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Well-Posed Minimum Problems for Preorders.

FIORAVANTE PATRONE (*)

SU:MMARY - It is introduced Tikhonov well-posedness for minimum problems
for preorders. In case of total preorders represented by real valued func-
tions, it is investigated the relationship between well-posedness for the
preorder and for the function. A characterization, resembling that one
given by Furi and Vignoli, is given for well-posed preorders.

1. Introduction.

Given a topological space X and /: JT 2013~R, the minimum problem
associated to f is said to be well-posed in Tikhonov sense or, briefly,
f is said to be well-posed (wp) if f has a unique point of minimum
to which every minimizing sequence converges ([Ti], [DoZ]). We no-
tice that f induces on X a total preorder by defining x ~ y iff 
Obviously, another g: may identify the same preorder on X.
Note that in this case the mimimum points of f and g (and of fl )
are the same. The question that can be raised is the following: does
wp of f guarantee wp of g ~ Put in other words: is wp in some sense
a property intrinsic to the preorder ~, or it does depend on its dif-
ferent representatives? This is of some interest, since in (neoclassical)
econ omics what is considered usually to be given is the « preference
ysstem » of the agent, and not some specific « utility function » that
does represent it. Partial results on this topic are in [Pa] (where the
emphasis is on saddle points and Nash equilibria, instead of minima)

(*) Indirizzo dell’A.: Dipartimento di Matematica, via L. B. Alberti 4,
16132 Genova (Italy).
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and in [Lu3]. What is shown here is that wp is essentially intrinsic
to the preorder, in the following sense: if f is wp, any other function
representing the same preorder as f is wp too (provided that some
non-degeneracy conditions are respected).

The above mentioned result provides some hope that it is pos-
sible to define wp for a given preorder =, without any function as
an intermediate. This is actually the main topic of this paper: it is
proposed a definition of wp for a preorder (not necessarily total),
implicitly suggested in [Lu3], and some properties are investigated. In
particular, it is shown that in this context we must distinguish be-
tween wp through minimizing sequences or nets (contrary to the case
of real-valued functions: see [Pa]) . Furthermore, it is proved a charac-
terization of sequential wp for preorders resembling that one given
in [FV]. We take also the occasion for some general considerations
about Tikhonov wp (not only for minimum problems, but also for
variational inequalities, saddle points, Stackelberg equilibria, etc.).

2. Notations and hypotheses.

Let X be a non empty set.
A relation  on .~ which is reflexive and transitive is said to be

a preorder on X. We use the standard abbreviation  x ~ y » to mean
and ». If  is also total (i.e.: z fl y or is true

for every x, y e X), we say that the preorder is total. As usual, xo E X
is said to be a minimum for  on X if for every z E X.

Let  be a total preorder on X. f : ~ -+ R is said to represent  if

or, equivalently:

Note that if a relation can be represented by some f accordingly
to (2.1), then it must be a total preorder. Obviously, given f : X -+ R,
we may define a total preorder through (2.1): in this case we say
that f induces the preorder on X.
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Given f : we use the following notation:

A sequence is said to be minimizing for f if -* inf (f ; X)
If = min ( f ; X) for all large n, then the minimizing sequence will
be said to be trivial.

When .~ is a topological space, we say that f is Tikhonov well-
posed (briefly: ((wp))) if:

1) there is a unique minimum point 

2) every minimizing sequence converges to xo .

3. Ordinal character of well-posedness.

DEFINITION 3.1. Let ~Y be a non empty set, and fl be a preorder
on ~’. A net z, is said to be a « minimizing net for  » if :

(3.1) for every y which is not a minimum on X for , even-
tually x,,-~ y . //

REMARK 3.2. For terminology on nets, we follow [Kel].
It is easy to see that any subnet of a minimizing net is minimizing,

and that a net s.t. eventually xv is a minimum for is a minimizing
net (and will be called trivial minimizing net). ff

DEFINITION 3.3. Let X be a topological space and  be a preorder
on ..g. The minimum problem for  is said to be wp (respectively:
seq-wp) if:

1) there is a unique minimum xo for
2) every minimizing net (respectively: sequence) converges

to ff

REMARK 3.4. Of course, a minimizing sequence is also a minimiz-
ing net, so if =~ is wp then it is also seq-wp. Note also that wp
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(seq-wp) w.r.t. some topology implies wp (seq-wp) w.r.t. any coarser
topology. ll

THEOREM 3.5. Let f : X - R be non constant and let  be the
total preorder induced by f on X.

If a sequence xn is minimizing for f , then xn is minimizing for .
Conversely, y we have:

1) if f has minimum on Xgargmin ( f ; X), then f has minimum
and the only minimizing sequences are the trivial ones; moreover,
minimizing sequences for f and  are the same.

2) if f has not minimum on ~argmin ( f ; X), then i, defined as:

represents  and minimizing sequences for f and for fl are the
same. //

REMARK 3.6. The hypothesis f non constant implies that

Of course, the case in which f is constant is trivial. ff

PROOF (of Theorem 3.5). For the first assertion, take xn mini-
mizing for f and let y be not a minimum for =~. Since  is a total

preorder, there is s.t. x ~ y. Since f represents ~, we have
that f (x)  i(y), so inf ( f ; X)  f (y) : hence,  for all large n,
i.e. for all large n. So, xn is minimizing for:.

For the converse, let us see case 1) first. That f has minimum
on ..~ is trivial by contradiction and the verification of all of the other
assertions is straightforward.

Let’s consider case 2). To prove that i represents  it is only
needed to show that for and 

Bargmin ( f ; ~’). If we assume the contrary, this means that there
exists yEX B argmin ( f ; X) s.t. = f(x) = inf ( f ; XBargmin ( f ; X)).
But this amounts to say that f has minimum on Xnargmin ( f ; X),
contrary to the hypothesis.
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To prove the last assertion, we confine us to show that if we take
a minimizing sequence xn f or ~ , s.t. Xn is not a minimum for f , then
xn is minimizing for f (from this, the general result follows immedia-
tely). Now, is minimizing for Namely, take

there is s.t. x -~ y, so eventually - y.
This means that for every y E XBargmin ( f ; X) we have eventually

Since for every E &#x3E; 0 there is y E XBgargmin ( f ; X) s.t.

we have proved that --&#x3E;- inf ( f ; XBargmin ( f ; X)), i.e. xn is mini-
mizing for x&#x3E; : From this it is patent that such Xn is mini-
mizing for ,~. / /

COROLLARY 3.7. Let X be a topological space, f : X -+ R and 
be the preorder induced by f on X.

If fl is seq-wp, then f is wp.
Conversely, assuming f is not constant, we have:

1) if f has minimum on XBargmin ( f ; X), then f wp implies
 wp .

2) if f has not minimum on XBargmin ( f ; .X’), and inf ( f ; X) _

= inf ( f ; XBargmin ( f ; X)), then f wp implies : wp. f f

PROOF. It is obvious that existence and uniqueness of a mini-
mum for fl is equivalent to existence and uniqueness of a minimum
for f (and they are the same). So, the result follows from the fact
that under the hypotheses above f and have the same minimizing
sequences (of course, the hypotheses in case 2) guarantee that f = 1
in the notation of Theorem 3.5). ff

REMARK 3.8. Proposition 3.1 of [Pa] is a corollary of this result,
since its hypotheses guarantee that f (X) is an interval in R, and this
implies f = f (and that f has not minimum on XBargmin ( f ; X)).
Also Theorem 2.13 of [Lu3] follows: its assumption that f has non
trivial minimizing sequences clearly implies that f has not minimum
on XBargmin ( f ; X) and that f = f. f f

REMARK 3.9. Note that if f is lower semicontinuous, the same is
true for f : this may be considered as a nice feature, having in mind



114

the role of lower semicontinuity in the context of minimum prob-
lems. //

4. Well-posedness: sequences and nets.

In the previous section we have investigated the relationship be-
tween minimizing sequences for preorders and functions representing
them. In section 3, however, we introduced minimizing nets for pre-
orders : it has already been remarked, however, that for functions
there is no need to introduce nets as long as wp is concerned [Pa]
(the situation is different, of course, when generalized wp is con-

sidered : see We find convenient to restate the result of [Pa]
in a more abstract setting, that will prove to be useful later.

We assume the following hypotheses:

(*) 
E and X are topological spaces; q?: E -+ 2Xm = 

(*) { For some eo e E , q(eo) = (zo) , ro e X .For some 

We topologize 21 with the upper Vietoris topology [KITh]. Of

course, continuity of 99 in eo is equivalent to:

(and in case E is 1st countable, continuity can be characterized using
sequences only).

It is easy to see that, given a net Za in 2; , we have Za -+ 
in the upper Vietoris topology if and only if:

Note, moreover, that the equivalence above remains true if we

replace on both sides nets by sequences.
Combining all of the preceding remarks, we get that, when E is

1st countable, the following are equivalent:
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This implies that for minimum problems seq-wp and wp are equi-
valent (simply take E = [0, + oo[, eo = 0 and = I(x) 
min (f; X) + e}, or .E = f(X), eo = min(f;X) and = 

f (x) = el as in [Pa]).
We want to stress the fact that the same remark (for an appro-

priate but straightforward choice of E and eo) applies to: wp for
variational inequalities (see [LuPal] and [LuPa3]; see also [R] for an
alternative definition); wp saddle point problems (see [CM1], where
wp is reduced to wp for an associated minimum problem, or see [PaTo]
and [Pa] where a .more « direct » approach is used); Stackelberg prob-
lems (see [M], where wp for Stackelberg problems is defined in a way
such that it does not reduce to wp for the minimization of the func-

tional of the leader, incorporated with the best reply of the follower);
wp for constrained minimum problems (in the sense of [LePo], or

considering the so called strong wp, as suggested in [BLu]) ; wp Nash
equilibria (as introduced by[CM2]; see [Pa]).

Nothing of the above applies, however, to wp for preorders, as
can be seen easily from examples (we refer to [Kel], in general for
terminology, and in particular for problem 2.B on p. 76).

EXAMPLE 4.1. Let ,S~ be the first uncountable ordinal: consider

[0, SZ[ with the usual ordering on it. Standard considerations about

cardinality show that we cannot have maximizing sequences: if x,.,

is a maximizing sequence, then we should have

which is impossible since xn has only countably many predecessors,
while [0, SZ[ is uncountable. ff

EXAMPLE 4.2. Take [0, S~] with the order topology: since there
are no nontrivial maximizing sequences, while on the contrary the
identity map on [0, ~2] provides an example of a maximizing net,
we may see that w.r.t. the discrete topology [0, ~2] with the usual
ordering is seq-wp but not wp. //

For what concerns wp, we have the following:

PROPOSITION 4.3. Let X be totally ordered by , and assume
that there exists a (necessarily unique) minimum xo on X. Then,
the minimum problem for fl on X is wp w.r.t. the order topology
on JT. //
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PROOF. Take a minimizing net X(X. Given a neighborhood U of xo,
there exists y E X with Xo « y and s.t. the interval [xo, y[ is contained
in U. But this means that eventually we have xa E [xo , y [ (because x,,
is a minimizing net). hence x03B1 is eventually in U. So, the net x,,
converges to xo . //

EXAMPLE 4.4. Consider X = {(x,y)ER2: X, y&#x3E;0}, with the lexico-
graphic ordering L on it. Then (X, is wp for the order topo-
logy, hence seq-wp (and so wp and seq-wp w.r.t. the usual topology
on X, since order topology induced by c L is finer than euclidean

topology). The interesting feature of this example is that there is no
f : X’ --~ lL~ representing (see e.g. [De]): so, we can see that wp for
preorders is a nontrivial extension of wp for functions. //

5. A characterization of well-posedness for preorders.

Despite of (or due to) its semplicity, a characterization of wp for
functions that has proved to be useful is due to [FV]: for lower
semicontinuous and lower bounded functions defined on a complete
metric space wp is equivalent to

We shall prove something similar to this in the context of seq-wp
for preorders. The main handicap from which we suffer is that we
do not have level sets indexed by some 8 E R, as has been already
noticed in the previous section. We shall try to provide some sur-
rogate for them, but before passing to the main point we would like
to provide an « abstract» version of the Furi-Vignoli result, which
applies to the case in which we have some «level sets » that can be

parametrized in a reasonable way.

n

[0, .X’ be a complete metric space. Let cp: E -~ 2; be closed
t=i

valued, s.t. implies and assume that 
- n Then, inf diam w(e) = 0 if and only if

e~o 6»°
eeE

(5.1) there is s.t. = and w is continuous in 0 w.r.t.

upper Vietoris topology on 2; . //
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PROOF. For the «if » part, assume that the infimum is positive.
Taking Ek = ... , we can find xk, and A &#x3E; 0 such

that d(x’ z§J) &#x3E; £. This is not possible since the hypotheses guarantee
that Xo E 99(8k) and that 99(8k) is contained in a ball of center Xo and
radius for large k.

To prove the « only if)&#x3E;, first of all we prove that there is xo E X

Cauchy sequence, so Xk converges to some xo due to completeness
of ~. Because is closed, xo E for so

Since inf diam = 0, n cannot contain more than one point.
E&#x3E;&#x3E; 0

So, w(0) _ {x0}. For what concerns continuity of w in 0, take any
open set G containing xo : because inf diam = 0, is contained

8»0

in G for s sufficiently close to zero. //
Since (5.1) is equivalent to wp (as it has been noticed in sect. 4),

the theorem above provides a generalization of the result of Furi
and Vignoli, and may be applied to all of the cases considered in the
previous paragraph, under appropriate conditions.

We confine ourselves to the case of strong wp [BLu]. Take t : X - R,
and consider the problem of minimizing f on A sequence xn
is a generalized minimizing sequence » ([BLu]) if lim sup 

n-+oo

inf (f; K) and d(xn, .K) -+ 0. Asking for the convergence of these
«generalized minimizing sequences » to the unique minimizer of f
on g, we have the idea of f being strongly wp (relatively to .K: [BLu]).
Let us assume X completely metrizable, f lower bounded and lower
semicontinuous, I~ closed and non empty. If we define 99: [0, + 00] X
x[0, + 00] - 21 as

from Theorem 5.1 we get that f is strongly wp if and only if

-ivhich is the result proved in [BLu].
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What is behind this kind of reasoning is that in many cases a
minimizing sequence can be described as an xn E qJ(en) With 8n - 0:
in other words, we have naturally at our disposal some q to which
we can apply Theorem 5.1. However, in the case of preorders we
saw that this is not possible (since otherwise seq-wp and wp would
coincide), if we wish that q is defined on a space as  good &#x3E;&#x3E; as 1st
countable. In any case, it is possible to conceive for preorders some
mathematical object which can be considered as intermediate between
minimizing sequence and the «level sets » 99(e). We shall deal with
a preorder on X, in the sequel.

DEFINITION 5.2. A set-valued minimizing sequence is a sequence
s.t. there is a minimizing sequence xn, with Xn and

= ~x : for every n. We say that is « determined &#x3E;&#x3E; by
the minimizing sequence xn . //

REMARK 5.3. For a set-valued minimizing sequence we have:

1) for every n, hence 

2) S2,+l (for the transitivity of -,),
3) n Szn = {x: for every n~ _ {minima for fl on X~,

neN

4) if for every n, then x’ is a minimizing sequence. f(

THEOREM 5.4. Let X be a complete metric space a preorder
on X’ s.t. is closed for every Assume more-
over that there exist minimizing sequences for . Then, --, is seq-wp
if and only if diam 0 for every set valued minimizing se-

quence. //

PROOF. « Only if »: by contradiction, assume there is Qn e.t..

diam S2~ B 0. So we have x~, x~ s.t. d(x,~, x~) ~ ~, &#x3E; 0 for every n,
But xo) + - 0 since are minimizing, for
Remark 5.3 (xo is the unique minimum for fl ).

 If ». Let Xn be minimizing. Consider the subsequence Cn of ~~
s.t. (see Lemma 5.6 below) and the Qn associated to it.
From Cantor’s theorem, we have that = {0153o}, i.e. is a sin-

nEN

gleton. For Remark 5.3, zo is (the unique) minimum. So, thanks.
to Lemma 5.5 below, we can restrict ourselves to decreasing sequences
to test seq-wp.
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Given a minimizing sequence y.. s.t. yn, consider ,S2n asso-
ciated to it: we have d(yn, Hence,: is seq-wp. //

LEMMA 5.5. Let X be a topological space and fl a preorder on X.
If there is a unique minimum point zo and every minimizing sequence
Xn s.t. converges to xo, then  is seq-wp. ff

PROOF. Take Xn minimizing. Assume that it does not converge
to Xo. So, there is a neighborhood V of xo s.t. V for infinite in-

dexes. Let n1 be one of these indexes and define ~1 = xnl. Since Xnl
cannot be a minimum (xo E V, V and the minimum is unique)
and since Xn is minimizing, there is n2 s.t. Xnl’ and we may
take n~ &#x3E; n1. Let ~2 = And so on .... We get a decreasing se-
quence $. that is minimizing since it is a subsequence of zn. Of

course $n cannot converge to xo . So, we have a contradiction. ff

LEMMA 5.6. If xn is a minimizing sequence for a preorders
there is a subsequence ~.,, s.t. ’n+1 = ~’ ff

PROOF. If xn is a minimum for infinite indexes, obviously we have
.a subsequence whose values are minimum points, so we are done.
If xn is not a minimum for all define C, = and repeat the
constructions in the proof of Lemma 5.5 to get the result. ff

16. Final remarks.

As seen in the introduction, the motivation to introduce « Tikhonov
wp » for preorders has its roots in the fact that in some instances
what is given is a preorder and not the function representing it.

So, after having seen that wp for a function is essentially a prop-
erty of the preorder represented by it, it has been a natural step to
propose what could be considered wp for a preorder and study its
main features. Of course, many other investigations could be done
about wp for preorders, but in the author’s opinion it could be much
more interesting to see whether this notion does have some real
interest at least in the field (neoclassical economics) from which it

has been indirectly generated. A typical test for the interest of wp
for preorders could be to see whether wp has some useful consequence
for what concerns stability w.r.t. data perturbations (that sometimes
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has been termed Hadamard wp). Let’s mention that this fact is
known for wp of functions (see [LuPa2] and [Lu2]); on the other hand,
stability w.r.t. data perturbation has been studied for a long time
e.g. in equilibrium theory, y so that basic books like [De] and [H] deal
extensively with that.

Let’s conclude saying that at least two other problems could be
interesting to study from the point of view of wp for preorders: the
search for saddle points (or Nash equilibria) and that of minimal

points (i.e.: vector or Pareto optimization). For these classes of prob-
lems very little is known (see [Pa] for saddle points and Nash equi-
libria), even from the point of view of functions and not of preorders
(see references in [Pa] for saddle points and Nash equilibria, and [Lu3]
for vector optimization).
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