PAOLO ZANARDO

On \ast-modules over valuation rings

Rendiconti del Seminario Matematico della Università di Padova, tome 83 (1990), p. 193-199

<http://www.numdam.org/item?id=RSMUP_1990__83__193_0>
On *-Modules Over Valuation Rings.

PAOLO ZANARDO (*)

The problem of investigating *-modules over valuation rings was proposed to the author by C. Menini. We recall the definition of *-module, given by D’Este in [3]. Let \(R \) be a ring, \(_RM \) a left \(R \)-module and \(_RE \) an injective cogenerator of the category of all \(R \)-modules; let \(S = \text{End}_R(M) \) and \(H = \text{Hom}_R(_RM, _RE) \) and denote by \(\text{Gen}(R^M) \) the category of all left \(R \)-modules generated by \(_RM \) and by \(\text{Cog}(sH) \) the category of all left \(S \)-modules cogenerated by \(H \). In this situation, \(_RM \) is said to be a *-module if there exists an equivalence of categories

\[
\text{Gen}(R^M) \cong \text{Cog}(sH)
\]

such that the functor \(F \) is naturally isomorphic to \(\text{Hom}_R(_RM, -) \) and the functor \(G \) is naturally isomorphic to \(M_S \otimes - \) (we shall write \(F \approx \text{Hom}_R(_RM, -), G \approx M_S \otimes - \)).

The main motivation for the study of *-modules is the following result by Menini and Orsatti ([8], Theorem 3.1): let \(R, S \) be rings; if \(S \) is a full subcategory of \(R\text{-Mod} \) closed under direct sums and factor modules, \(D \) is a full subcategory of \(S\text{-Mod} \) containing \(sS \) and closed under submodules, and \(S \cong D \) is any equivalence with \(F \) and \(G \) additive functors, then there exists a module \(_RM \) such that: \(S = \text{End}_R(_RM), S = \text{Gen}(R^M), D = \text{Cog}(sH) \) (where \(sH \) is as above), \(F \approx \text{Hom}_R(_RM, -) \) and \(G \approx M_S \otimes - \).

Recent results on *-modules have been obtained by D’Este [3], D’Este and Happel [4], Colpi [1], Colpi and Menini [2].

(*) Lavoro eseguito con il contributo del M.P.I.

Indirizzo dell'A.: Dipartimento di Matematica Pura e Applicata, Università dell'Aquila, 67100 L'Aquila, Italy.
In the present paper we characterize finitely generated *-modules over a valuation ring \(R \). Using a theorem by Colpi ([1], Prop. 4.3) and some results in [9] (see also [5], Ch. IX), we prove that a finitely generated module \(X \) over a valuation ring \(R \) is a *-module if and only if \(X \cong (R/A)^n \), for suitable \(n > 0 \) and \(A \) ideal of \(R \) (Theorem 3). Note that a module of the form \((R/A)^n \) is a *-module for any ring \(R \), as a consequence of the above mentioned result by Colpi. Hence our Theorems 3 shows that the class of finitely generated *-modules over a valuation ring is, in a certain sense, as small as possible.

Note that, at present, there are no examples of rings which admit *-modules not finitely generated; Colpi and Menini in [2] proved that *-modules over artinian rings or noetherian domains with Krull dimension one are necessarily finitely generated. The author feels that the same is true for *-modules over valuation rings. Our final Remark 4 gives a contribution in this direction.

The author thanks R. Colpi, G. D'Este, C. Menini and L. Salce for helpful discussions and comments.

1. - In the sequel, \(R \) will always denote a valuation ring, i.e. a commutative ring, not necessarily a domain, whose ideals are linearly ordered by inclusion; the maximal ideal of \(R \) is denoted by \(P \). For general terminology and results on modules over valuation rings we refer to the book by Fuchs and Salce [5]; the results we need on finitely generated modules can be found in [9] or in Ch. IX of [5].

In the proof of Theorem 2 we shall need the following facts (see [9] or [5], Ch. IX): let \(X \) be a finitely generated \(R \)-module; then there exists a submodule \(B \) of \(X \) such that:

i) \(B \) is a direct sum of cyclic submodules;

ii) \(B \) is pure in \(X \);

iii) \(B \) is essential in \(X \);

such a \(B \) is said to be basic in \(X \); the basic submodules of \(X \) are all isomorphic. Moreover, given a basic submodule \(B \) of \(X \), there exists a minimal set of generators \(\{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\} \) of \(X \) such that:

a) \(B = \langle x_1, \ldots, x_k \rangle = \bigoplus_{i=1}^{k} \langle x_i \rangle \);
b) if $A_j = \text{Ann}(x_i + \langle x_1, \ldots, x_{j-1} \rangle)$ for all $j > k$, we have $A_{k+1} \leq \cdots \leq A_n$.

c) for all $r \in A_{k+1}$ we have the relation

$$(1) \quad rx_{k+1} = r \sum_{i=1}^{k} a_i^r x_i, \quad \text{for suitable units } a_i^r \in R.$$

The construction of x needs some explanation: we start with $B = \bigoplus_{i=1}^{k} \langle x_i \rangle$ basic in X and consider X/B; if $\{x_{k+1} + B, \ldots, x_n + B\}$ is a minimal set of generators of X/B, from the purity of B it follows that $x = \{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\}$ is a minimal set of generators of X; in view of Lemma 1.1 of [9], we can permute the indexes $k + 1, \ldots, n$ to obtain property $b)$. Since B is pure in X, certainly, for all $r \in A_{k+1}$, the relation (1) holds for suitable elements $a_i^r \in R$, not necessarily units. However, if $r \in \text{Ann} x_i$ for some $i < k$, obviously we can replace a_i^r with 1; moreover, if there exist $i < k$ and $s \in A_{k+1}\setminus \text{Ann} x_i$ such that $a_i^s \in P$, then for all $r \in A_{k+1}\setminus \text{Ann} x_i$ we have $a_i^r \in P$: in fact, if r divides s, from (1) we get $s(a_i^r - a_i^s)x_i = 0$, hence $a_i^r \in P$ implies $a_i^s \in P$; analogously, if s divides r, $r(a_i^r - a_i^s)x_i = 0$ implies $a_i^r \in P$.

Let now $F = \{i < k: a_i^r \in P \text{ for all } r \in A_{k+1}\setminus \text{Ann} x_i\}$; if we replace x_{k+1} with $x'_{k+1} = x_{k+1} + \sum_{i \in F} x_i$, we obtain that

$$\text{Ann}\left(x_{k+1}' + B\right) = \text{Ann} (x_{k+1} + B) = A_{k+1},$$

$$x' = \{x_1, \ldots, x_{k}, x_{k+1}', \ldots, x_n\}$$

is a minimal set of generators of X, and (1) becomes

$$(1') \quad rx_{k+1}' = r \sum_{i=1}^{k} b_i^r x_i \quad \text{for all } r \in A_{k+1},$$

where $b_i^r = a_i^r$ if $i \notin F$ and $b_i^r = 1 + a_i^r$ if $i \in F$, so that b_i^r is a unit for all $i < k$ and for all $r \in A_{k+1}$. We conclude that there exists a minimal set of generators x of X which satisfies properties $a), b), c)$, as desired.

Let us now recall Colpi's result (Prop. 4.3 of [1]).
Theorem 1 (Colpi). Let R be a ring, $_R M$ a left R-module. Then $_R M$ is a *-module if and only if the following conditions are satisfied:

i) M is self-small;

ii) for each exact sequence

$$0 \to L \to N \to N/L \to 0$$

where N is an object of $\text{Gen}(R M)$, the sequence

$$0 \to \text{Hom}_R (M, L) \to \text{Hom}_R (M, N) \to \text{Hom}_R (M, N/L) \to 0$$

is exact if and only if $L \in \text{Gen}(R M)$. \hfill ///

We can now prove our main result.

Theorem 2. Let R be a valuation ring, let X be a finitely generated R-module and let $\pi: X \to X/XP$ be the canonical homomorphism. If the map $\varphi: \text{End } X \to \text{Hom}_R (X, X/XP)$, $\varphi: f \mapsto \pi \circ f$ is surjective, then $X \cong (R/A)^n$ for suitable $n \geq 0$ and A ideal of R.

Proof. In the following we assume $X \not\cong (R/A)^0 = \{0\}$, otherwise all is trivial. First of all, let us prove that X is a direct sum of cyclic submodules. Let B be a basic submodule of X; it is enough to verify that $B = X$. By contradiction, suppose that $B \subsetneq X$; let $x = \{x_1, \ldots, x_k, x_{k+1}, \ldots, x_n\}$ be a minimal set of generators of X which satisfies conditions a), b), c) above. Note that, since $B \subsetneq X$, we have $k \leq n$, hence condition c) and the relation (1) are not trivially satisfied. For all $j \leq n$, let $\bar{x}_j = x_j + PX$; we have $X/XP = \bigoplus_{j=1}^n \langle \bar{x}_j \rangle$. Let us now consider the homomorphism $g: X \to X/XP$ defined extending by linearity the assignments

$$g: x_j \mapsto 0 \quad \text{if } j \neq k + 1; \quad g: x_{k+1} \mapsto \bar{x}_{k+1}.$$

By hypothesis, there exists $f \in \text{End } X$ such that $g = \pi \circ f$. Hence, for $j \neq k + 1$, we will have

$$f(x_i) = p \sum_{h=1}^n a_{ih} x_h, \quad \text{with } p \in P, \quad a_{ih} \in R$$
(3) \[f(x_{k+1}) = x_{k+1} + q \sum_{h=1}^{n} b_h x_h , \quad \text{with } q \in P , \ b_h \in R . \]

From (1), (2), (3), and the linearity of \(f \), it follows, for all \(r \in A_{k+1} \)

(4) \[r(x_{k+1} + q \sum_{h=1}^{n} b_h x_h) = rp \sum_{i=1}^{k} a_i' \left(\sum_{h=1}^{n} a_{h,i} x_h \right) . \]

Since \(A_{k+1} \subset A_i \) for all \(t > k + 1 \), and \(B \) is pure, we deduce that, for all \(r \in A_{k+1} \)

(5) \[rq \sum_{h=1}^{n} b_h x_h \in rqB \quad \text{and} \quad rp \sum_{i=1}^{k} a_i' \left(\sum_{h=1}^{n} a_{h,i} x_h \right) \in rpB . \]

Let \(\bar{p} \in P \) be a common divisor of \(p \) and \(q \); from (4) and (5) we get \(rx_{k+1} \in r\bar{p}B \) for all \(r \in A_{k+1} \), i.e.

(6) \[rx_{k+1} = r\bar{p} \sum_{i=1}^{k} c_i' x_i , \quad \text{with } c_i' \in R . \]

From (1), (6), and the linear independence of \(x_1, \ldots, x_k \) we obtain

(7) \[r(a_i' - \bar{p}c_i') x_i = 0 \quad \text{for } i = 1, \ldots, k ; \]

since \(a_i' \) is a unit for all \(i \) and \(r \), we have that \(a_i' - \bar{p}c_i' \) is a unit, too, hence (7) implies \(r \in \text{Ann } x_i \) for all \(r \in A_{k+1} \). But this means that \(rx_{k+1} \in B \) implies \(rx_{k+1} = 0 \), from which \(\langle x_{k+1} \rangle \cap B = 0 \), and \(B \) is not essential, against the definition of basic submodule. We conclude that, necessarily, \(X = B \), as desired. It remains to prove that, if \(A = \text{Ann } X \), then \(X \cong (R/A)^n \). By contradiction, let us suppose that \(X = \bigoplus_{i=1}^{n} \langle x_i \rangle \), where, for a suitable \(j < n \), \(\text{Ann } x_j > A \). Let us assume, without loss of generality, that \(\text{Ann } x_1 = A \). Let \(\eta : X \to X/PX \) be the homomorphism which extends by linearity the assignments

\[\eta : x_i \mapsto 0 \quad \text{if } i \neq j ; \quad \eta : x_j \mapsto x_1 + PX . \]
If \(\theta \in \text{End} X \) is such that \(\eta = \pi \circ \theta \), then we have
\[
\theta(x_i) = x_1 + p \sum_{i=1}^{n} a_i x_i, \quad \text{with} \quad p \in P, \quad a_i \in \mathcal{R}.
\]

Choose now \(r \in \text{Ann} x_i \setminus A \); from (8) we obtain
\[
0 = \theta(rx_i) = r(1 + pa_x)x_1 + rp \sum_{i=2}^{n} a_i x_i,
\]
from which \(r(1 + pa_x)x_i = 0 \), which is impossible, because \(r \notin A = \text{Ann} x_i \). This concludes the proof. ///

As an easy consequence of the preceding result we obtain the following

Theorem 3. Let \(\mathcal{R} \) be a valuation ring. A finitely generated \(\mathcal{R} \)-module \(X \) is a \(* \)-module if and only if for suitable \(n \geq 0 \) and \(A \) ideal of \(\mathcal{R} \).

Proof. For any ring \(\mathcal{R} \), modules of the form \((\mathcal{R}/A)^n \) are \(* \)-modules as a consequence of Theorem 1, observing that \(\text{Gen} ((\mathcal{R}/A)^n) = \mathcal{R}/A - \text{Mod} \), and \(\text{Hom}_{\mathcal{R}} ((\mathcal{R}/A)^n, -) \approx \text{Hom}_{\mathcal{R}/A} ((\mathcal{R}/A)^n, -) \), if \(n \geq 1 \).

Conversely, let us note that \(PX \in \text{Gen} (X) \), as it is easy to verify. Therefore, if \(X \) is a finitely generated \(* \)-module, then, by Theorem 1, \(X \) must satisfy the condition in the hypothesis of Theorem 2, hence \(X \) has the desired form. ///

The problem of finding \(* \)-modules which are not finitely generated remains open. We actually think that a \(* \)-module over a valuation ring must be finitely generated; this opinion is mainly based on the following remark, derived from discussions with L. Salce.

Remark 4. The simplest non finitely generated \(\mathcal{R} \)-modules are the uniserial ones, i.e. those \(\mathcal{R} \)-modules whose lattice of submodules is linearly ordered. Fuchs and Salce proved that, if \(U \) is a divisible uniserial module over a valuation domain \(\mathcal{R} \), whose elements have nonzero principal annihilators, then there is an equivalence of categories
\[
\text{Gen} (U) \xrightarrow{\mathcal{F}} \mathcal{C}
\]
where C is the class of complete torsion-free reduced R-modules, $F \approx \text{Hom}_R(U,-)$ and $G \approx U \otimes_R -$ (see [6]; this equivalence was inspired by Matlis equivalence in [7]; see also [5], p. 99). Moreover, U is small if and only if it is not countably generated. Nevertheless, for any choice of R we notice that U is not a \ast-module. This is clear if U is countably generated (see Theorem 1). If U is not countably generated, then also Q, the field of fractions of R, is not countably generated as an R-module; in this case we get that C is not closed for submodules, hence C cannot be cogenerated by any module. It is worth giving a check of this last fact: let us suppose, by contradiction, that C is closed for submodules, for a convenient R, with Q not countably generated as an R-module; with these assumptions, R must be complete, and each free R-module F is complete, too, in view of Cor. 2.2 of [6]. Let us consider a short exact sequence

$$0 \to K \to F \to Q \to 0$$

with F free; then $F \in C$ implies $K \in C$, hence K is closed in F and $Q \approx F/K$ must be Hausdorff in the natural topology, i.e. $\{0\} = \bigcap_{r \in R^*} rQ = Q$, a contradiction.

REFERENCES

Manoscritto pervenuto in redazione il 7 luglio 1989.