GIUSEPPE DI FAZIO

Hölder-continuity of solutions for some Schrödinger equations

<http://www.numdam.org/item?id=RSMUP_1988__79__173_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/
Hölder-Continuity of Solutions
for Some Schrödinger Equations.

GIUSEPPE DI FAZIO (*)

0. Introduction.

Recently the local regularity properties for solutions of Schrödinger equations of the form

\[
Lu = - (a_{ij} u_{x_i})_{x_j} + Vu
\]

have been studied by many authors (see e.g. [A-S], [D-M], [C-F-G], [C-F-Z]) allowing \(V \) to be a very singular potential, precisely \(V \in S \), the Stummel-Kato class (see definition 1.1).

Under this assumption in [C-F-G] was established a Harnack inequality and proved a local continuity result for solutions of (\(\ast \)). It is easy to see that if \(\Omega \) is an open bounded set in \(\mathbb{R}^n \) then \(L^p(\Omega) \subset S \) for \(p > n/2 \); hence the result in [C-F-G] generalizes the well known Hölder estimates by Stampacchia [ST], Ladizhenskaya [L-U] etc.

We stress that high integrability of \(V \) does not play an essential role.

In fact also the Morrey space \(L^{1,\lambda}(\Omega) \) is contained in \(S \) for \(\lambda > n-2 \) and being in \(L^{1,\lambda}(\Omega) \), for any \(0 < \lambda < n \), does not imply any extra integrability (see e.g. the examples in [P2]).

In this paper we assume \(V \) in \(L^{1,\lambda}(\Omega) (\lambda > n-2) \) and prove local hölder-continuity for solutions of (\(\ast \)) hence, in this special situation, we improve the continuity result in [C-F-G].

(*) Indirizzo dell’A.: Via del Canalicchio 9 - 95030 Tremestieri Etneo (Catania), Italy.
Our technique is very close to the one in [C-F-G] heavily relying on the exploitation of well known estimates for the Green function of L.

There is however a technical difficulty.

It is impossible to use the usual C^∞-approximation for L and V (as in [C-F-G]) because functions in Morrey spaces are not close, in general, to bounded functions in $L^{1,\lambda}(\Omega)$ (see [P1] p. 22 for an example of an $L^{1,\lambda}(\Omega)$ function with distance from $L^\infty(\Omega)$ equal to 1). We overcame this difficulty by developing a representation formula for solutions of (\ast) that extends classical results on the Green function (see e.g. [ST]).

1. Some function spaces.

Let Ω be an open bounded set of \mathbb{R}^n ($n > 3$).

We will need some mild regularity assumption to be satisfies by $\partial \Omega$ e.g.

$$\exists A \in]0, 1[: |\Omega_r(x)| \leq A |B_r(x)| \quad \forall x \in \partial \Omega$$

where $r: 0 < r < \text{diam} \,(\Omega)$ \(^{(1)}\).

Definition 1.1 (Stummel-Kato class). We say that $V: \Omega \to \mathbb{R}$ belongs to the Stummel-Kato class S iff there exists a non decreasing function $\eta(r) > 0$ with $\lim_{r \to 0} \eta(r) = 0$ such that

$$\left(1.1\right) \quad \sup_{x \in \Omega} \int_{\Omega_r(x)} |V(y)||x - y|^{2-n} dy \leq \eta(r)$$

Obviously $S \subseteq L^{1,\lambda}(\Omega)$.

Definition 1.2 (Morrey spaces). $L^{1,\lambda}(\Omega)$ ($0 < \lambda < n$) is the space of functions $f \in L^1(\Omega)$ such that

$$\|f\|_{L^{1,\lambda}(\Omega)} = \sup_{x \in \Omega} \int_{\Omega_r(x)} |f(y)| dy < +\infty.$$

\(^{(1)}\) $|E|$ denotes the Lebesgue measure of a measurable subset E of \mathbb{R}^n:

$$B_r(x) =: \{ y \in \mathbb{R}^n : |x - y| < r \} ; \quad \Omega_r(x) =: \Omega \cap B_r(x).$$
LEMMA 1.1. If \(u \) belongs to \(L^{1,\lambda}(\Omega) \) \((n - 2 < \lambda < n)\) then \(u \) belongs to the Stummel-Kato class and

\[
\int_{\Omega} |u(y)| |x - y|^{2-n} \, dy \leq C r^{1-n+\lambda} \|u\|_{L^{1,\lambda}(\Omega)}
\]

where \(C \) depends only on \(\lambda \) and \(n \).

Indeed,

\[
\int_{\Omega} |u(y)| |x - y|^{2-n} \, dy = \sum_{k=0}^{+\infty} \int_{\Omega \cap \{ r/2^{k+1} \leq |x - y| < r/2^k \}} |u(y)| |x - y|^{2-n} \, dy \leq \sum_{k=0}^{+\infty} (r^{2-k-1})^{2-n} \int_{\Omega_{r/2^k}(x)} |u(y)| \, dy \leq r^{\lambda-n+2} C \|u\|_{L^{1,\lambda}(\Omega)}.
\]

REMARK 1.1:

\(L^{1,\lambda}(\Omega) \subseteq S \subseteq L^{1,\mu}(\Omega) \) where \(0 < \mu < n - 2 < \lambda < n \).

Indeed the inclusion \(L^{1,\lambda}(\Omega) \subseteq S \) is an immediate consequence of Lemma 1.1 and the other inclusion is obvious.

We now recall the definitions of the Sobolev spaces \(H^{1,p}(\Omega) \), \(H^{1,p}_0(\Omega) \) and \(H^{-1,p}(\Omega) \).

DEFINITION 1.3. We say that \(u \) belongs to \(H^{1,p}(\Omega)[H^{1,p}_0(\Omega)](1 < p < +\infty) \) iff \(u \),

\[
\frac{\partial u}{\partial x_i} \in L^p(\Omega)[L^p_0(\Omega)] \quad (i = 1, 2, \ldots, n)
\]

\(H^{1,p}(\Omega) \) is a Banach space under the norm

\[
\|u\|_{H^{1,p}(\Omega)} = \|u\|_{L^p(\Omega)} + \sum_{i=1}^n \left\| \frac{\partial u}{\partial x_i} \right\|_{L^p(\Omega)}
\]

\(H^{1,p}_0(\Omega) \) is the closure of \(\mathcal{D}(\Omega) \) with respect to the \(H^{1,p}(\Omega) \) norm; \(H^{-1,p}(\Omega) \) is the dual space of \(H^{1,p}_0(\Omega) \), where \(1/p + 1/q = 1 \). We have \(T \in H^{-1,p}(\Omega) \) iff, \(\exists f_i \in L^p(\Omega) \) \((i = 1, 2, \ldots, n)\) such that \(T = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \).
2. Green’s function and a representation formula.

In the following sections we will consider the operator $L - V$ where L is the divergence form elliptic operator

$$L = - \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial}{\partial x_j} \right)$$

satisfying

$$\begin{cases} a_{ij} \in L^\infty(\Omega), & a_{ij} = a_{ji} \quad (i, j = 1, 2, \ldots, n) \\ \exists \nu > 0: \nu|\xi|^2 < a_{ij} \xi_i \xi_j < \nu^{-1}|\xi|^2 & \forall \xi \in \mathbb{R}^n \end{cases}$$

and V is a function

$$V \in L^{1, \lambda}(\Omega) \quad (\lambda > n - 2).$$

Definition 2.1. We say that $u \in H^{1,2}_{loc}(\Omega)$ is a local weak solution of the equation

$$Lu = Vu$$

iff

$$\int_{\Omega} a_{ij}(x) u_{x_i}(x) \psi_{x_j}(x) \, dx = \int_{\Omega} V(x) u(x) \psi(x) \, dx; \quad \forall \psi \in \mathcal{D}(\Omega).$$

Definition 2.1 is meaningful by the inclusion $L^{1,\lambda}(\Omega) \subseteq S$ and [S] p. 138-140.

We recall that under the weaker hypothesis $V \in S$ the following regularity result for weak solutions was proven in [C-F-G].

Theorem 2.1. There exist two positive constants $C = C(\nu, n)$, $r_0 = r_0(\nu, n, \eta)$ (\eta from definition 1.1) and a non decreasing function $\omega(r)$: $\lim_{r \to 0} \omega(r) = 0$ such that, for any local weak solution of $Lu + Vu = 0$ in Ω and for every ball $B_r(x_0) \subset \Omega$ ($0 < r < r_0$) we have:

$$\operatorname{osc} u \leq C \omega(r) \sup_{B_r(x_0)} |u|.$$
We now define a different class of solutions:

Definition 2.2. Let L be such that (2.1) holds, let μ be a bounded variation measure in Ω and $T = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \in H^{-1,2}(\Omega)$.

We say that $u \in L^1(\Omega)$ is a very weak solution of the equation

$$Lu = \mu + T$$

if and only if

$$\int_{\Omega} u(x) L\varphi(x) \, dx = \int_{\Omega} \varphi(x) \, d\mu - \sum_{i=1}^{n} \int_{\Omega} f_i(x) \frac{\partial \varphi}{\partial x_i} \, dx$$

for every $\varphi \in H^{1,2}_0(\Omega) \cap C^0(\overline{\Omega})$ such that $L\varphi \in C^0(\overline{\Omega})$. In much the same way as in [ST] it is possible to show

Lemma 2.1. Assume μ is a bounded variation measure and $T = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \in H^{-1,2}(\Omega)$. If $u \in H^{1,2}_0(\Omega)$ is a weak solution of the equation

$$Lu = \mu + T$$

i.e.

$$\int_{\Omega} a_{ij}(x) u(x) \varphi_{x_i}(x) \, dx = \int_{\Omega} \varphi(x) \, d\mu - \sum_{i=1}^{n} \int_{\Omega} f_i(x) \frac{\partial \varphi}{\partial x_i} \, dx; \quad \forall \varphi \in H^{1,2}_0(\Omega)$$

then u is the very weak solution of the same equation.

The proof is an easy consequence of the definitions above. We now recall the definition of fundamental solution.

Let $y \in \Omega$ and δ_y the Dirac mass at y.

Consider the equation

$$Lu = \delta_y.$$

We call its (very weak) solution the Green’s function relative to the operator L with pole at y and we denote it by $g(x, y)$.

By the definition above the solution $\varphi \in H^{1,2}_0(\Omega) \cap C^0(\overline{\Omega})$ of $L\varphi = \varphi$,

where \(\varphi \in C^0(\Omega) \) is given by the formula

\[
\varphi(y) = \int_\Omega g(x, y) \psi(x) \, dx = \langle \psi(x), g(x, y) \rangle.
\]

Consider:

(2.8) \quad Lu = \mu + T

where \(\mu \) is a bounded variation measure, \(T \in H^{-1,p}(\Omega) \) \((p > n)\). We have the following

Theorem 2.2:

\[
u(x) = \langle \mu(y), g(x, y) \rangle + \langle T(y), g(x, y) \rangle
\]

is the very weak solution of (2.8).

Proof. We consider only the case \(\mu = 0 \) (for the case \(T = 0 \) see [ST] Th. 8.3 p. 227).

We will show that

\[
u(x) = \langle T(y), g(x, y) \rangle
\]

satisfies:

\[
\langle L\varphi(x), \langle T(y), g(x, y) \rangle \rangle = \langle T(y), \varphi(y) \rangle; \quad \forall \varphi \in H^1_0(\Omega) \cap C^0(\overline{\Omega})
\]

such that \(L\varphi \in C^0(\overline{\Omega}) \).

Let

\[
T = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i}, \quad \text{where } f_i \in L^p(\Omega), \quad i = 1, 2, \ldots, n.
\]

Then

\[
\langle L\varphi(x), \langle T(y), g(x, y) \rangle \rangle = \int_\Omega L\varphi(x) \left(-\int_\Omega \frac{\partial g}{\partial y_i} f_i(y) \, dy \right) \, dx.
\]

We observe that

\[
|L\varphi(x) \frac{\partial g}{\partial y_i} f_i(y)| \in L^1(\Omega \times \Omega).
\]
Indeed we have:

\[
\int \left(\int_{\Omega} |L^p(x)| \left| \frac{\partial g}{\partial y_i} \right| f_i(y) \, dy \right) \, dx = \int \left(\int_{\Omega} \frac{\partial g}{\partial y_i} \left| f_i(y) \right| \, dy \right) \, dx \leq \\
\leq \int_{\Omega} \left| L^p(x) \right| \left\| \frac{\partial g}{\partial y_i} \right\|_{L^p(\Omega)} \left\| f_i \right\|_{L^p(\Omega)} \, dx \leq \max_{\Omega} \left| L^p(x) \right| \left\| f_i \right\|_{L^p(\Omega)} \int_{\Omega} \left\| \frac{\partial g}{\partial x_i} \right\|_{L^p(\Omega)} \, dx.
\]

Then (see [ST] p. 220 (8.6))

\[
\int \left(\int_{\Omega} |L^p(x)| \left| \frac{\partial g}{\partial y_i} \right| f_i(y) \, dy \right) \leq C \max_{\Omega} \left| L^p(x) \right| \left\| f_i \right\|_{L^p(\Omega)}.
\]

By Tonelli and Fubini’s theorems we have:

\[
\int_{\Omega} L^p(x) \left(- \int_{\Omega} \frac{\partial g}{\partial y_i} f_i(y) \, dy \right) \, dx = \int_{\Omega} f_i(y) \left(- \int_{\Omega} \frac{\partial g}{\partial y_i} L^p(x) \, dx \right) \, dy = \\
= \int_{\Omega} f_i(y) \left(- \frac{\partial}{\partial y_i} \int_{\Omega} g(x, y) L^p(x) \, dx \right) \, dy = \\
= \int_{\Omega} f_i(y) \left(- \frac{\partial}{\partial y_i} \left\langle g(x, y), L^p(x) \right\rangle \right) = \left\langle \frac{\partial f_i}{\partial y_i}, \left\langle g(x, y), L^p(x) \right\rangle \right\rangle = \\
= \left\langle T(x), \psi(x) \right\rangle.
\]

Remark 2.1. In the proof above we may differentiate under the integral; i.e.

\[-\int_{\Omega} \frac{\partial g}{\partial y_i} L^p(x) \, dx = - \frac{\partial}{\partial y_i} \int_{\Omega} g(x, y) L^p(x) \, dx.
\]

In fact, for every \(\varphi \in \mathcal{D}(\Omega) \) we have, using Fubini’s theorem:

\[- \left\langle \frac{\partial}{\partial y_i} \int_{\Omega} g(x, y) L^p(x) \, dx, \varphi(y) \right\rangle = \left\langle \int_{\Omega} g(x, y) L^p(x) \, dx, \frac{\partial \varphi}{\partial y_i} \right\rangle = \]
3. Hölder-continuity of local solutions.

We now state the main result of this paper

Theorem 3.1. There exist positive numbers \(r_0 = r_0(v, \|V\|_{1,1}, \lambda, n) \)
\(\alpha = \alpha(v, n) \), \(C = C(v, n, \|V\|_{1,1}, \lambda) \) such that for any local solution \(u \)
of \(Lu = Vu \) in \(\Omega \) and for any ball \(B_r(x_0) \), with \(B_r(x_0) \subset \Omega \), \(0 < r < r_0 \)
we have

\[
|u(x) - u(x_0)| \leq C \sup_{B_{2r}(x_0)} |u|^{\lambda - n + 2} \cdot \left(|x - x_0|^{\alpha/2} r^{-\alpha/2} + |x - x_0|^{(\lambda - n + 2)/2} r^{-(\lambda - n + 2)/2} + \left(\frac{|x - x_0|}{r} \right)^{\alpha} \right).
\]

Proof. Let \(V \in L^{1,\lambda}(\Omega) \) and \(u \) a local weak solution of \(Lu = Vu \)
i.e. \(u \in H^{1,q}_{loc}(\Omega) \) such that:

\[
\int \alpha_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} dx = \int V(x) \varphi(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega).
\]

Let \(\varphi \in \mathcal{D}(\Omega) \). It is easy to see that \(u \varphi \) is such that

\[
\int \alpha_{ij}(x) \frac{\partial (u \varphi)}{\partial x_i} \frac{\partial \varphi}{\partial x_j} dx = \int V(x) u(x) \varphi(x) dx +
\]

\[
+ \int \alpha_{ij}(x) u(x) \frac{\partial \varphi}{\partial x_i} \frac{\partial \varphi}{\partial x_j} dx - \int \alpha_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j} \varphi(x) dx
\]

holds.

Therefore, by Lemma 2.1, \(u \varphi \) is a very weak solution of

\[
L(u \varphi) = V(x) u(x) \varphi(x) - \frac{\partial}{\partial x_j} \left(\alpha_{ij}(x) u(x) \frac{\partial \varphi}{\partial x_i} \right) - \alpha_{ij}(x) \frac{\partial u}{\partial x_i} \frac{\partial \varphi}{\partial x_j}.
\]
By Theorem 2.2 we have

$$u(x)\varphi(x) = \int_{\Omega} V(y)u(y)\varphi(y)g(x, y)\,dy + \int_{\Omega} \frac{\partial g}{\partial y_i}(y)a_{i}(y)u(y)\frac{\partial \varphi}{\partial y_j}\,dy - \int_{\Omega} g(x, y)a_{i}(y)\frac{\partial u}{\partial y_i}\frac{\partial \varphi}{\partial y_j}\,dy.$$

Now we choose $\varphi \in \mathcal{D}(\Omega)$ such that $0 \leq \varphi \leq 1$, $\varphi(x) = 1$ in $B_{1}\varepsilon(x_0)$, $\text{supp}(\varphi) \subseteq B_{2r}(x_0)$, $|\nabla \varphi| < C/r$ where $0 < r < r_0$ and r_0 is determined by the local boundedness theorem 1.4 in [C-F-G].

Obviously, for every $x \in B_{2r}(x_0)$ we have:

$$u(x) - u(x_0) = \int_{\Omega} V(y)u(y)\varphi(y)(g(x, y) - g(x_0, y))\,dy -$$

$$\int_{\Omega} (g(x, y) - g(x_0, y))a_{i}(y)\frac{\partial u}{\partial y_i}\frac{\partial \varphi}{\partial y_j}\,dy +$$

$$+ \int_{\Omega} \left(\frac{\partial g}{\partial y_i}(x, y) - \frac{\partial g}{\partial y_i}(x_0, y) \right) a_{i}(y)u(y)\frac{\partial \varphi}{\partial y_j}\,dy = I - II + III.$$

We begin estimating I.

$$I = \int_{|x - y| > N|x - x_0|} (g(x, y) - g(x_0, y))V(y)u(y)\varphi(y)\,dy +$$

$$+ \int_{|x - y| \leq N|x - x_0|} (g(x, y) - g(x_0, y))V(y)u(y)\varphi(y)\,dy = A + B.$$

Where N is a positive number to be fixed later.

To estimate A we use the inequality (see [G-T] p. 200 Th. 8.22 and Harnack’s Theorem)

$$|g(x, y) - g(x_0, y)| \leq C(v, n)\left(\frac{|x - x_0|}{r} \right)^{\alpha}g(x_0, y) \leq$$

$$\leq \frac{C(v, n)}{N^\alpha} g(x_0, y) \leq \frac{C(v, n)}{N^\alpha|x_0 - y|^{n-2}}.$$
hence

\[A \leq \frac{C(v, n)}{N^\alpha} \int_{B_{4r}(x_0)} \frac{|V(y)|}{|x_0 - y|^{\alpha - 2}} \, dy \, \text{sup} \left\{ u \right\}_{B_{4r}(x_0)} \]

and by Lemma 1.1

\[A \leq \frac{C(\|V\|_{L^{1,\infty}(\Omega)}, v, n, \lambda)}{N^\alpha} \, r^{\lambda - n + 2} \, \text{sup} \left\{ u \right\}_{B_{4r}(x_0)} . \]

To estimate \(B \) we use Lemma 1.1 and the following bound

\[g(x, y) \leq \frac{C(v, n)}{|x - y|^{\alpha - 2}} \]

proven in [L-S-W].

We obtain:

\[|g(x, y) - g(x_0, y)| \leq \frac{C(v, n)}{|x - y|^{\alpha - 2}} + \frac{C(v, n)}{|x_0 - y|^{\alpha - 2}} \]

and therefore

\[B \leq C(v, n) \int_{|x_0 - y| \leq N|x - x_0|} \frac{|V(y)|}{|x - y|^{\alpha - 2}} \, dy \, \sup \left\{ u \right\}_{B_{4r}(x_0)} \leq \]

\[\leq C(v, n) \int_{|x_0 - y| \leq (N + 1)|x - x_0|} \frac{|V(y)|}{|x - y|^{\alpha - 2}} \, dy \leq \]

\[\leq C(v, n) \|V\|_{L^{1,\infty}(\Omega), \lambda} \, \sup \left\{ u \right\}_{B_{4r}(x_0)} \| (N + 1)|x - x_0| \|^\lambda_n - n + 2 . \]

Now, if we choose \(N = (r/|x - x_0|)^{\frac{1}{\alpha}} > 1 \) we obtain

\[|I| \leq C(\|V\|_{L^{1,\infty}(\Omega), \lambda}, v, n) \, \sup \left\{ u \right\}_{B_{4r}(x_0)} \|x - x_0\|^{\alpha / 2 \, r^{\lambda - n + 2 - \alpha / 2}} + \]

\[+ C(\|V\|_{L^{1,\infty}(\Omega), \lambda}, v, n) \, \sup \left\{ u \right\}_{B_{4r}(x_0)} \|x - x_0\|^{(\lambda - n + 2) / 2 \, r^{(\lambda - n + 2) / 2}} . \]

Estimating II and III as in [C-F-G] we obtain

\[|II| \leq C(v, n) \left(\frac{|x - x_0|}{r} \right)^{\alpha} \left(\int_{B_{4r}(x_0)} u(y)^2 \, dy \right)^{\frac{1}{2}} \]
and

\[|III| \leq C(n, \kappa) \left(\frac{|x - x_0|}{r} \right)^\alpha \left(\int_{B_r(x_0)} u(y)^2 \, dy \right)^{\frac{1}{2}}. \]

The theorem now follows.

REFERENCES

Manoscritto pervenuto in redazione il 3 aprile 1987.