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Existence of T-Periodic Solutions
for a Class of Lagrangian Systems.

ELVIRA MIRENGHI - MARIA TUCCI (*)

1. Introduction.

In this paper it will be discussed the existence of T-periodic solu-
tions q = q(t) of the Lagrangian system of ordinary differential

equations:

where C denotes the Lagrangian function

the aijls (i, ~ = 1, ... , N) being C" real functions on RN and V(q, t)
a real function on T-periodic in the t variable.

That problem has been widely studied mostly when the coefficients
ai~ are constant; in this case (1.1) reduces to,

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita degli
Studi di Bari, Via G. Fortunato, 70125 Bari, Italy.
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Problem (1.3) has been extensively studied when U is unbounded
(see e.g. [2], [4], [13]), and in the case when II is bounded it has been
studied e.g. in [5], [7], [8], [9], [10], [11].

In the general case when the are nonconstant, a discussion
on problem (1.1) can be found in [6], [3], [14], although the last two
ones are in a Hamiltonian setting.

The present note is devoted to the study of problem (1.1) when V
is subquadratic at infinity, i.e.

In this analysis, variational methods will be used, that is the

T-periodic solutions of (1.1) are looked for as critical points of the
action functional:

where q belongs to the Sobolev space of the T-periodic functions.
This paper is organized as follows:

a) Section 2 contains definitions and preliminary notations.

b ) Section 3 is devoted to the study of problem (1.1) in the
autonomous case, i.e.

In such a case f is invariant under the action of the group 81
(namely the time translations).

With reference to problem (1.1), the existence of multiple solutions
of sufficiently large prescribed T-period will be established, under
the assumption that V(q) -+ + oo as lql --~ + oo, and the symmetry
property of f will be used.

Analogous results have been obtained in [14] under more restrictive
assumptions. ,

Moreover when the aijls are constant, the results obtained in

section 3 are a variant of those obtained by Benci in [2].

c) Section 4 deals with problem (1.1) when V is a T-periodic
time-dependent bounded potential. The main theorem establishes the
existence of at least one nontrivial T-periodic solution.
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It must be pointed out that, when the potential is bounded, (1.4)
does not satisfy the Palais-Smale condition globally.

An analogous sistuation occurs in [6] where, however, aij and V
are assumed even.

d) In Section 5 problem (1.1) with an additional T-periodic
« forcing term is examined. The existence of at least one solution
of the same period is then established.

2. Notations and preliminaries.

Some notations which will be used in the following sections, are
now stated:

1) I- denotes the Euclidean norm of RN and (’~’) its usual inner
product;

2) if 1 p  oo, the space

is meant to be endowed with the usual EP norm, here denoted by
1.11" while Loo == indicates the space of the essentially
bounded 2x-periodic RN valued functions, endowed with the usual
norm | · |~.

3) RN) represents the Sobolev space obtained by
the closure of the C°° 203C0-periodic RN valued functions q = q(t), en-
dowed with the norm

4)  ~ , ~ ~ indicates the duality between Hi and H-1;

5) BR indicates the closed H1-ball of radius R centered at the
origin, while denotes its boundary;

6) if f is a C1 functional on f’(q) denotes the Frechét deriva-
tive at q E HI.
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Some shortened matrix notations are now further established for
the functions {i, j = 1, ... , N)

In all the theorems which will be set in the following sections, it
is assumed that the aijls satisfy:

(2.3) there exists p &#x3E; 0 such that (a(q) ~ ~~) ~ ~u ~~ ~Z

Moreover, given a Hilbert space .g and a functional f E CI(H, R),
f is said to satisfy the Palais-Smale condition, here recalled in its
weaker version, iff :

(P.S.) Any sequence in H such that ~ f (qn)~ is bounded and

Il -+ 0, possesses a convergent subsequence in H .

3. Multiple free oscillations.

In this section it is examined the existence of multiple T-periodic
solutions of problem (1.1), in the autonomous case.

Here the C’ functional on H1 defined in (1.4), becomes, changing
the variable t in 

where co = 

Then the research of the T-periodic solutions of (1.1) is reduced
to the research of the critical points of (3.1) in H1.

The main result of this section is the following:

THEOREM 3.1. Assume condition (2.3) holds and moreover :

(3.2) V is subquadratic at in f inity, that is there exists a E ]0, 2[ and
R E R+ such that
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(3.3) there exists B E ]0, 2 - oc[ such that

a’ (q) q + fla(,q) is positive semidefinite;

(3.5) V(O) = 0 is the minimum o f V and V’(q) =1= 0 for any q =1= 0;

~3.6) aii and V are twice dif ferentiabte at the origin and V" (0) has all
positive eigenvalues.

For any k 0 0, let T (1~) = 2~[(k~ -E- 1 ) v/~,]~, where v is the

largest eigenvalue of k the f irst eigenvalue of the Hessian matrix
V’(0). Then for any T &#x3E; T(k), problem (1.1) possesses at least kN

T-periodio solutions.

Before proving this theorem a S’ version of a result contained
in [1] needs to be recalled and a preliminar lemma must be stated too.

THEOREM 3.2. Let H be a real Hilbert space on which a unitary rep-
resentation G of the Sl group acts. Suppose that f E OI(H, veri f ies
the following assumptions:

(3.7) f is invariant under the action of G;

(3.8) f satisf ies the (P.S. ) condition;

(3.9 ) there exist two closed subspaces V and W of H with codim W  oo

and there exist two real constants co &#x3E; and e E l~+ such that

i ) f(q)  co  f ( 0 ) for each q E r1 V;

ii) f (q) ~ for each q E yY;

(3.10) f (q) &#x3E; co for each q E Fix such that f’(q) = 0.

(I) ql(t) and q2(t) will be said distinct iff ql cannot be obtained by q2 by
a time translation.
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T hen there exist at least

I (dim V - codim W)

orbits of critical points with critical values in [c~, co].

PROOF. The claim follows from theorem 2.4 of [1], by suitable
modifications contained in Theorem 1.4 of [3].

LEMMA. 3.3. Suppose that (2 .3 ), (3.2 ), (3.3 ) and (3.4) hold. Then f
veri f ies the (P.S.) condition.

PROOF. - Let be a sequence of HI such that :

is bounded

Those statements imply that there exist two real constants ~1
and M2 such that:

By (3.2), (3.13) and (3.14) it follows that

and hence, by (3.3)
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Now (2.3) and (3.15) imply that

and, by (3.13),

The last two conditions, in addition with (3.4), imply that

is bounded .

Consider, now, the decomposition

where

Then, for each n E N

and, by (3.16)

Arguing as in the proof of lemma 1.8 of [6] a subsequence of ~q~ },
strongly convergent in gI, can be found; whence itself has a H1
strongly convergent subsequence.

PROOF OF THEOREM 3.1. Consider the following subspaces of H1:
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where MI. denotes the eigenspace corresponding to the eigenvalue In
of the operator q - - q in 

To reach the claim it is enaugh to show that for any fixed k e h1,
0, there exist c co  0 and e E R+ such that

In order to do so, first remark that, by virtue of (3.2), there exists
a real constant ci E R such that

Then, let q be in W ; by (2.3) and (3.22), and Coo E R exist
such that

Now, let q be in Wk ; using the Taylor expantion of f , it follows
that

where v is the largest eigenvalue of and I the first eigenvalue
of 

Taking

and e E ~+ small enaugh, a co E lE~_, co &#x3E; can be found, such that
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Furthermore, by virtue of (3.5), q = 0 is the only element of RN
such that f’ (q) = 0 and f (0 ) = 0 &#x3E; co . Hence (3.21) holds.

The functional f has been proved to satisfy (3.19), (3.20), (3.21)
and the (P. S. ) condition, then theorem 3.2 holds and thus f has at least

orbits of critical points.

4. The case of a bounded potential.

The object of the present section is to look for the T-periodic
solutions of problem (1.1) in the case of a bounded time-dependent
potential. The action functional related to this problem is

THEOREM 4.1. Suppose the condition (2.3) holds in addition to the
following f urther hypotheses :

(4.2) Tr is T-periodic in the variable t;

(4.3 ) there exists c such that

Then there exists at least one T periodic solution of problem (1.1 ).

Before proving the theorem a remark and a preliminar lemma need
to be stated.
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REMARK 4.2. The (P.S.) condition cannot be satisfied by f at the
level ca = - 2nw2c because some divergent sequences of RN elements
verify (3.11) and (3.12), by virtue of (4.3) and (4.5).

LEMMA 4.3. Suppose the hypothesis of theorem 4.1 hold; then the
(P.S.) condition is satis f ied by f in R - ~co~ .

PROOF. Let c’ be in R, c’ =1= co, and be a sequence in H,
such that

and

By (2.3), (4.4) and (4.7), it follows that

is bounded .

Arguing by contradiction, suppose that ]] is not bounded; then,
as .L°° ~ L2, has to be unbounded too, and thus, by (4.5)
and (4.8):

Hence, by (4.6),

In view of (4.3), this implies that f (qn) --~ co , in contradiction
with (4.7).

Because of its has then a weakly convergent
subsequence. Arguing as in lemma 3.3, that convergence can be
proved to be strong in H’.

PROOF OF THEOREM 4.1. Here it will be used the Rabinowitz saddle

point theorem (see theorem 1.2 of [12]).
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Con sider the decomposition

where .H+ is as in (3.18); the first step to reach the claim is to establish
that there exists .R* E R+ such that

Let q be in .bI+; then

Taking in view of (4.4), there exists 1] E R+, such
that

and then

where eo = - c.

Moreover, y if 

and hence, gathering the last two statements, the existence of s E ~+
such that

has been showed.

Furthermore, by (4.3) there exists .R* E such that q ERN,
11 q ~~ ~ 1~* implies
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and thus

for each o

which, jointly with (4.10), implies (4.9).
The second step of this proof consists in showing that

so that (P.S.) condition holds in [inf f, + oo[, (see remark 4.2 and
lemma 4.3). H+

Let e be in R+ large enaugh; since (4.4) holds, there exists qi E l~+
such that implies that

and whence

Let q be in H+ with e. Then, by the imbedding HI 4 0°,
there exists k E :R+ such that

and then R+, r~2 = pek/2, exists such that

By (4.13) and (4.14), taking = it follows that

which implies (4.12).
Then the functional f satisfies (4.9) and the (P.S.) condition in

[inf f, + oo[, so the hypotheses of the Rabinowitz saddle point
H+

theorem are verified and hence there exists at least one critical
value c* such that

to which a nontrivial solution of problem (1.1) corresponds.
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5. Forced oscillations.

This section is devoted to the study of the forced Lagrangian system

where g E L2(R, RN) is a T-periodic forcing term.
The existence of at least one T-periodic solution of (5.1) will be

established.
The action functional related to this problem is

THEOREM 5.1. Assume that (2.3), (3.2), (3.3) and (3.4) hold. Then

problem (5.1) admits at least one nontrivial solution.

PROOF. Arguing as in the proof of lemma 3.3, it is easy to show
that the functional f satisfies the (P.S.) condition.

Then, consider decomposed as in (3.17); in order to reach the
claim, it is enaugh to show that there exists 1~* e ~+ such that

Let q be in H+. By (3.22) and (2 .3 ), there exist two real constants
c, and c3 such that

Let I~’~ be a positive real number and q E a(B,. n RN). Then there
exists such that

Choosing large eanugh, (5.4) and (5.5) imply (5.3).
Since f satisfies (5.3) and (P.S.) condition, the Rabinowitz saddle

point theorem holds (see [12]) and then at least one nontrivial solu-
tion of problem (5.1) exists.
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