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Some Commutativity Criteria.

JOHN C. LENNOX - A. MOHAMMADI HASSANABADI - JAMES WIEGOLD (*)

1. Introduction.

In [5] B. H. Neumann proved the following elegant result as an
application of Ramsey’s Theorem [6]:

THEOREM A. All sets of mutually non-commuting elements of a
group G are finite if and only if G is centre-by-finite.

See [1], [3] and [4] for some variations on this theme. We present
here some further results of the same general type, the difference
being that the outcome of imposing this or that condition turns out
to be commutativity.

To state our first theorem, we define an n-set in a group G to be
any subset of cardinality exactly n : G is said to be a Pn-group if

= Y~’ for all n-sets X’ and Y in G.

THEOREM B. For every positive integer n, infinite Pn-groups are
abelian.

Following the spirit of [4], we consider the class Pn of groups G
such that every infinite set of n-sets in G contains a pair X, Y of
different members such that XY = YX. The content of Theorem A
is that the Pi -groups are precisely the centre-by-finite groups.

(*) Indirizzo degli AA.: John C. Lennox and James Wiegold: School of
Mathematics, University of Wales, College of Cardiff, Cardiff CF2 4AG, Wales;
A. Mohammadi Hassanabadi: Department of Mathematics, University of

Isfahn, Isfahan, Iran.
The second author is most grateful to the School of Mathematics, Uni-

versity of Wales, College of Cardiff, for their very warm hospitality during
the period of this research.
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We have been able to show that infinite P*2 -groups and infinite
P3 -groups are commutative, and believe that our methods will show
that infinite P/J-groups are abelian when n is not too large. Indeed,
non-abelian infinite P/J-groups must be something like Tarski groups,
as Theorems C and D below show.

THEOREM C. For every % &#x3E; 2, P:-groups possessing infinite abelian
subgroups are abelian. In particular, non-periodic and infinite locally
finite P:-groups are abelia,n for n ~ 2.

COROLLARY 1. Every infinite P*2-group is abelian.

Theorem C tells us that to prove that all infinite P:-groups are
abelian, we need do it only for finitely generated periodic groups.
In this context, we have:

THEOREM D. For every n ~ 2, every finitely generated P:-group
with a proper infinite subgroup is abelian.

COROLLARY 2. Every infinite P3 -group is abelian.

2. Proofs.

To prove Theorem B, assume for a contradiction that G is an
infinite Pn-group with elements x and y such that xy =1= yx. Choose
elements ai , a2 , ... , which are different from each other and from
x and y. Then

whence we get:

for suitable i, j, k, m. Thus aiaj = xy, = 01531/ or acm = yx-1 for some
i., j, k, m. Now = y, and define a graph 1~ on
the vertex set ~ by declaring that there is an edge j oining u to v
if and only if and xy.

By Ramsey’s Theorem [6], r contains an infinite complete sub-
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graph or an infinite totally disconnected subgraph. If the latter holds,
we have an infinite sequence ui, ... , un, ... of vertices with no edges
between them. Without loss of generality, we many assume that

Then since &#x3E; Thus ’US’U1 = xy. Simi-

larly ~y, so that = xy, contradicting the fact that ~c3 ~ U4 -
Thus we conclude that there is an infinite sequence tl, t2, ... of ele-

ments of X such that for all i and j. All we need is the
first n - 1 of these to falsify the equation

so that G is not a Pn-group after all.
The reader will observe that Theorem B holds for quasigroups

as well as for groups. Probably it fails for semigroups.
Our proof of Theorem C rests on the following technical lemma,

whose proof we omit.

LEMMA 1. Let T be an infinite subset of an abelian group. Then

there exist two infinite sequences al , ... , an , ... and a’ 17 4%’ 27 ... , I an7 f ...

of elements of T such that ~ whenever i 0 j.
To prove Theorem C, we first prove it in the case where G has

infinite centre. Let n be an integer greater than 1 and G an infinite

Pn group with elements x, y such that Let ... , tn-2
be figed distinct elements of the centre Z of G; then, for any z, w E

t2 , ... , 7 Itl .... 7 tn-2 w is an n-set. Fur-

ther, = Xz.,w, if and only if z = z’ and w = since yx.
Since we are assuming Z to be infinite, we can use the Lemma

to construct infinite sequences Zl, Z27 ... and wl, w2, ... of elements

of Z different from t1, t2, ... , tn_2 and such that whenever

i =1= j. Now consider the n sets XZ¡,W¡. There are infinitely many of
them, so that

for some different i and j. Writing out this equality yields, after a

small calculation, the contradiction that = This completes
the proof of our special case of Theorem C.

To complete the proof in general, we shall show that the existence
of an infinite abelian subgroup implies that the centre is infinite.

First, another technical result.
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LEMMA 2. Let G be a group, y T an infinite subset of G and g an
element of G not commuting with any element of T. Then T has
an infinite subset S such that S n Sg = 0.

PROOF. We construct the elements of S by induction. Choose

any element 81 of T, when n = 0. Assume that we have
found different elements ... , sn of T such that ... , sn~ r1
r’1 1811 S2, ... , 

= 0. For s,+, we choose any element in

then {81 s2 , ... , clearly fails to intersect s2 , ... , and the
induction is complete.

The situation is now that G is a P* group, n ~ 2, having an infinite
abelian subgroup A. To show that G is abelian, it is enough to show
that A, g) has infinite centre for every g in A, and apply the special
case done above to establish that A centralizes g, so that A is central
in G and again the special case applies. For this it is enough to show
that every element g of G commutes with some element of every
infinite subset of A ; for we can express A as a disjoint union of infi-
nitely many infinite subsets, thus producing infinitely many elements
of A commuting with g. This will show that A, g) has infinite centre,
since A is abelian.

Thus, for a contradiction, let T be an infinite subset of A having
no element commuting with g. Choose an infinite subset S of T

according to Lemma 2; by the P,*,-property, there exist different
elements ai, ... , I bi , b2 , ..., bn_i of S such that

The element a1g must appear on the right-hand side of this equation.
It must be of the form or gas. The first three cases are

impossible since g would be in A and thus commute with everything
in A ; and it is not gas since S m 59 = 0. Thus T must have a non-
trivial elemenet commuting with g after all, and this completes the
proof of Theorem C.

To prove Corollary 1, let G be an infinite P*2-group. It will be

enough if we show that G is centre-by-finite, for then G has infinite
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centre and Theorem C applies. This is where Theorem A comes in:
we prove that (~ is a Pi -group. To this end, let X be an infinite subset
of (~. Then there are infinitely many 2-sets {1, x~ with so

that

for some different x and y in G, that is,

But then xy is one of 1, x, y or yx and in all cases xy = yx. Thus
(~ is a Pi -group, as required.

For Theorem D, let (~ be a finitely generated P.*-group with a
proper infinite subgroup H, and let g be any element outside H.
It will be enough for us to show that CH(g) is infinite. This is be-
cause Q’- is generated by finitely many elements outside H,
and we have C,,(gl):= Hl is infinite so that by the same argument

H, is infinite, and so on. This procedure leads to an infi-
nite subgroup centralizing gl , g2l ... , that is, to an infinite central
subgroup. Theorem C now applies.

To show that CH(g) is infinite when g ~ H, we prove that every
infinite subset T of .~1 contains an element centralizing g, and reason
as before. If T contains no element centralizing g, choose an infinite
subse t S of T with S = 0; since (~ is in P:, there are different
elements ... , b1, b2, ... , satisfying equation (*). Now
g is outside .H~, whereas the ai and bj are inside .H; since S n Sg = 0,
equation (*) forces us to deduce that alg = gal, just as in the proof
of Theorem C; and the proof of Theorem D is complete.

Finally, we establish Corollary 2 by proving that every infinite
periodic Pt-group contains a non-central element with infinite cen-
tralizer. Theorem D then applies to show that every finitely gen-
erated infinite periodic P§J-poup is abelian, which is enough for our
purposes.

Thus let g be an element of an infinite periodic P. -group (~. Firstly,
we shown hat g cannot have cofinite conjugacy class. In fact, more
is true:

LEMMA 3. Let be a periodic group with a cofinite conjugacy
class of elements. Then (~ is finite.
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PROOF. Let g be an element with cofinite conjugacy class. By
Ditsman’s Lemma, the subgroup N generated by the elements not
conjugate to g is finite, and G/N is a periodic group in which the
non-trivial elements are mutually conjugate. But then, is of

prime exponent, p say, and there exist elements x, y of G/N with
x1l = x-1. Since = x, this means that p = 2, G/N is elementary
abelian and of order at most 2.

Returning now to the proof of Corollary 2, let G be an infinite
periodic P*3-group and g an element outside the centre of G. Lemma 3
tells us that g does not have cofinite conjugacy class, so that infinitely
many elements of G fail to be conjugate to g. Our aim of proving
C~(g) infinite will be realized by showing that every infinite set T
of elements not conjugate to g contains an element centralizing g.
Any T without such centralizing elements has an infinite subset S
with S r1 Sg = 0, and, since G is in there are different elements

a, b of S such that

What are the possibilities on the right hand side for the element ag
of the left hand side ~ Not 1, c~, g, g2 or ga, since g does not centralize a.
Not ba, since g is not conjugate to b. Thus ag must be b. The very
same reasoning gives that the element ga of the right-hand side must
also be b ; and g does commute with a after all. This completes the
proof of Corollary 2.

Finally, we shall deal with finite Pn-groups in a later paper. It

turns our that almost all finite Pn-groups for given n are commu-
tative, though not all: every group of order t is in Pn whenever
n &#x3E; t/2.
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