaning that every open set is a cozero set, [GJ]).

The entire space [a, b~ is however not hereditarily Lindel6f, having
a discrete open subset of power c ([a, b]) ; neither then can [a, b] be
perfectly normal: cozero sets in [a, b~ are exactly the .F’a-open sets;
in particular a subset of [a, b] is a cozero set in b] if and only if
it is at most countable.
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Since ~a, b~ is compact with a clopen base, the subalgebra Ao of
O([a, b]) consisting of functions with finite range is uniformly dense in

b]) ; in the isomorphism of the previous theorem, functions of Ao
correspond to step functions on [a, b] (for this, observe that a clopen
basis for Ea, 6j is the set C consisting of all singletons fxl, x c- [a, b]
and of all intervals of the form y -~, x E [a, b[, y c- ]a, b], x  y :
every clopen partition of ~a, b] corresponds to a « subdivision» of

[a, b] in the usual Riemann integration theory sense).
This is the well known fact that step functions are uniformly

dense in the set of regulated functions; the (easy) direct proof of this
fact makes use of the compactness of b~, without even mentioning
this space (see [D]).

3. Some remarkable subalgebras of Rg ([a, b]) have remarkable
quotients of b~ as their structure spaces (in the cases here con-
sidered the character space always coincides with the maximal ideal
space, equipped with the hull-kernel topology; this last is called struc-
ture space of the algebra).

First consider C( [a, b]us), where [a, b]us denotes [a, b] with the usual
topology; dual to the inclusion C([a, ~ Rg ( [ac, b]) H b]) we
have the quotient map p : Ea, b~ --~ [ac, which is essentially the
restriction to [a, b] c L = R X {- 1, 0, 11 of the first projection: that
is p (x) = x, p (x-f- ) = x, p (x - ) = x, whenever this makes sense; no-
tice that p is closed (obviously, since all spaces are compact T2) but
not open.

Next, let Rg* ([a, b]) denote the subalgebra of regulated functions
which are right continuous at every and left continuous
at b. Its character space is the subspace T = [a, b~B[a, b] described
in sect. 2; the map b~ - T which is dual to the inclusion of
Rg* into Rg is actually a retraction onto T, and is given by o~(s) =
==x+ for ~O+(b) = b - : all this is easy to verify. Anal-

ogous statements for the subalgebra *Rg ([ac, b]) of regulated func-
tions left continuous on ]a, b] and right continuous at a; the struc-
ture space is still T and the retraction ~_ : ~a, b~ - T is defined by
~O_(x) = x- for x E ]a, b], e-(a) = a+ . The space T has been de-
scribed also by Hewitt in [H]. It is perhaps worth noting that T,
being compact, has its subspace topology coinciding with the order
topology it has as an ordered set.

Finally, we consider Rm ([a, b]), subalgebra of regulated func-
tions whose discontinuities are all removable.
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Its structure space is the quotient obtained from Ta, b~ by iden-
tifying 0153+ and x-, for every b[; this space is clearly homeo-
morphic to the « Alexandroff double» of [a, b]uB (see [E], p. 173~.
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