Orazio Puglisi

On outer automorphisms of Černikov p-groups

Rendiconti del Seminario Matematico della Università di Padova,
tome 83 (1990), p. 97-106

<http://www.numdam.org/item?id=RSMUP_1990__83__97_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1990, tous droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
On Outer Automorphisms of Černikov p-Groups.

Orazio Puglisi (*)

0. Introduction.

As is well known, every finite p-group that is not cyclic of order p, has non inner p-automorphisms. This theorem, proved by Gaschütz in [1], was later made more precise by Schmid and then extended by Menegazzo and Stonehewer. In [2] in fact, Schmid proves that, apart from some exceptions, Out G has a normal p-subgroup (always in the hypothesis that G is a finite p-group) while in [3] Menegazzo and Stonehewer prove an analogous theorem to that one of Gaschütz in the case of infinite nilpotent p-groups. Even in the case that G is infinite the normal p-subgroups of Out G have been studied and in [4], Marconi has reached an analogous result to the one obtained by Schmid. In this paper the problem of the existence of outer p-automorphisms is studied in the hypothesis that G is an infinite Černikov p-group, obtaining an affirmative answer for a certain class of such groups. To be more precise, if G is a Černikov p-group, indicating with G_0 its finite residual and with Fit G its Fitting subgroup, we have the following

Theorem. — Let G be a non nilpotent Černikov p-group. If Fit $G > G_0$ and $G_0 \cap Z(G)$ is divisible then G has outer p-automorphisms.

(*) Indirizzo dell'A.: Dipartimento di Matematica Pura ed Applicata, Via Belzoni 7 - 35121 Padova (Italy).
Even the case $\text{Fit } G = G_0$ is examined obtaining

Theorem. – Let G be a non nilpotent Černikov p-group and assume $\text{Fit } G = G_0$ and $Z(G)$ divisible. Then G has non inner p-automorphisms or $H^1(G/G_0, G_0) = 0$ and the natural image of G/G_0 in $\text{Aut } G_0$ is a Sylow p-subgroup of $\text{Aut } G_0$.

The last section of this work is devoted to the construction of some examples which show what can happen if $\text{Fit } G = G_0$, $Z(G)$ is divisible and the image of G/G_0 in $\text{Aut } G_0$ is a Sylow p-subgroup.

1. Preliminaries.

If G is a Černikov p-group we shall indicate from now on with G_0 its finite residual that is an artinian divisible abelian group and with $\text{Fit } G$ the Fitting subgroup of G. It is worth while remembering that G/G_0 is a finite group so that $|G| < \aleph_0$, while $\text{Fit } G = C_o(G_0)$ is nilpotent and its centralizer in G coincides with $Z(\text{Fit } G)$. In the proof of theorem 2.1, we shall use the results about nilpotent p-groups cited in the introduction, which are here below listed for the readers’ use.

Theorem 1.1 (Gaschütz [1]). If G is a finite p-group that is not cyclic of order p, then G has a non inner p-automorphism.

Theorem 1.2 (Schmid [2]). Let G be a finite non abelian p-group. Then p divides the order of $C_{\text{Out } G}(Z(G))$.

Theorem 1.3 (Menegazzo-Stonehewer [3]). Let G be a nilpotent p-group. If G is neither cyclic of order p nor isomorphic to a direct product of k quasi-cyclic p-groups with $k < p - 1$, then G has an outer automorphism of order p.

Theorem 1.4 (Marconi [4]). Let H be an infinite nilpotent p-group. Then $O_p(\text{Out } H) = 1$ if and only if one of the following conditions holds:

i) H is elementary abelian

ii) H is divisible and p is odd
iii) H is the central product of $\Omega_4(G)$ and of a quasi cyclic p-group with $\Omega_4(G)$ extra special of exponent $p \neq 2$.

First of all we want to prove that a Černikov p-group always has outer automorphisms, a fact which comes easily from the following theorem.

Theorem 1.5 (Pettet [5]). Let G be periodic and $H \triangleleft G$ a Černikov group such that $|G: N_G(H)|$ is finite. If $C_{\text{Aut}_{G_{\sigma}}}(H)$ is finite or countable and $C_{\text{Inn}_{G_{\sigma}}}(H)$ is Černikov, then G is Černikov and $G_0 = H_0^\sigma$.

Corollary 1.1. Let G be an infinite Černikov p-group. Then $|\text{Aut } G| > \aleph_0$. In particular $\text{Out } G \neq 1$.

Proof. If $|\text{Aut } G| = \aleph_0$ then, with the same notations of Theorem 1.5 let $H = 1$. H and G satisfy the hypotheses of Theorem 1.5 so $G_0 = H_0^\sigma = 1$, a contradiction. So $|\text{Aut } G| > \aleph_0$ and, therefore, $\text{Out } G \neq 1$.

The proof of Theorem 2.1 is based in great part on the following fact concerning the cohomology groups of $G/\text{Fit } G$.

Lemma 1.1. Let G be a Černikov p-group, G_0 its finite residual, $F = \text{Fit } G$. Suppose $G_0 \cap Z(G)$ divisible. If $H^1(G/F, Z(F)) = 0$ then $H^n(G/F, Z(F)) = 0$ for $m > 0$.

Proof. Let $K = G/F$ and $A = Z(F)$. F is nilpotent so $A \supseteq G_0$ and therefore we can write $A = G_0 \oplus L_1$ where L_1 is finite. Also $Z(G) = D \oplus L_2$ with D divisible and L_2 finite. Let $p^n = \max \{|L_1|, |K|\}$ and consider the following short exact sequence in G-Mod (and therefore in K-Mod)

$$0 \rightarrow A[p^n] \rightarrow A \xrightarrow{j} G_0 \rightarrow 0$$

where j is the multiplication by p^n. We have also the related long exact sequence

$$0 \rightarrow H^0(K, A[p^n]) \rightarrow H^0(K, A) \rightarrow H^0(K, G_0) \rightarrow$$

$$\rightarrow H^1(K, A[p^n]) \rightarrow \ldots \rightarrow H^n(K, A[p^n]) \rightarrow H^n(K, A) \rightarrow \ldots .$$
For every K-module we have $H^0(K, M) = \{ m \in M : m^x = m \ \forall x \in K \}$, so that we can rewrite this sequence as follows

$$0 \to A[p^n] \cap Z(G) \to Z(G) \to G_0 \cap Z(G) \to H^1(K, A[p^n]) \to$$

$$0 \to H^1(K, G_0) \to H^2(K, A[p^n]) \to \ldots \to H^n(K, A[p^n]) \to$$

$$H^n(K, A) \to H^{n+1}(K, G_0) \to H^{n+1}(K, A[p^n]) \to H^{n+1}(K, A) \to \ldots$$

because $H^1(G/F, Z(F)) = 0$. Now θ is surjective and $G_0 \cap Z(G)$ is divisible, so $H^1(K, A[p^n]) = 0$ because it is a finite group. Then, by $[1]$, $H^m(K, A[p^n]) = 0$ $\forall m > 0$ so that, as it is easy to see, $H^1(K, G_0) = 0$ and $H^m(K, A)$ is isomorphic to $H^m(K, G_0)$ $\forall m > 0$. Now consider the exact sequence

$$0 \to G_0[p^n] \to G_0 \xrightarrow{j} G_0 \to 0$$

where j is the multiplication by p^n, and the related cohomology sequence

$$0 \to G_0[p^n] \cap Z(G) \to G_0 \cap Z(G) \to G_0 \cap Z(G) \to H^1(K, G_0[p^n]) \to$$

$$H^1(K, G_0) \xrightarrow{j} H^1(K, F_0) \to H^2(K, G_0[p^n]) \to \ldots \to H^n(K, G_0[p^n]) \to$$

$$H^n(K, G_0) \xrightarrow{j} H^n(K, G_0) \to H^{n+1}(K, G_0[p^n]) \to H^{n+1}(K, G_0) \to \ldots .$$

As before we can see that $H^m(K, G_0[p^n]) = 0$ $\forall m > 0$ so that, $\forall m > 1$, we have

$$0 \to H^m(K, G_0) \xrightarrow{j} H^m(K, G_0) \to 0 .$$

But j is the trivial morphism because the exponent of $H^m(K, G_0)$ divides $|K|$ and therefore $H^m(K, G_0) = 0 = H^m(K, A)$ as claimed.

2. Main theorems.

By theorem 1.3 we can limit ourselves to the case in which G is non nilpotent. The principal result obtained is the following

Theorem 2.1. Let G be a non nilpotent Černikov p-group, G_0 its finite residual. If $\text{Fit.} G > G_0$ and $G_0 \cap Z(G)$ is divisible then G has outer p-automorphisms.
PROOF. Consider the extension \(e: 1 \to F \to G \to K \to 1 \) where \(F = \text{Fit } G = C_o(G_o) \) and \(K = G/F \). \(F \) is characteristic in \(G \) so \(\text{Out } e = \text{Out } G \). The Wells sequence (Wells [6]) associated to \(e \) is

\[
0 \to H^1(K, Z(F)) \to \text{Out } G \to N_{\text{Out } F}(D)/D \to H^2(K, Z(F)) .
\]

Here \(D \) is the image of \(K \) in \(\text{Out } F \) obtained by the natural morphism \(\chi: K \to \text{Out } F \) associated to the extension \(e \). \(K \cong D \) because \(C_o(F) = Z(F) \leq F \). If \(H^1(K, Z(F)) \neq 0 \) then it is easy to construct a non inner \(p \)-automorphism of \(G \) choosing an outer derivation \(\delta: K \to Z(F) \) and setting \(x^\delta = x(xF)^\delta \). It is well known that \(\alpha \) is an outer \(p \)-automorphism of \(G \). Then we may assume \(H^1(K, Z(F)) = 0 \). By lemma 1.1 we have \(H^2(K, Z(F)) = 0 \) so that the Wells sequence becomes \(\text{Out } G \cong N_{\text{Out } F}(D)/D \). Our purpose is now to prove that \(N_{\text{Out } F}(D)/D \) has non trivial \(p \)-subgroups. The first step is to show that \(O_p(\text{Out } F) \neq 1 \) using Theorem 1.3. Surely \(F \) doesn’t satisfy conditions i) or ii) of that theorem. Furthermore, \(G \) being non nilpotent, \(\text{rg } G_o > p - 1 \) so that \(\text{rg } G_o > 1 \) and \(F \) doesn’t satisfy condition iii).

Two cases are to be examined:

a) \(O_p(\text{Out } F) < D \).

We can write \(F = BZ(F) \) with \(B \) a finite characteristic subgroup such that \(F/B \) divisible. If \(B \) is abelian so is \(F \).

\[
G = C_{\text{Aut } F}(F|G_o, G_o) \cong \text{Hom } (F|G_o, G_o) \neq 1
\]
is a normal \(p \)-subgroup of \(\text{Aut } F = \text{Out } F \) so it is contained in \(D \). But this is impossible because the only element in \(D \) centralizing \(G_o \) is 1. Then \(B \) cannot be abelian. By Theorem 1.2 there exist an outer \(p \)-automorphism \(\alpha \) of \(B \) centralizing \(Z(B) \supset B \cap Z(G) \). We can extend this automorphism \(\alpha \) to an automorphism \(\beta \) of \(F \) setting \(x^\beta = x^\alpha \) if \(x \in B \), \(x^\beta = x \) if \(x \in Z(G) \setminus B \). \(\beta \) is well defined, it is outer and has the same period of \(\alpha \). This implies that \(H = C_{\text{Out } F}(Z(F)) \) has non trivial \(p \)-subgroups. If \(\alpha \in C_{\text{Aut } F}(Z(F)) \) there exist an integer \(n \) such that \(\alpha^n \) is the identity on \(F/Z(F) \), that is \(\alpha^n \in C_{\text{Aut } F}(Z(F), F/Z(F)) \cong H^1(F/Z(F), Z(F)) \) that is a \(p \)-group of finite exponent. So \(C_{\text{Aut } F}(Z(F)) \) is periodic and therefore \(H \) is finite. \(D \) acts on \(H \) by conjugation, then it normalizes a non trivial \(p \)-Sylow subgroup of \(H \), say \(P \). \(D \) is strictly contained in \(PD \) because \(D \cap H = 1 \) and therefore \(N_{PD}(D) > D \). This implies that \(N_{\text{Out } F}(D)/D \) has non trivial \(p \)-subgroups.
b) $O_p(\text{Out } F) \not\subseteq D$.

Let $T = O_p(\text{Out } F)D$. T is a Černikov p-group so D is strictly contained in its normalizer and, for this reason, $N_{\text{Aut } F}(D)/D$ has non trivial p-subgroups.

We are then left to examine the case in which $G_0 = \text{Fit } G$. In these hypotheses the existence of outer p-automorphisms in no longer certain. We have in fact

THEOREM 2.2. Let G be a non nilpotent Černikov p-group, G_0 its finite residual and assume $\text{Fit } G = C_0(G_0) = G_0$, $H^1(K, Z(F)) = 0$ and $Z(G)$ divisible. Then G has outer p-automorphisms if and only if the natural image of G/G_0 in $\text{Aut } G_0$ is not a Sylow p-subgroup of $\text{Aut } G_0$.

PROOF. - As in the proof of Theorem 2.1 we obtain $\text{Out } G \cong N_{\text{Aut } G_0}(D)/D$. If D is not a Sylow p-subgroup of $\text{Aut } G_0$, then there exists a p-subgroup P of $\text{Aut } G_0$ such that $D < P$. P is finite so $D < N_p(D)$, hence $N_{\text{Aut } G_0}(D)/D$ has non trivial p-subgroups. On the other hand, if G has an outer p-automorphism then $\exists \alpha \in N_{\text{Aut } G_0}(D)/D$ such that $\alpha^p = 1$, then the group $R = \langle \alpha \rangle D$ is a p-group, $R > D$ and, therefore, D cannot be a Sylow p-subgroup of $\text{Aut } G_0$.

COROLLARY 2.1. Let G be a non nilpotent Černikov p-group. Suppose $C_0(G_0) = G_0$, $Z(G)$ divisible and that the image of G/G_0 in $\text{Aut } G_0$ is a Sylow p-subgroup of $\text{Aut } G_0$. Then G has outer p-automorphisms if and only if $H^1(G/G_0, G_0) \neq 0$.

3. Examples.

Corollary 2.1, though establishing a necessary and sufficient condition for the existence of outer p-automorphisms, doesn't allow to establish the existence of Černikov p-groups for which this condition is verified. In this section we shall construct some examples which prove how, if a group satisfies the hypotheses of corollary 2.1, we can have either $H^1(G/G_0, G_0) = 0$ or $H^1(G/G_0, G_0) \neq 0$. From here onwards we shall indicate with R_p and Q_p respectively the ring of p-adic integer and its field of fractions. Let also remember that if $G_0 = (\mathbb{Z}(p^\infty))^*$, then $\text{Aut } G \cong GL(n, R_p)$. The results about the struc-
ture of Sylow p-subgroups of $GL(n, \mathbb{Q}_p)$ we shall use, have been proved by Vol'vacev in [7].

Remark. If $p = 2$ there are no Černikov 2-groups satisfying the hypotheses of Corollary 2.1. In fact, if α is the element of $\text{Aut} G_0$ sending every element a of G_0 in its inverse a^{-1}, α belongs to the centre of $\text{Aut} G_0$ so, if D (the image of G/G_0 in $\text{Aut} G_0$) is a Sylow 2-subgroup of $\text{Aut} G_0$ then it contains α. Hence there is an element g of G such that $a^\alpha = a^{-1}$ $\forall a \in G_0$. Then $Z(G)$ cannot be divisible because

$$Z(G) \leq C_{G_0}(g) = \Omega_1(G_0).$$

Example 1. Let $p \geq 3$. Let C be the companion matrix of the polynomial $1 + t + t^2 + \ldots + t^{p-1}$ and set $A = (1 \, 1 \, 0 \, \ldots \, 0)$.

Consider $X = \begin{pmatrix} C & 0 \\ A & 1 \end{pmatrix}$ where 0 is a column of $p - 1$ zeroes. If $B_i = \sum_{i=0}^{p-1} C^i$ we have $X^i = \begin{pmatrix} C^i & 0 \\ AB_i & 1 \end{pmatrix}$. The Sylow p-subgroups of $GL(p, \mathbb{Q}_p)$ have order p because $p \geq 3$, hence $\langle X \rangle$ is a Sylow p-subgroup of $GL(p, \mathbb{Q}_p)$. Consider the group $G = G_0 \langle x \rangle$ where $G_0 = (\mathbb{Z}(p^\infty))^p$ the direct sum of p copies of $\mathbb{Z}(p^\infty)$ and x is the automorphism represented by the matrix X. An easy calculation shows that G satisfies the hypotheses of Corollary 2.1. We claim that $H^1(G/G_0, G_0) = 0$. Let $\sigma, \tau: G_0 \to G_0$ be the morphisms defined by

$$a^\sigma = [a, x] \quad \text{and} \quad a^\tau = \prod_{i=0}^{p-1} a^{x^i} \quad \forall a \in G_0.$$

We know that

$$H^1(G/G_0, G_0) \cong \ker \tau/\text{Im} \, \sigma, \quad \text{Im} \, \sigma \cong G_0/Z(G) \cong (\mathbb{Z}(p^\infty))^{p-1}.$$

More difficult is to find $\ker \tau$. The matrix associated to τ is $Y = 1 + X + X^2 + \ldots + X^{p-1}$ that is $Y = \begin{pmatrix} 0 & 0 \\ B & p \end{pmatrix}$ for some $B \in B_p^{p-1}$. We claim that the first element of B is $p - 2$. In fact we have

$$B = A \left(\sum_{i=1}^{p-2} B_i \right) = \left(\sum_{i=1}^{p-1} \sum_{j=0}^{i-1} C^i \right) = A \left(\sum_{i=0}^{p-2} (p - i - 1) C^i \right).$$

The elements of place $(1, 1)$ and $(2, 1)$ of the matrix $\sum_{i=0}^{p-2} (p - i - 1) C^i$ are, respectively, $p - 1$ and -1 so that the first element of B is $p - 2$ as claimed.
Let $a = (a_1, \ldots, a_n)$ be an element of G_0, $a_i \in \mathbb{Z}(p^\infty)$. By a direct calculation we see that $a^\tau = (0, 0, \ldots, (p - 2)a_1 + \sum_{i=2}^{p-1} \lambda_i a_i + pa_{p+1})$. But $p - 2$ is a unit in R_p so we have

$$\text{Ker} \tau = \left\{ (a_1, \ldots, a_n); a_1 = \frac{-1}{p - 2} \left[\sum_{i=2}^{p-1} \lambda_i a_i + pa_{p+1} \right] \right\}.$$

Define

$$A_i = \left\{ \left(\frac{-\lambda_i}{p - 2} a, 0, \ldots, a, \ldots, 0 \right); a \in \mathbb{Z}(p^\infty) \right\}.$$

A_i is, obviously, a divisible subgroup of G_0 of rank 1. Furthermore, $A_i \cap \sum_{j \neq i} A_j = 0$ so that $\text{Ker} \tau$ is the direct sum of the subgroups A_i and, therefore, is divisible of rank $p - 1$. Hence $H^1(G/G_0, G_0) = 0$ and G has no outer p-automorphisms.

Example 2. Let $p > 3$. With the same notations of example 1, let $E = \begin{pmatrix} C & 0 \\ A & 1 \end{pmatrix}$ and $X = \begin{pmatrix} E & 0 \\ 0 & 1 \end{pmatrix}$. X is an element of $GL(p + 1, R_p)$.

$\langle X \rangle$, as in example 1, is a Sylow p-subgroup of $GL(p + 1, R_p)$ so the group $G = G_0\langle x \rangle$ (where $G_0 = (\mathbb{Z}(p^\infty))^{p+1}$ and x is the automorphism induced by X) satisfies the hypotheses of corollary 2.1. Using the same arguments of example 1 we can see that $\text{Im} \sigma$ is a divisible group of rank $p - 1$.

If $a = (a_1, \ldots, a_{p+1}) \in G_0$, then

$$a^\tau = (0, 0, \ldots, (p - 2)a_1 + \sum_{i=1}^{p} \lambda_i a_i, pa_{p+1}).$$

So $\text{Ker} \tau = \left(\bigoplus_{i=2}^{p} A_i \right) \oplus B$ where B is cyclic of order p. Then, in this case, $H^1(G/G_0, G_0) \neq 0$ and G has non inner p-automorphisms.

Example 3. In this example we will construct a group G such that the image of G/G_0 is a Sylow p-subgroup of $GL(n, R_p)$ but not of $GL(n, Q_p)$, as it was in the previous examples. Let $p = 3$ and

$$X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad X \in GL(4, Q_p) \text{ and } X^3 = I.$$
\(\langle X \rangle \) is not a Sylow 3-subgroup of \(GL(4, \mathbb{Q}_3) \) because they are elementary abelian of order 9. Suppose there exists \(Y \in GL(4, \mathbb{Q}_3) \) s.t. \(Y^2 = 1 \) and \(|\langle X, Y \rangle| = 9 \). Set \(G_0 = (\mathbb{Z}(3^\infty))^4 \). Let \(x \) and \(y \) be the automorphisms of \(G_0 \) induced by \(X \) and \(Y \). \(C_{G_0}(x) = \{(0,0,a,b) : a,b \in \mathbb{Z}(3^\infty)\} \). \(C_{G_0}(y) = C_{G_0}(x) \) and therefore \(Y \) has the form \(Y = \begin{pmatrix} L & 0 \\ M & N \end{pmatrix} \)

\(L, M, N \in M(2, \mathbb{Q}_3) \).

From this point on we set \(S = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \) and \(T = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \). Using the relation \(x^y = x \) we deduce that \(L^{-1}SL = S \) and a routine calculation proves that the only possibilities are \(L = I, S, S^2 \). If \(L = S^2 \) the first block of \(Y^2 \) is \(S \), so we can reduce our discussion to the cases \(L = I \) or \(L = S \). Note that \(N^3 = I \) and that \(x \) acts as the identity on the last two components of \(G_0 \) so we may assume \(N = S \) or \(N = I \).

Four cases are to be examined:

1) \(Y = \begin{pmatrix} S & 0 \\ M & S \end{pmatrix} \)

\(M = \begin{pmatrix} m & n \\ r & s \end{pmatrix} \) \(xy = yx \Longleftrightarrow TS + M = MS + ST \Longleftrightarrow (m, n, r, s) \) is a solution, in \(\mathbb{Q}_3 \), of the equations

\[
\begin{align*}
 m + n &= 1 \\
 m - 2n &= 0 \\
 r + s &= 1 \\
 r - 2s &= 0
\end{align*}
\]

But these equations have no solutions in \(\mathbb{Q}_3 \).

2) \(Y = \begin{pmatrix} S & 0 \\ M & I \end{pmatrix} \)

\(xy = yx \Longleftrightarrow TS + M = MS + T \Longleftrightarrow M(S - I) = T(S - I) \Longleftrightarrow M = T \)

and this gives \(x = y \)

3) \(Y = \begin{pmatrix} I & 0 \\ M & S \end{pmatrix} \)

\(xy = yx \Longleftrightarrow T + M = MS + ST \Longleftrightarrow (m, n, r, s) \) is a solution of the following equations

\[
\begin{align*}
 m + n &= -1 \\
 m - 2n &= 1 \\
 r + s &= -1 \\
 r - 2s &= 1
\end{align*}
\]
But the solution of these equations is not in R_a.

$$4) \ Y = \begin{pmatrix} I & 0 \\ M & I \end{pmatrix}$$

$xy = yx \iff T + M = MS + T \iff M(S - I) = 0 \iff M = 0.$

This proves that $\langle X \rangle$ is a Sylow 3-subgroup of $GL(4, R_a)$. Now, as in example 2, we deduce that $H^1(G/G_o, G_o)$ is cyclic of order 3 so that G has outer 3-automorphisms.

Acknowledgement. This paper is part of the Tesi di Laurea presented by the Author in Padova University on 10th November 1986. The A. would like to thank Prof. F. Menegazzo for his support and encouragement.

REFERENCES

Manoscritto pervenuto in redazione il 22 marzo 1989.