Centralizers and Lie ideals

Rendiconti del Seminario Matematico della Università di Padova, tome 78 (1987), p. 255-259

<http://www.numdam.org/item?id=RSMUP_1987__78__255_0>
Centralizers and Lie Ideals.

LUISA CARINI (*)

SUMMARY. - Let \(R \) be an associative ring, \(Z(R) \) its center and \(T(U) = \{ a \in R | au^n = u^n a, n = n(u, a) > 1, \text{ all } u \in U \} \), where \(U \) is a non central Lie ideal of \(R \). We prove that if \(R \) is a prime ring of characteristic not 2 with no nil right ideals, then either \(T(U) = Z(R) \) or \(R \) is an order in a simple algebra of dimension at most 4 over its center.

Let \(R \) be an associative ring, \(Z(R) \) its center. The hypercenter theorem [4] asserts that in a ring with no nonzero nil ideals an element commuting with a suitable power of every element of the ring must be central.

In this note we want to extend this result to noncentral Lie ideals in case \(R \) is a prime ring of characteristic not 2 with no nil right ideals. Let \(T(U) = \{ a \in R : au^n = u^n a, \text{ all } u \in U \} \), where \(U \) is a noncentral Lie ideal of \(R \), then one cannot expect the same conclusion of [4], as the following example shows:

Example. Let \(R = F_2 \), the \(2 \times 2 \) matrices over a field \(F \),

\[
U = [R, R] = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in F \right\}.
\]

(*) Indirizzo dell'A.: Università di Messina, Dipartimento di Matematica, Via C. Battisti 90, 98100 Messina, Italy.
Research supported by a grant from M.P.I.
Then U is a noncentral Lie ideal of R and $u^2 \in Z(R)$ for every element $u \in U$, therefore $T(U) = R$, but $Z(R) \neq R$.

Then making use of a result of Felzenszwalb and Giambruno [2], we shall prove the following:

Theorem. Let R be a prime ring of characteristic not 2 with no nil right ideals, U a noncentral Lie ideal of R. Then either $T(U) = Z(R)$ or R is an order in a simple algebra of dimension at most 4 over its center.

Notice that the conclusion of the theorem is false if one removes the assumption of primeness. In fact, let F_k be the ring of $k \times k$ matrices over a field F. If $R = \prod_{k=2}^{\infty} F_k$, then R is a semisimple ring. Take $U = \bigoplus_{k=2}^{\infty} U_k$, where $U_2 = [F_2, F_2]$ and $U_k = F_k$ for $k > 2$, then U is a noncentral Lie ideal of R. Let $a = (c, 0, 0, \ldots)$ with $c \notin Z(F_2)$. Then $a \in T(U)$, but $a \notin Z(R)$ and moreover it is clear that R does not satisfy any polynomial identity.

For $a, b \in R$ set $[a, b] = ab - ba$ and for subsets $U, V \subset R$, let $[U, V]$ be the additive subgroup generated by all $[u, v]$ for $u \in U$ and $v \in V$. We recall that a Lie ideal U of R is an additive subgroup of R such that $[U, R] \subset U$.

In all that follows, unless otherwise stated, R will be a 2-torsion free ring, $Z = Z(R)$ the center of R, $J(R)$ the Jacobson radical of R, U a noncentral Lie ideal of R (i.e. $U \notin Z$) and

$$T(U) = \{a \in R: aw^n = w^n a, n = n(u, a) \geq 1, \text{ all } u \in U\}.$$

We start with

Lemma. If R is a primitive ring then either $T(U) = Z(R)$ or R is a simple algebra of dimension at most 4 over its center.

Proof. If R is primitive, then R is a dense ring of linear transformations on a vector space V over a division ring D. If $\dim_D V \leq 2$, then R is simple. Since U is a noncentral Lie ideal of R, by Theorem 1.5 of [3], we may assume that $U = [R, R]$. Therefore

$$T(U) = \{a \in R: a(xy - yx)^n = (xy - yx)^n a, n = n(a, x, y) \geq 1, \text{ all } x, y \in R\}.$$
By a result of Felzenszwalb and Giambruno [2, Theorem 1], then we have the desired conclusion.

Suppose now that \(\dim_D V > 2 \). Since \(R \) is prime of characteristic different from 2, by [1, Lemma 1] there exists a nonzero ideal \(I \) such that \([I, R] \subseteq U \) and \([I, R] \not\subseteq Z \). It is also well known that \(I \) acts densely on \(V \) over \(D \) (see [5]).

Let \(a \neq 0 \) be an element of \(T(U) \) and suppose that for some \(v \in V \), the vectors \(v \) and \(va \) are linearly independent over \(D \). Since \(\dim_D V > 2 \), there exists a vector \(v_3 \) in \(V \) such that \(v_1 = v, v_2 = va, v_3 \) are linearly independent over \(D \).

The density of \(R \) and \(I \) on \(V \) gives \(r_2 \in R \) and \(i \in I \) with

\[
\begin{align*}
v_1 r_2 &= 0, & v_2 r_2 &= v_3, & v_3 r_2 &= 0, \\
v_1 i &= 0, & v_2 i &= 0, & v_3 i &= v_2.
\end{align*}
\]

Clearly \(a \) commutes with \((ir_2 - r_2 i)^m \), for a suitable \(m \geq 1 \). Since \(0 = v_1 (ir_2 - r_2 i) \) we get:

\[
0 = v_1 (ir_2 - r_2 i)^m = v_1 a (ir_2 - r_2 i)^m = v_2 (ir_2 - r_2 i)(ir_2 - r_2 i)^{m-1} = -v_2 (ir_2 - r_2 i)^{m-1} = \cdots = \pm v_2;
\]

a contradiction.

Thus given \(v \in V, v \) and \(va \) are linearly dependent over \(D \). As in [4, Lemma 2] it follows that \(a \) is central. In other words, if \(\dim_D V > 2 \), then \(T(U) = Z \). With this the lemma is proved.

We recall that a semisimple ring is a subdirect product of primitive rings \(R_\alpha \). For every \(\alpha \), let \(P_\alpha \) be a primitive ideal of \(R \) such that \(R_\alpha \cong R/P_\alpha \). Since \(J(R) = 0 \), then \(\bigcap_\alpha P_\alpha = 0 \). Remark that since \(R \) is 2-torsion free, we may assume that the homomorphic images \(R_\alpha \) are still of characteristic different from 2. In fact, put \(A = \bigcap_\alpha P_\alpha \) and \(B = \bigcap_\alpha P_\alpha \) and let \(x \in B \); then \(2x \in B \) and also \(2x \in 2R \subseteq \bigcap_\alpha P_\alpha = A \), therefore \(2x \in A \cap B = 0 \). Since \(R \) is 2-torsion free \(x = 0 \) and so we have proved that \(B = 0 \). In this way \(2R \not\subseteq P_\alpha \) (and therefore char \(R/P_\alpha \neq 2 \)) for every \(\alpha \). Now we are ready to prove the following:
THEOREM. Let \(R \) be a prime ring of characteristic not 2 with no nonzero nil right ideals, \(U \) a noncentral Lie ideal of \(R \). Then either \(T(U) = Z(R) \) or \(R \) is an order in a simple algebra of dimension at most 4 over its center.

PROOF. Suppose \(R \) is semisimple. If \(U_\alpha \) is the image of \(U \) in \(R_\alpha \), then \(U_\alpha \) is a Lie ideal of \(R_\alpha \). Let \(\mathcal{F} = \{ P_\alpha : U_\alpha \subset Z(R_\alpha) \} \). Set \(A = \bigcap_{P_\alpha \in \mathcal{F}} P_\alpha \) and \(B = \bigcap_{P_\alpha \in \mathcal{F}} P_\alpha \). Since \(R \) is prime and \(AB \subset A \cap B = 0 \), we must have either \(A = 0 \) or \(B = 0 \). If \(A = 0 \), then \(U \subset Z \), a contradiction. Thus \(B = 0 \) and so for every \(\alpha \), \(U_\alpha \) is a noncentral Lie ideal of \(R_\alpha \).

For each \(\alpha \) let \(T_\alpha \) be the image of \(T(U) \) in \(R_\alpha \). Since \(U_\alpha \notin Z(R_\alpha) \), \(T_\alpha \subset T(U_\alpha) \) for each \(\alpha \) and by the previous Lemma we get either \(T_\alpha \subset Z(R_\alpha) \) or \(R_\alpha \) satisfies \(S_4 \), the standard identity in four variables.

Put \(I = \{ \cap P_\alpha : T_\alpha \subset Z(R_\alpha) \} \) and \(J = \{ \cap P_\alpha : T_\alpha \notin Z(R_\alpha) \} \). Since \(R \) is prime and \(IJ = 0 \) we must have either \(I = 0 \) or \(J = 0 \).

If \(I = 0 \), we conclude that \(T(U) = Z(R) \), the desired conclusion. If \(J = 0 \) then, for every \(\alpha \), \(R_\alpha \) satisfies \(S_4 \) and so \(R \) satisfies \(S_4 \); even in this case we are done.

Therefore we may assume that \(J(R) \neq 0 \). As we remarked before, there exists a nonzero ideal \(I \) of \(R \) such that \([I, R] \subset U \). Since \(R \) is prime, \(I \cap J(R) \) is a nonzero ideal of \(R \).

Let \(T = T([I, R]) \). If \(T \) centralizes \(J(R) \cap I \), then, since the centralizer of a nonzero ideal in a prime ring is equal to the centre of the ring, \(T \subset C_R(J(R) \cap I) = Z(R) \).

Suppose then that \(a \in T \), \(x \in J \cap I \) and \(ax - xa \neq 0 \). Now

\[
0 \neq (ax - xa)(1 + x)^{-1} = a - (1 + x)a(1 + x)^{-1} \in T.
\]

Therefore \(0 \neq (ax - xa)(1 + x)^{-1} \) is in \(T \cap I \cap J \) and so \(T \cap I \cap J \neq 0 \).

Consider the following subset of \(R \):

\[
T(I) = \{ x \in I : a[x, y]^n = [x, y]^n a, \ n = n(a, x, y) \geq 1, \ \text{all} \ x, y \in I \}.
\]

Since \(I \) as a ring satisfies the same hypotheses placed on \(R \), by Theorem 1 of [2] either \(T(I) \subset Z(I) \subset Z(R) \) or \(I \) satisfies \(S_4 \).

If the first possibility occurs, since \(0 \neq T \cap J \cap I \subset T(I) \subset Z(R) \) we have \((ax - xa)(1 + x)^{-1} \in Z \). Also, if \(b \in T \), then

\[
b(ax - xa)(1 + x)^{-1} \in T \cap J \cap I \subset Z.
\]
since both $0 \neq (ax - xa)(1 + x)^{-1} \in Z$ and $b(ax - xa)(1 + x)^{-1} \in Z$
and since elements in Z are not zero divisors in R, these relations would imply that $b \in Z$ and we would get $T = T([I, R]) = Z(R)$ and so $T(U) \subseteq Z(R)$.

Suppose now $T(U) \neq Z(R)$. By the above $T(I) \neq Z(I)$, then I
and so R is an order in a simple algebra of dimension at most 4 over
its center, the desired conclusion.

REFERENCES

[3] I. N. HERSTEIN, Topics in ring theory, Univ. of Chicago Press, Chicago,
157.

Pervenuto in redazione il 9 maggio 1986 e in forma revisionata il 28 ot-
tobre 1986.