A theorem on direct products of Slender modules

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 261-266

<http://www.numdam.org/item?id=RSMUP_1987__78__261_0>
A Theorem on Direct Products of Slender Modules.

JOHN D. O’NEILL (*)

1. Introduction.

Let R be a ring. A class C of R-modules is called transitive if, for each, X, Y, Z in C, $\text{Hom}_R(X, Y) \neq 0 \neq \text{Hom}_R(Y, Z)$ implies $\text{Hom}_R(X, Z) \neq 0$. If $\text{Hom}_R(X, Y) \neq 0 \neq \text{Hom}_R(Y, X)$, then X and Y have the same type. Our main result is the following.

Theorem 1. Let C be a transitive class of slender R-modules. If $\prod G_i = A \oplus B$ with G_i in C and I countable, then A is isomorphic to a direct product of members of C if this result is true whenever all G_i's have the same type.

In section 4, using a result from [4], we generalize Theorem 1 to the case where I is any set of non-measurable cardinality.

In particular Corollary 8 includes the case where R is the ring of integers and C is the class of rank one torsion-free reduced abelian groups. This case is Theorem 4.3 in [4]. The proof there was defective (Lemma 4.2 was false). Thus our proof here of Theorem 1 (hence of Corollary 8) supplants the proof of Theorem 4.3 in [4].

2. Preliminaries.

All rings are associative with unity and all modules (except in Cor. 9) are left unital. Let C be a transitive class of R-modules.

(*) Indirizzo dell'A.: University of Detroit, Detroit, MI. 48221, U.S.A.
« Having the same type » is an equivalence relation on the members of \(C \). If type \(X = t \), type \(Y = s \), and \(\text{Hom}_R(X, Y) \neq 0 \), we write \(t \leq s \). This relation is a partial order on the types of members of \(C \). By \(t < s \) we mean \(t \leq s \) and \(s \leq t \). An \(R \)-module has \textit{finite rank} if it is isomorphic to a submodule of a finite direct sum of members of \(C \). A submodule \(X \) is \textit{fully invariant} in \(Y \) if: for any homomorphism \(f: Y \to Y \), \(f(X) \subseteq X \). In this case a decomposition of \(Y \) induces a decomposition of \(X \).

The first infinite ordinal (a cardinal) is \(\omega \) and it is identified with the set of finite ordinals. Let \(R^\omega \) be the direct product of \(\omega \) copies of \(R \). An \(R \)-module \(X \) is \textit{slender} if each \(R \)-homomorphism \(R^\omega \to X \) sends all but a finite number of components of \(R^\omega \) to 0.

We shall presume a basic knowledge of slender modules and direct products of modules such as is found in [1, 2 and 4] and in the papers referenced there. Lemmas 3.1 and 3.2 in [4] are basic and, being well-known, are often used without mention.

Observe that the class \(C \) in Theorem 1 satisfies the following \textit{Clause}: If \(\prod_i G_i = A \oplus B \) where \(|I| < \omega \) and all \(G_i \)'s have the same type, then \(A \) is isomorphic to a direct product of members of \(C \). It will be clear after Lemma 2 that the components of \(A \) have the same type as the \(G_i \)'s.

3. \textbf{Proof of Theorem 1.}

Write \(V = \prod_i G_i = A \oplus B \) as in Theorem 1. Let \(\alpha: V \to A \), \(\beta: V \to B \) and \(\alpha_i: V \to A \to G_i \) be the obvious projections. Let each \(G_i \) have type \(t_i \). For a fixed type \(s \) write \(V_s = \prod_i G_i \) and \(V^s = \prod_{t_i > s} G_i \).

If \(J \subseteq I \), then \(V_J = \prod_{i \in J} G_i \). We will adhere strictly to this notation.

Lemma 2. For each type \(s \)

1. \(V_s \oplus V^s \) and \(V^s \) are fully invariant in \(V \),
2. \(\alpha(V_s \oplus V^s) = A \cap (V_s \oplus \beta(V^s)) \oplus \alpha(V^s) \),
3. We may assume the decomposition \(V = \prod_i G_i \) is such that \(V_s = \prod_{X_s} G_i \oplus \prod_{Y_s} G_i \) for subsets \(X_s, Y_s \) of \(I \) so that \(\alpha \) induces an isomorphism between \(V_{X_s} \) and \(\alpha(V_{X_s}) = A \cap (V_s \oplus \beta(V^s)) \), which is thus a direct product of members of \(C \) of type \(s \).
PROOF. (1) is clear and (2) follows (1) by standard arguments. From (1) the members of any new C-decomposition of \(V_s \) have type \(s \). Also \(\beta(V_s \oplus V^s) = B \cap (V_s \oplus \alpha(V^s)) \oplus \beta(V^s) \) and \(V_s \oplus V^s = [A \cap (V_s \oplus \alpha(V^s))] \oplus \beta(V^s) \). Now \(V_s \) is isomorphic to the summand in the bracket and, by the Clause, each summand in the bracket is isomorphic to a direct product of members of \(C \) of type \(s \). It we project each of these summands to \(V_s \) we get the desired decomposition of \(V_s \).

Lemma 3. Let \(T \) be a finite set of types and let \(s \) be a minimal type in \(T \). Assume Lemma 2. Set \(V_T = \prod_j G_j \) where \(J = \{i : t_i > \text{some } t \} \) in \(T \) or \(t_i \in T \setminus \{s\} \) and set \(\tau V = \prod_k G_k \) where \(K = \{i : t_i \neq \text{any } t \} \) in \(T \); so \(V = \tau V \oplus V_s \oplus \tau V^s \). Then

1. \(V_s \oplus V^s \) and \(V^s \) are fully invariant in \(V \),
2. \(A = A \cap (\tau V \oplus \beta(V_s \oplus V^s)) \oplus \alpha(V^s) \oplus \alpha(V^s) \) for \(X_s \) as in Lemma 2.

Proof. (1) is clear. Hence \(A = A \cap (\tau V \oplus \beta(V_s \oplus V^s)) \oplus \alpha(V^s) \) which, being in \(\alpha(V_s) \), is in \(\alpha(V^s) \). By Lemma 2 \(\alpha(V^s) = A \cap (V_s \oplus \beta(V^s)) \). Substitution yields (2).

Lemma 4. If \(C \) is a finite rank direct summand of \(V \), then \(C \) is isomorphic to a finite direct sum of members of \(C \).

Proof. By slenderness \(C \) is a direct summand of a finite direct sum of \(G_i \)'s. If all \(G_i \)'s have the same type, the Clause applies. For the general case we may use Baer's classical proof for a direct summand of a finite direct sum of rank one torsionfree abelian groups (see Theorem 86.7 in [1]).

Lemma 5. Suppose \(m \in I \). Then \(A = E \oplus F \) where \(E \) has finite rank and \(\alpha_m(F) = 0 \).

Proof. Since \(G_m \) is slender, \(\alpha_m(V_i) = 0 \) for all types \(t \) except those in a finite set \(T \). We induct on the order of \(T \). If \(T = \emptyset \), \(\alpha_m(A) \subseteq \alpha_m(V) = 0 \); so \(E = 0 \) and \(F = A \) satisfy the Lemma. Otherwise let \(s \) be a minimal type in \(T \). From Lemma 3 we write \(A = A \cap (\tau V \oplus \beta(V_s \oplus V^s)) \oplus \alpha(V^s) \oplus \alpha(V^s) \). Note that the left summand is in \(\alpha(\tau V) \) and \(\alpha_m(\tau V) = 0 \). Since \(\alpha(V^s) \) is a product of \(G_i \)'s of type \(s \),
by slenderness $\alpha(V) = D \oplus E_1$ where $\alpha_m(D) = 0$ and E_1 is a finite direct sum of G_i's of type s. Let $F_1 = A \cap (\alpha(V) \oplus \beta(V)) \oplus D$ Now $A = F_1 \oplus E_1 \oplus \alpha(V)$ where $\alpha_m(F_1) = 0$ and E_1 has finite rank. Next consider $V^\beta = \alpha(V^\beta) \oplus \beta(V^\beta)$. Let T_1 be the set of t's such that $V_t \subseteq V^\beta$ and $\alpha_m(V_t) \neq 0$. Then $T_1 = T \setminus \{s\}$ and $|T_1| < |T|$. By the induction hypothesis $\alpha(V^\beta) = E_2 \oplus F_2$ where E_2 has finite rank and $\alpha_m(F_2) = 0$. Therefore $E = E_1 \oplus E_2$ and $F = F_1 \oplus F_2$ satisfy the lemma.

Remark. If C is the class of rank one torsion-free reduced abelian groups, Lemma 5 follows readily from the fact that V and any direct summand of V is coseparable (see Proposition 1.2 and Theorem 5.8 in [3]). Thus the kernel of the map $\alpha_m: A \to G_m$ must contain a direct summand F of A with finite rank complement E.

Proof of Theorem 1. By Lemma 4 we may assume $I = \omega$. We may also assume V has the decomposition in Lemma 2. We wish to find submodules A_n, A^n in A for each n in ω such that:

1. $A = A_n$, $A^n = A_n \oplus A^{n+1}$ for each n,
2. Each A_n has finite rank,
3. For fixed $m A_n(A_n) \alpha_m(A_n) = 0$ for almost all n,
4. $\cap A^n = 0$.

Then, by Proposition 3.3 in [4], we will have $A \cong \prod A_n$ and Lemma 4 above will complete the proof.

Let $A = A^0$. If $m > 0$ and if A^m is a direct summand of V, then, by letting A^m be A in Lemma 5, we can find a decomposition $A^m = A_m \oplus A^{m+1}$ where A_m has finite rank and $\alpha_m(A^{m+1}) = 0$. By induction we can find A_n, A^n for each n in ω to satisfy (1) and (2) above and where $\alpha_n(A^n) = 0$ for each n. For fixed $m \alpha_m(A_n) \subseteq \alpha_m(A^n) = 0$ for all $n > m$. This yields (3) and (4) which completes the proof.

4. Generalization.

Theorem 6. Let C be a transitive class of slender R-modules. If $\prod G_i = A \oplus B$ with $G_i \in C$ and $|I|$ non-measurable, then A is isomorphic to a direct product of members of C if this statement is true whenever I is countable and all G_i's have the same type.
PROOF. The result follows from Theorem 1 and the following proposition.

PROPOSITION 7 (Theorem 3.7 in [4]). Suppose an R-module P has decompositions $P = \prod G_i = A \oplus B$ where $|I|$ is non-measurable and each G_i is slender. Then $A \cong \prod A_i$ where each A_i is isomorphic to a direct summand of a direct product of countably many G_i's.

As an aside we mention that the conclusion of Lemma 3.6 in [4] is misstated. It should be: Then $A \cong \prod A_j$ and $B \cong \prod B_j$ where $A_j = A \cap (P_j \oplus \beta(P_j'))$ and $B_j = B \cap (P_j \oplus \alpha(P_j'))$. The proof of the Lemma, with obvious modifications, remains the same.

5. Applications.

COROLLARY 8 (see Theorem 13 in [5]). Let R be a commutative Dedekind domain which is not a field or a complete discrete valuation ring. Let $= A \oplus B$ where $|I|$ is non-measurable and each G_i is a rank one torsion-free reduced R-module. Then A is a direct product of rank one R-modules.

PROOF. Let C be the class of rank one torsion-free reduced R-modules. Each module in C is slender by Proposition 3 in [5]. If X and Y are in C and $f:X \to Y$ is a non-zero homomorphism, it is a monomorphism. Hence $\text{Hom}_R(X, Y) \neq 0$ if and only if X is isomorphic to a submodule of Y. It follows that C is a transitive class of slender R-modules and that, for this class, the definitions of « type » in this paper and in Definition 9 in [5] are equivalent. By Proposition 12 in [5] the Corollary is true if all G_i's have the same type. Theorem 6 above completes the proof.

COROLLARY 9. Let R be a ring and let C be a transitive class of slender left R-modules such that modules of the same type are isomorphic and, for each X in C, projective right $\text{End}_R X$-modules are free. If $\prod G_i = A \oplus B$ where $G_i \in C$ and $|I|$ is non-measurable, then A is isomorphic to a direct product of G_i's.

PROOF. By Theorem 3.1 in [2] the result is true if all G_i's have the same type. Theorem 6 above completes the proof.
I am indebted to the referee for the Remark after Lemma 5 and for many other ideas incorporated in the revision of this paper.

REFERENCES

Pervenuto in redazione il 20 dicembre 1985 e in forma revisionata il 14 novembre 1986.