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Existentially Closed Lx- Groups.

FELIX LEINEN (*)

1. Introduction.

Lot SD be a class of groups. is existentially closed (e.c.)
in D, if every system of finitely many equations and inequations with
coefficients from G, which has a solution in some D-supergroup of G,
can already be solved in G. If SD is closed under forming subgroups
(D - SID), and if ~ is inductive (i.e., unions of ascending chains of
D-groups are again D-groups), then every p-group of cardinality N
is contained in an e.c. p-group of cardinality maxfn, ~o} (cf. J. Hirsch-
feld and W. H. Wheeler [8], Proposition I.1.3).

The aim of this paper is the investigation of the structure of e.c.
L3i-groups, where 3i is a group class satisfying certain closure proper-
ties and where L3i denotes the class of all locally-X-groups. This is
motivated by results of P. Hall [3] (cf. also O. H. Kegel and
B. A. F. Wehrfritz [13], Chapter 6) and B. Maier [17] about e.c. groups
in the classes La- of all locally finite groups and La, of all locally finite
p-groups. For any class 3i the class L3i is inductive. If 3i = it

can be shown by transfinite induction on the cardinality of the ZX-
groups, that LX is the smallest inductive group class containing X.

We will always consider classes 3i satisfying

(1) ~ = S~ = P3i (~ is closed under forming subgroups and exten-
sions ; cf. D. J. S. Robinson [21], ~ 1.1),

as well as some of the following properties:

(2) cartesian powers of finitely generated (f.g.) X-groups are 3i-groups ;

(*) Indirizzo dell’A.: Paul-Gerhardt-Str. 7, 6200 Wiesbaden (Germ. Fed.).
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(2’) direct powers of f.g. £-groups are ~-groups ;

(3) N - Q3i (3i is closed under forming homomorphic images).

3i = X3i implies, that 3i contains the cyclic group Cm of order m e N U
U if and only if there exists an 3i-group containing an element
of order m. We denote by nx the set of all primes p such that C~ E 3i.
Then torsion elements of L3i-groups are always RX-elements.

Examples for 3i are provided by the following classes:

(g~: class of all soluble groups, whose torsion-elements are

R-elements ( (1 ), (2); = L6n);
6: class of all soluble groups ( (1 ), (2), (3); L3i = 

$n: class of all (periodic) n-groups ((1), (2’), (3); ~), i
class of all locally finite n-groups ( (1 ), (2 ), (3); L3i = 

u 6): class of all locally finite-soluble n-groups ( (1 ), (2), (3 ) ; i

The greatest problem when investigating e.c. L3i-groups is the

construction of supergroups, in which useful systems of equations
and inequations are solvable and which are still contained in the

class L3i. Our main tool will be the embedding of e.c. LX-groups
into certain subgroups of regular wreath products; in Section 4 a
new technique for the embedding of countable groups into unrestricted
wreath products will be developed.

By P. Hall [3], Theorem 1 (cf. also A. Macintyre and S. Shelah [16],
§ 1.4) and by B. Maier [17], Satz 2 there exist up to isomorphism
exactly one countable, e.c. LF-group ULF and exactly one countable,
e.c. LFp-group Ep. Both are verbally complete (P. Hall [3], 92.1;
B. Maier [17], Satz 7). In Section 2 we will therefore pursue the ques-
tion, which e.c. L3i-groups are verbally complete. Assuming (1) it

will be shown that every periodic, e.c. EX-group is verbally complete
(Theorem 2.1), whereas (1) and (2) imply, that an e.c. L3i-group G
is verbally complete, if and only if for every g E G and every r E N
there exists an such that hr = g (Theorem 2.7). The latter

holds for example, if ~~ is the set of all primes (Theorem 2.8).
In any verbally complete group .H~ we have V(H) _ for every

verbal subgroup V(H). But the rule V on the class of all groups is
functorial and coradical (cf. p. 202 for definitions), and assuming (1)



193

and (2) we can show, that ~c(G) = G for a functorial, coradical rule t
on L3i and for every e.c. L3E-group G, if there exists a finite x-group If
such that 1. Correspondingly, (1) and (2’) imply r(G) = 1
for a functorial, radical rule r on L3E, if there exists a finite 3i-group F
with t(F)"* .F’ (Theorem 3.4). Hence, the behaviour of these rules
for e.c. LX-groups depends heavily on their behaviour for finite 3e-

groups. In particular, the Baer-radical of every e.c. LX-group is trivial,
if (1), (2’) and hold, and the Hirsch-Plotkin-radical is trivial
too for (1), (2’) and (Theorem 3.1). Section 3 will end with
some remarks about characteristically simple, e.c. LX-groups.

In Section 4 we will study the structure of the normal subgroups
of countable, e.c. L3i-groups. There, we will always assume (1), (2)
and (3). The restriction to countable groups arises from the use of
the above-mentioned new embedding technique into unrestricted
wreath products. However, in the case that 3i is a class of locally
finite groups, we will be able to show in a subsequent paper, that
some of the results of Section 4 even hold for e.c. LX-groups of arbi-
trary cardinality.

The first result (Theorem 4.7) is the most important one: Every
countable, e.c. ZX-group G has a unique chief series, i.e., the lattice
of all normal subgroups is totally ordered by inclusion. The normal

closures E G, are exactly the normal subgroups occurring as
the groups M in the chief factors If IT is a non-trivial normal

subgroup of G with for all g E G, then .K is e.c. in G, i.e.,
every system of finitely many equations and inequations with coeffi-
cients from ~, which is solvable in G, can already be solved in K
(Theorem 4.8). In particular, every automorphism of .Is’, which is

induced by an inner automorphism of G, is locally inner. In Theorems
4.9 and 4.10 certain results on how G acts on its chief factors by conjuga-
tion will be obtained.

During the rest of Section 4 w e will assume in addition to (1),
(2), (3), that for every g c G there exists a verbal subgroup of the nor-
mal closure ~gG~, which is different from ~gG~. This holds for example,
if * = 6 or 3i = C~), since the chief factors of locally soluble
groups are always abelian. Under these conditions we will prove
a second remarkable fact (Theorem 4.11). The order-type of the

unique chief series of G is the order of the rationals, i.e., the chief
factors .lVl/N of G can be indexed with the rationals in such a way,
that ql  q2 « Mq1  Nq2 for all ql, q2 E Q. Hence, the structure

of the normal subgroup lattice of G can be described as follows. Every
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q e Q corresponds with a chief factor Mq/Nq, y while every r E RBQ
corresponds with a normal subgroup Kr satisfying ql  r C q2 « 
C Hr  Nq2. A further result is that for any proper subnormal sub-
group of G there exists a chief factor such that 
Hence the defect of the subnormal subgroups of G is bounded by 2,
if * is a class of locally soluble groups.

Section 5 contains some remarks about the automorphism group
of a countable, e.c. L3E-group G. Assuming (1) we will construct for
every possible order 2No locally inner automorphisms of this order
for G (Theorem 5.1). Moreover, the existence of locally inner auto-
morphisms of finite order, whose product has infinite order, will be
established. This implies that the amalgamation property fails in

the class of all countable, e.c. LX-groups, if every X-group is periodic.
Finally assuming (1), (2) and (3)-we will show that periodic auto-
morphisms of a countable, e.c. LX-group, which centralize every
chief factor, are locally inner (Theorem 5.3).

In contrast to the situation L7J’P or X === La it will be
noted in Section 6, that there exist 2No non-isomorphic, countable,

L@z-groups, if n is an infinite set of primes.
The results of this paper were part of the author’s doctoral thesis [15]

at Albert-Ludwigs-Universität Freiburg i. Br.

NOTATION. As far as basic definitions are concerned the reader

is referred to B. Huppert [10] and D. J. S. Robinson [21].
The following symbols will be used:

cyclic group of order m;
B. Maier’s unique countable, e.c. La,-group;
P. Hall’s unique countable, e.c. La-group;
sets of natural numbers, integers, rationals, real num-
bers ;

cardinality of the group G, order of the element g;

subgroup, normal subgroup;
U is isomorphic to a subgroup of G;

group generated by the set A ;
commutator ( = x-1 y-1 xy) ;
centralizer and normalizer of U in G;
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centre of G, commutator subgroup of G;

embedding of U into G;
restriction of the map 8 to U;
kernel and image of the homomorphism o ;

the map f takes the value y everywhere.

2. Verbal completeness.

A group G is said to be complete, if for every non-trivial
word w(x1, ... , and for every element g e G there exist gl, ... , gv e G
such that g = ..., By P. Hall [3], ~ 2.1 and B. Maier [17],
Satz 7 the groups ULF are verbally complete. Using Lemma 7
of P. Hall [3] we can show that every periodic, e.c. ZK-group is verbally
complete.

THEOREM 2.1. ~’~ = Then f or every torsion-element
g o f an e.c. Lx-group G and tor every non-trivial word 
there exist gl’ ...y~e ~ such that g = ... , In every
periodic, e.c. verbally 

In the proof of Theorem 2.1 we will make use of the 
(regular) wreath product A Wr B of two groups A and B; if AB denotes
the group of all maps f : jB 2013~ A (under component-wise multiplica-
tion ( f ~g)(b) = f(b) . g(b)), then the group A is the set ~(b, 
f e AB~ with multiplication rule (b1, /i)(&#x26;2? ~2 ) _ ( bl b2 , f ij f2 ), where

Hence the wreath product A Wr B is a semi-direct

product of the base-group by the top graup

~(b, 1): b E B~ ~J B. As usual, the diacgonal of A Wr B is {(I, f a) : a e A~,
where f a(b) = a for all b e B, and the l-component of A yYr B is

where

For UA and VB the subgroup f(b’) = 1
for all of A Wr B will also be denoted by
U Wr V.
Now suppose N ~a G and let 0: G -&#x3E; GIN be the canonical epi-
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morphism. Then there exist so-called Krasner-Kaloujnine-embed-
dings G - N Wr GIN, which are given as follows: Choose a counter-
map 0*: i.e., a map 0* assigning to each element of GIN
a preimage under 0; then a Krasner-Kaloujnine-embedding ~: G ~
~ N Wr is defined (gO, f g), where f g(ho) = [(gh) 
. g. 

PROOF OF THEOREM 2.1. Fix any g E G of finite order m and any
word W(Xl, ..., x,,) =1= 1. Then Lemma 7 of P. Hall [3] ensures the

existence of a finite, nilpotent Rx-group A = ... , such that
w = w(a,, ..., is an element of order m in the centre Z(A) of A.
Because of w E Z(A) a Krasner-Kaloujnine-embedding ~: A ~ W1 =
- w) carries w into the diagonal of W1. Identifying
w E ~w~ with g E G we can regard W1 as the subgroup ~g~ Wr 
of W2 = G Wr and a as an embedding of A into W2 . Now
identify G with the diagonal of W2 in the obvious way. Because of

3E == sae == P3E the group W2 is an LX-supergroup of the e.c. L3i-

group G, and the equation g w(x,, ... , xv) has the solution ... ,

ayd in W2. 0

Although the class L(fÿ31 r1 ~) of all locally finite-nilpotent n-groups
is not closed with respect to forming extensions, Theorem 2.1 has the
following

COROLLARY 2.2. Every e.c. L(fÿ31 r1 %)-group is verbally complete.

PROOF. Let G be an and choose w(x1,..., x,,) =1= 1.
By B. Maier [17], Satz 5 the group G is a direct product of e.c.

La-,-groups G,, p E 7&#x26;. Hence for any g E G there exist p1, ..., Pk C n

and gi e By Theorem 2.1 we get ...~ 

Next we will consider group classes containing also non-periodic
groups.

THEOREM 2.3. Let 3i = 83i = in the case Coo c- X satisfy (2).
Then every element o f an e.c. L2e-group is a commutator.

PROOF. By Theorem 2.1 we can restrict our attention to the case
that Coo E X. Let G be any let E denote the local system
of all f.g. subgroups of G, and define W to be the union of the subgroups
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Coo, S E E, of the wreath product G Wr Coo. Then W is an L3E-

group. By identifying G with the diagonal of G Wr Coo we have G  W.
Because of P. M. Neumann [20], Corollary 5.3 every element of the
base group of S Wr E Z, is a commutator. Hence the equation
g = [Xl’ X2] has a solution for every g E G in the LX-supergroup W
of G. 0

If Y = ~wi(xl, ..., x,,~): i E I~ is a non-empty set of non-trivial

words, then Y(G) _ ..., gv,): i E I, g,~ E G&#x3E; is called the verbal

subgroup of the group G generated by Tr. Every verbal subgroup
is characteristic. For example, all terms of the lower central series
and the derived series of G are verbal subgroups (generated by a single
word). Theorem 2.1 gives us G = V(G) for every periodic, e.c. L3i-

group G and all non-trivial sets V of words. This can be generalized
as follows.

THEOREM 2.4. Let 3C satisfy (1), (2) and 0. Then G = V(G)
for every G and all non-trivial sets V of words.

PROOF. By Theorem 2.1 every torsion-element of G is contained
in V’(G). Hence it suffices to prove Lemma 2.5. Q

LEMMA 2.5. Z~ 3E==:~==jp3e and case 

let 3E satisfy (2). Then every finite subset of an e.c. L~-group G is con-
tained in the normal closure o f an element of order p in G. In particular,
every element of G is a product of elements of order p in G.

PROOF. Identify G with the 1-component of the L3E-group W =
- G Wr 01). By H. Neumann and J. Wiegold [19], Lemma 2.9 the
commutator subgroup G’ of G is contained in the normal closure of
the top group of W, and by Theorem 2.3 we have G’ - G. C(

With respect to Theorems 2.~., 2.3, and 2.4 we pose the

QUESTION. Is every e.e. verbally complete, satis-

fies (1) and (2) ~

We now try to approach an answer to this question by using the
idea of the proof of Theorem 2.1. At first we need a pendant to
P. Hall [3], Lemma 7 for elements of infinite order.

LEMMA 2.6. For every non-trivial word W(Xl’’’.’ xv) there exists
a torsion-free, nilpotent group A = ... , such that every factor
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of the lower central series of A is free abelian of f inite rank and such
that w(ai, ..., av) is a non-trivial element in the last term of the lower
central series of A.

PROOF. Consider the free group F in generators x,, ..., xv. By
well-known theorems of W. Magnus and E. Witt (cf. B. Huppert
and N. Blackburn [11], Theorems VIII.11.12 and VIII.11.15) the
intersection of the terms F = hl ~ .F’2 ~ ... of the lower central series
of F is trivial, while the factors are free abelian of finite rank.
Choose with x,) E and let A = F/Fz+1, ai =

0

A group G is n-divisible (for a set n of primes), if for every g E G
and every n-number r E N there exists an h E G such that hr = g. In
the case that ~z is the set of all primes we call G divisible. Clearly,
every verbally complete group is divisible. Assuming (1) and (2)
we can now prove a converse for e.c. LX-groups.

THEOREM 2.7. satisfy (1 ) and (2). Then for every e.c. LX-

group G the following three conditions are equivalent :

(a) G is verbally complete.

(b) G is divisible.

(c) For every g E G o f in f inite order and f or every r E ~T there exists
an h E G such that hr = g.

PROOF. We only have to show that (c) implies (a). Fix g E G and

w(x,, ... , xv) =1= 1. If g has finite order, then Theorem 2.1 ensures the
existence of g,, ..., gv E G such that g = W(gl’ ..., gy). Otherwise, let A
be the group given by Lemma 2.6. Denote the last non-trivial term
of the lower central series of .A by A*. Then w = w( a1, ... , av) E 
As a subgroup of A* the preimage T in A* of the torsion-subgroup

s

of is free abelian of finite rank, i.e., T = X ti&#x3E;, where o(ti) = oo.
i=l

Suppose, s &#x3E; 2. Since is periodic, there exist integers
m1, m2, r1, r, with t = Wrl and tm22 = Wr2. Hence wrlr2 E n t2&#x3E; = 1,
contradicting o(w) = oo. Therefore, T == (~ is infinite cyclic, and
w = tr for some r E N.

By (c) there exists an h E G with hr = g. Now, proceeding as in
the proof of Theorem 2.1, we can identify G with the diagonal of
W = G Wr A/T and find a Krasner-Kaloujnine-embedding (1: Â c-+
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~ T Wr ~h~ Wr such that h = tl1. Hence the equa-

tion g = ... , xv) has the solution ... , ay a in yV, and we only
have to show that G, is an LX-subgroup of W.

Because of o(g) = oo we have 000 E x. Since A*IT is torsion-free
and f.g., has a finite series with free abelian factors of finite rank.

Hence, X = implies that A/T is an X-group. Now, let Wo be a
f.g. subgroup of G). Then there exist hl, ... hk E G such that
Wo«Aa,hl,...,hk). Since for every a E A, where

it follows that 

But V is an x-group by (1) and (2). 0

Theorem 2.7 shows that the main problem when trying to prove
the verbal completeness of a non-periodic, is the

solution of the equation g = xr for every torsion-free g E G and every
r E N. If we identify G with the diagonal of W = G Wr Cr, such a
solution is given in TF by the element (c, f), where Cr = c~ and

But under which conditions will G, (c, f) be an LX-group? As-

suming (1 ) this will be the case, if ~c~ contains every prime.

THEOREM 2.8. Let N satisfy (1 ) and (2). I f nx is the set of all primes,
then every is verbally complete.

Otherwise, the above method only enables us to show that every
e.c. L3i-group is nx-divisible. However, the following theorem should
be noted at this point.

THEOREM 2.9. Denote by LWn the class of all locally nilpotent groups,
whose torsion-subgroup is a n-group, and let n’ be the set of all primes
not contained in n. Then every is 

PROOF. By M.I. Kargapolov [12], Theorem every LRR-group
can be embedded into a n’-divisible This holds in parti-
cular for e.c. L9?,,-groups. 0

Unfortunately, the proof of Kargapolov’s theorem cannot be

transferred to other group classes, since it makes use of the fact, that
every f.g. %n-group is residually a finite n-group (cf. K. W. Gruen-
berg [2]).
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3. Some characteristic subgroups.

Assuming (1), (2) and n_x =,- 0, Theorem 2.4 states that V(G) = G
for every e.c. L3i-group G and every non-trivial set V of words. Since
the verbal subgroups are characteristic, we will now pursue the ques-
tion, whether there exist other rules C attaching to each EX-group H
a characteristic subgroup C(H) such that C(G) = G or C(G) = 1 for
every e.c. LX-group G. At first, B. Maierls result [17], Hilfsatz 2

saying that the Fitting-radical of E,, is trivial can be generalized as
follows.

THEOREM 3.1. Let N satisf y (1), (2’) and :rtx ~ 0. Then the Baer-
radical of every G is trivial. The Hirsch-Plotkin-radical

of G is trivial too, if Inx &#x3E;2.

In the proof of Theorem 3.1 we will make use of the restricted
(regular) wreath product A wr B of two groups A and B, which is

just the subgroup f (b’ ) ~ 1 for finitely many b’ E B~
of the unrestricted wreath product A Wr B. All remarks of p. 195

concerning notation apply correspondingly. We will also use the follow-
ing two lemmata.

LEMMA 3.2. contains the finite group F,
then every torsion element g of an e.c. EX-group G is contained in a charac-
teristically simple, locally finite subgroup ZTg of G, which contains an
isomorphic image of F and has trivial Baer-radical.

PROOF. Consider the LX-supergroup GXF of G. Since G is an
e.c. LX-group, this gives us an embedding e1 : g&#x3E; with gei == g.
Let .H’ = Im (!1.

Next, we will construct a finite subgroup Go of G with 
Let e = go, gl, ..., gn be the elements of H. Clearly, .8’0 = H is a finite
subgroup of G with go E Ho . Suppose by induction, that we have
found a finite subgroup of G with and go,..., gk-l E 
for some k  n. Because of P. Hall [3], Lemma 7, there exists a finite,
nilpotent nz-group A = (aI, ~3~ such that a == [a1, a2~ is an element
of order in the centre of A. Proceeding as in the proof of Theo-
rem 2.1 we can identify G with the diagonal of Wl = G Wr 
and find an embedding or: A. ~ (gk) Wr with au = g~.
But W1 is an L3E-supergroup of G containing the finite subgroup
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satisfying and
This gives us an embedding

with Let H,, = Im On. Then

and as well as

Finally, the above construction yields .~’~ c .Hn . Let Go = 
Now, we will construct a chain of finite subgroups

of G with Go wr wr Go), where is the 1-component
of the top group 1 wr Assume by
induction, that has already been obtained. Identify G in the natural
way with the 1-component of the top group of W2 = Go wr (G wr Go).
By (1) and (2’), W2 is an LX-supergroup of G containing the finite
subgroup Go wr wr Go). Since G is an this gives
us Gn, and the chain is constructed.

Let Ug be the commutator subgroup of the union

Since every Gn is finite, must be locally finite. Moreover, it can
be shown, that V is isomorphic to the generalized restricted (regular)
wreath product Wr which has been introduced by P. Hall in [4]
(cf. F. Leinen [15], ~ II.2 for details). Therefore, by P. Hall [4],
Theorem D, the group Ug is characteristically simple. We also have
g E V’ = U9 and Finally, P. Hall [4], Theorem B
yields that the Baer-radial of V is trivial, and since every subnormal
subgroup of Ug is subnormal in V, the Baer-radical of is contained
in the Baer-radical of V. C7

LEMMA 3.3. Let N satisfy (1), ( 2’ ) and Then the normale
closure of any non-trivial element of an e. c..L~-group G contains a
,non-trivial element of finite order.

PROOF. Let p E xz and C, - c~. Identify G with the top group of
W = ( C~ wr G) E L3E. If f ~ : G -~ Cp denotes the map given by

then for every g E where
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Hence (1, tg) is an element of order p in the normal closure of g in W.
This can be expressed by two equations and one inequation with
coefficient g c G. 13

PROOF OF THEOREM 3.1. Denote by B and N the rules assigning
to each group  its Baer-radical B(H) and its Hirsch-Plotkin-radica~l
N(H). Since B(G) « G and N(G) a G, Lemma 3.3 yields that it

suffices to show that B(G) and N(G) cannot contain any non-trivial
torsion element. Therefore, choose g E GB1 of finite order. By
Lemma 3.2 we obtain a subgroup Ug of G with g E Ug and B( Ug) = 1.
Hence, g~ n B(G) c Ug n B(G) cB( Ug) = 1 and 9 f/= B(G).

Now let p, q E nx be distinct primes. Then Lemma 3.2 gives a
characteristically simple, locally finite subgroup Ug of G containing g
and an isomorphic image of .F’ = Suppose, N( Ug) = Ug .
Then Ug is the direct product of its primary components, and by
choice of .F’ there are two different, non-trivial primary components
in Ug . But this contradicts the characteristic simplicity of Ug . Hence

and N( Ug) = 1. Now g~ r1 r1 N(G) ==

- 1. C7

Let V be an arbitrary class of groups, and let r be a rule assigning
to each ID-group S a subgroup r(S) of ~S’. Then the rule r on V is said
to be radical (coradical), if t(T) r1 (resp.  r(T)) for any
two D-groups S and T with 8 T. The rule r on V is functorial, if
(r($)) oc = for any isomorphism a : 8 - of the 2)-group S.

(In this case r(8) is characteristic in S. ) Examples for functorial,
radical rules on the class of all groups are the rules B, N and Z.,,,

assigning to each group H the Baer-radical B(H) , the Hirsch-
Plotkin-radical N(H) and the n-th term Zn(H) of the upper central
series. Examples for functorial, coradical rules on the class of all

groups are the rules V ( V’ a non-trivial set of words) assigning to each
group H the verbal subgroup V(H).

THEOREM 3.4. Let 3i satisfy (1) and (2’), and let r be a rule on the
class .L~.

(a) functorial and radical, and if there exists a finite 
F with F, then x(G) = 1 for every G.

(b) In the case let 3E satisfy (2) too. If r is functorial, and
coradical, and if there exists a finite F with ac(.F’) then

= G for every e.c..L~-group G.
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PROOF. (a) Since T is functorial, Lemma 3.3 yields that it is enough
to show that r(G) contains no non-trivial element of finite order. Let
g E GB1 be any torsion element. By Lemma 3.2 the element g is con-
tained in a characteristically simple subgroup Ug of G, which contains
an isomorphic copy F of F too. Hence F. There-
fore (otherwise would be a

contradiction). Since Ug is characteristically simple, this implies
~( ~I9) = 1. But then and t(G).

(b) By Lemma 2.5 we only have to show that r(G) contains
every torsion element of G. Let g E be of finite order. Again g
is contained in a characteristically simple subgroup Ug of G with

If 2E is a class of locally finite groups, V. Stingl has shown in [22],
Satz 9 and Bemerkung 10 (a), that (because of 3C - 8*) every func-
torial, radical (coradical) rule on the class of all finite X-groups can
be continued to a functorial, radical (coradical) rule r on ZX in such
a way that

for every L3i-group H, where ~g denotes the local system of all finite
subgroups of H. Examples for such rules are:

OR(H) : the maximal normal R-subgroup of H;

S(H) : the maximal normal, locally soluble subgroup of H;

N(H) : the maximal normal, locally nilpotent subgroup of H;

On (H) : the minimal normal subgroup of H with a n-group ;

i%(H) : the minimal normal subgroup of H with a locally
soluble group ;

N(H) : the minimal normal subgroup of I~ with H¡Ñ(H) a locally
nilpotent group. (cf. V. Stingl [22], Folgerung 11).

In this case Theorem 3.4 has the

COROLLARY 3.5. Let 3i be a class of locally f inite groups satisfying (1 )
and (2’), and let r be ac functorial, radical (coradical) rule on L3E satis-
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fying (*). Then either r(G) = 1 or r(G) = G holds for every e.c. EX-

group G.

PROOF. If there exists a finite 3i-group T’ with r(F) ~ F (resp.
1), then Theorem 3.4 yields r(G) = 1 (resp. r(G) = G) for every

e.c. EX-group G. Otherwise (*) implies

In [17], Satz 7 B. Maier has shown that E:p is characteristically
simple, and by O. H. Kegel and B. A. F. Wehrfritz [13], Theorem 6.1
every e.c. La--group is simple. With regard to these facts and the above
statements we pose the

QUESTION. Under which conditions is an e.c. L~-group, where 3E
is a class of locally finite groups, characteristically simple?

Using the classification of all finite, simple groups in connection
with O. H. Kegel and B. A. F. Wehrfritz [13], Theorem 4.8 it can

be shown easily, that locally finite, e.c. L3i-groups are in general
not simple: If X satisfies (1), and if there exists such a simple group,
then nz must be the set of all primes (cf. F. Leinen [15], Satz 111.2.8).

With regard to the above question it should also be noted, that
S. Thomas has constructed in [23] non-isomorphic, e.c. groups
of cardinality N, in each of the classes Lgn and r’1 6), which
admit only locally inner automorphisms. Each of these groups is

characteristically simple, if and only if it is simple. Therefore, the
above question can in general only have a positive answer for countable,
e.c. L3i-groups.

However, we can obtain characteristically simple LX-groups by
considering the e.c. objects in the class of all pairs (G, A),
where G is an L£-group and where A Aut (G) . In this class inclusion
is defined as follows: (G, A) C (H, B), if and only if and 

where .A. leaves G invariant and acts faithfully on G. If 3E == /STE,
then every (LX)Aut-pair is contained in an e.c. (LX)Aut-pair by J. Hirsch-
feld and W. H. Wheeler [8], Proposition 1.1.3. Here, (G, A) is e.c.

in (L3i)AUt, if every system of finitely many equations and inequations
with coefficients from G U A and unknowns, which are group elements
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or automorphisms, can be solved in (G, A), whenever it has a solution
in some (LX)Aut-superpair of (G, A).

For the investigation of e.c. (Lae)Aut-pairs (G, A.) we have to con-
struct LX-supergroups H of G with the property, that the auto-
morphisms from A can be continued to automorphisms of H in a

way, which gives an embedding A ~ Aut (.g). Fortunately, all wreath
product constructions made in Sections 2 and 3 can still be used,
since C. H. Houghton shows in [9], 3.1 and 3.2 how to continue auto-
morphisms when identifying G with the 1-component, diagonal or

top group of a wreath product. Therefore, all theorems of Sections 2
and 3 hold literally for groups G occurring in an e.c. 

(G, A). Moreover, by embedding G in a natural way into the generalized
restricted wreath product Wr Gz (cf. P. Hall [4]), the following theorem
can be proved (for details cf. F. Leinen [15], Section V).

THEOREM 3.6. satisfy (1) and (2’); in the case Coo let Y-

satisfy (2) too. Then every group G occurring in an e.c. 

(G, A) is characteristically simple.

In particular, the assumptions of Theorem 3.6 ensure that every
L*-group H can be embedded into a characteristically simple ZX-
group G with |G| = But in general a group G occurring
in an e.c. (G, A) is not an e.c. EX-group.

4. Chief factors and normal subgroups of the countable groups.

During this section * will always be a group class satisfying (1),
(2) and (3). Please note, that 3E = 83i = 9K implies ny ~ 0. In the case
C,,,,,c- 3C the set ny will even contain every prime. In particular, Theo-
rems 2.1 and 2.8 yield, that every is verbally complete.
Hence, G has no proper normal subgroup with soluble factor group.
Correspondingly, the Baer-radical of G is trivial by Theorem 3.1,
and G contains no non-trivial, soluble subnormal subgroup. Also,
G cannot have a proper subgroup of finite index or a non-trivial,
finite normal subgroup (cf. proof of Theorem 4.11 (b)).

The aim of this section is to find out more about the normal sub-

groups of e.c. LY-groups G. If G, then G can be embedded into
N Wr G/N by a Krasner-Kalouj nine- embedding. Unfortunately, this
wreath product will in general not be an L3i-group. But since especially
N Wr contains solutions for many systems of equations and
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inequations, we will try to modify the Krasner-Kaloujnine-embedding
in order to obtain an embedding of G into an LX-subgroup of a similar
wreath product.

The following generalization can be found in G. Higman [7]. Let
0: G ---~ .H’ be a group homomorphism with N = Kern0. Then 8~ : 
is a countermap for 0, if (gOh) 0* 0 = hO* 0 for all g E G and all hE H.

Choosing such . a countermap 0* (this is always possible) the map
defined by where 

g - hO* for all becomes a so-called standard embedding.
Next, denote by GAG the split extension of G by itself, where G

acts on itself via conjugation, i.e., let h E G},
where multiplication is given by (g1, hl ) ~ (g2 , h2 ) _ (gl g2 , If

with we write UÂV for the subgroup {(~,~):
v E V, u E U} of GAG. Now we can establish our modification of the
Krasner-Kaloujnine-embedding.

CONSTRUCTION 4.1..Let G = U Gn, where is an ascending
nEN

chain of subgroups o f G, let 0: G- H be a homomorphism with N =
- KernO, and let (11: G1 ~ (Gl r1 N) Wr H be the standard embedding
with respect to a countermap 0:: H -~ 01 for 0 s Identifying (G1 r1 N)
Wr H in the natural way with the subgroup ((G1 n Wr H of the
wreath product Wr H we will continue dl to an embedding (1: G ~

Therefore, we follow the proof o f G. Higman [7], Lemma 1 in order
to obtain successively countermaps 6n+1: .g’-~ for n E N,
such that the map H - Gn+1, given by hO:+1 = h8n ’ haW (for all

h E H), is constant on each of the cosets Gn 8 . h, h E H. Then we define
inductively maps pn: H -~ Gn, n E 1~T, by pl = 1 and pn+1(h) == (hcvn)-1.
-p,,(h) for all h E H. Denoting the standard embedding of Gn into (Gn n N)
Wr H with respect to 0: by dn : g t-+ (go, fn) we can now define o~ as follows.

Straightforward calculations yield, that c~: G -~ W is a well-defined
embedding Also, assuming (1) and (2), W will be
an LX-subgroup of Wr H, if H is an LX-group and if the groups
Gn, are f.g. X-groups. Therefore, we can use Construction 4.1
in order to investigate the structure of countable, e.c. LX-groups.

We will now establish some technical lemmata, which will be
needed for later applications of Construction 4.1.
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LEMMA 4.2. In the notation o f 4.1 the following statements hold for
each g E G n""-.N :

(a) If gO has in f inite order, then gf1 is conjugate in (GnÂGn) Wr H
to ( g8, 1).

(b) If gO has finite order m, and i f T is a right transversal of g8~
in H, then the element z = (1, s) E (GnÂGn) Wr H, where = 

f or all t E T, 0  r  m - 1, conjugates gf1 onto (gO, 8g), where

PROOF. (b) is shown by straightforward calculation. Similarly,
(a) can be proved by choosing a right transversal T of in H and
z = (1, s) E (GnÂGn) Wr H, where = s9r(t) for all t E T, r E Z;
then (ga)Z = (gO, 1 ). C(

LEMMA 4.3. (a) I f b E BB1 is o f in f inite order, then every element x
of the base group of W = A Wr B is contained in the normal closure
(b~ 

(b) If b E BB1 finite order m, if T is a right transversal of
b&#x3E; in B, and i f (b, f) E W = A Wr B satisfies f(b’) = 1 for all b’ E BBT,
then every commutator x = [Xl’ X2] of two elements Xl’ X2 of the base
group of W’ is contained in the normal closure (b, f)W).

PROOF. (a) is a consequence of P. M. Neumann [20], Lemma 5.2.
For the proof of (b) choose Xl = (1, f 1), X2 = (1, f 2) and decompositions

where

Then and (b) can be shown by proving [[(b, f), 

COROLLARY 4.4. In the notation o f 4.1 the following holds: If X
denotes the base group of (GAG) Wr H, then for every g E GBN and all
Xl’ X2 E X r1 W the commutator [Xl’ X2] is contained in the normal closure
gow&#x3E;.
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PROOF. Choose n E N such that g E Gn and Xl’ X2 E (GnÂGn) Wr H.
Then apply Lemmata 4.2 and 4.3. C~

LEMMA 4.5. In the notation of 4.1 the following statements hold for
an y verbally complete group G:

(a) I f ... , x,) is a non-trivial word, and i f (1, (1, f)) is an

element of the base group of Wr Wr H such that f(H)
is finite, then there exist v1,..., Vv E W with (1, (1, f)) = w( v1, ... , v,)
and v1, ..., Vv E (gaW) for every g E GBN.

(b) I f V is a non-trivial set o f words, and i f (1, s) is an element

of the base group of Wr .H~ such that s(H) is finite, then (1, s) E
E V(gaW») f or every g E GBN.

PROOF. (a) By the verbal completeness there exist for every

g’E f(H) elements y9~1, ..., yg’V E G such that g’ - W(yg’I’ ..., y9,v). For
1 c j c v define H -~ G by Ij (h) = if f (h) = g’. Clearly, 
is finite, and the Vi == (1, (1, E W satisfy (1, (1, f ) ) = w(v1, ... , vy).
If X denotes the base group of Wr .g, the above argument
shows, that each Vi is a commutator of two elements of X m W. Hence
we have VI’ ... , Vv E (gaW) for each g E GBN by Corollary 4.4.

(b) For s = ( f l, f 2) we 
I 

can find similarly elements v11, 

Before we start to investigate countable, e.c. LX-groups by using
the Construction 4.1, we need the notion of a chief series, which is
due to P. Hall [5].

Let I be a totally ordered set. A 
of pairs of (normal) subgroups .lVli, Ni of an arbitrary group G is a
(normal) series of order-type I in G, if

The are the factors of E. The normal series E’ == Lj):
~ E J} is called a normal ref inement of 2~ if there exists for every j E J
an such that A chief series is a normal series,
which coincides with each of its normal refinements. The factors
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of a chief series are called chief factors. An application of Zorll’s Lemma
yields, y that every normal series has a normal refinement, which is
a chief series. In particular, every group G has at least one chief
series.

If I denotes the Dedekind-completion of define the Dedekind-

completion of the normal series E == {(Mi, Ni) : to be E -
Li) : I e 7}~ where

if i is not maximal in 7 y

otherwise;

if i is not minimal in I , 1

otherwise .

The following lemma can be established easily.

LEMMA 4.6. Li): i E 11 is the Dedekind-completion
of the normal series ~ _ in G, then:

Moreover, the Xi and .Li are normal subgroups of G; and i f 2: refines
a normal series Lo in G, then every non-trivial, proper subgroup of G
appearing in one of the pairs of E, is also contained in one pair of ~.

We are now able to formulate and prove the main result of this
section.

THEOREM 4.7. Let X satisfy (1), (2) and (3). If MjN is a chief
factor of a countable, G, then there exist for every non-trivial
word w(x1,..., xv) and every h E N elements gl, ..., g, E M such that

h = w(g., ... , g,). Moreover, 11T = for every g E In parti-
cular, G has exactly one chief series, and the normal subgroups of G form
a chain.

PROOF. Fix h E N and g E Choose an ascending chain
of f.g. subgroups of G with G1 = (h) and G = U Gn. Let

nEN

8 : G - GIN be the canonical epimorphism, and let G1 ~ G1 Wr GIN
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be the standard embedding with respect to the countermap 6 i --- 1
for 8 ¡a1. Applying Construction 4.1 we obtain an embedding c~: G -
TV = U [(GnÂGn) Wr where W E Now ho = (1, (1, f ))

nEN

with By Lemma 4.5 there exist V1,..., v, E such that

ha = w(v1, ... , vy). This can be expressed by v + 1 equations with
coefficients hd, Since G is e.c. in we obtain gl, 9v E

with h = w(gl, ..., gy).
This works for every h E N; hence But as a chief factor

MIN is a minimal normal subgroup of G/N, and we get ~1 == 
Assume, there exist chief factors M1/N1 and with g E M1""’N1

= N2. Hence, for every g E G there exists exactly one chief factor
such that g E and G must have a unique chief series 1:.

If 1 qq G, then the unique chief series in G must refine the normal
series ~(G, .g), (K, 1)} in G. Therefore, .I~ appears in one of the pairs
of the Dedekind-completion El and the normal subgroups of G must
form a chain (cf. Lemma 4.6). 0

Theorem 4.7 shows, that every countable, e.c. LX-group G contains
in a certain sense the least number of normal subgroups; for the normal
closure ~ga~, g E G, will always appear as the group M in some chief
factor (just refine {(G, ~gG~), (~gG~, 1)~ to a chief series !).

In the case X = Lg Theorem 4.7 becomes trivial, since the e.c.
LF-groups are simple (cf. p. 204). Concerning the question posed
on p. 204. Theorem 4.7 yields a necessary condition: If a countable,
e.c. LX-group G is characteristically simple, then G cannot have a
proper minimal or a non-trivial maximal normal subgroup.

The next theorem will give us some information about the struc-
ture of the normal subgroups, which are not the normal closure of
an element.

THEOREM 4.8. Let N satisfy (1), (2) and (3). If is a chief
factor of a countable, e.c. EX-group G, then every system of finitely many
equations and inequations with coefficients from N, which is solvable
in some LX-supergroup of G, has already a solution in every verbal sub-
group of for every non-trivial ~ a G with ~gG~ f or
all g E G the following statements hold :

(a) Every system of finitely many equations and inequations with
coefficients from K, which is solvable in some LX-supergroup of G, has
already a solution in K.



211

(b) Every normal subgroup of K is a normal subgroup in G. In

K has exactly one chief series, and the normal subgroups
of K form a chain.

(c) Each automorphism of K, which is induced by conjugation
with some element from G, is locally inner.

PROOF. Let!7 be a system of finitely many equations and inequa-
tions with coefficients hl, ..., hk E N, which is solvable in some L3i-

supergroup of G. Since G is e.c. in there exists a solution u1, ..., u,
in G. Choose g E M$N and w(x1,..., xv) =1= 1. Let be an

ascending chain of f.g. subgroups of G with G1 == ... , hk~ and
G = U On. Denote by 0: G- GIN the canonical epimorphism and

nEN

by the standard embedding with respect to

Apply Construction 4.1 in order to obtain an embed-

(i) the system Ya with coefficients has the
solution and

(ii) by Lemma 4.5 there exist
such that

The statements (i), (ii) and (iii) can be expressed as a system of finitely
many equations and inequations with coefficients h1 d, ... , hkl1 E Gel,
which is solvable in yY’. Hence there must already exist elements
giL 7 - -.7 91 c- G, which solve ~ and which are contained in for

every set V of words containing w(x1, ..., xv). Clearly, _M = ~gG~ by
Theorem 4.7.

(cc) Now let ~ be a system of finitely many equations and ine-
quations with coefficients from K, which is solvable in some L3i-

supergroup of G. Denote the set of coefficients by Ho . Because of

K # gG&#x3E; for all g E G Theorem 4.7 implies KG0&#x3E;  K. If h E 0 :A 0

then for the unique chief factor of G
with h E .MBN. ]E]Eence, Y must have a solution in if  I~ by the above
argumentation.
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( b ) For any there exist elements 
and Z1, ..., lk e L with g = lg11lg22 ... Hence g = ... lgk is an

equation with coefficients g, ... , lkEK and a solution in G. By (a)
there exist hl , ... , hk such that g = ... Zkk e L. Therefore

(c) Fix g E G. If .Ko is a finite subset of K, the equations hx =
E go, with coefficients h, hg E u Kg 0 C .K form a finite system

with solution x = g in G. Hence, (a) yields an v E .g such that hv = hg
for all 

With regard to Theorem 4.8. (c) it should be noted, that every
countable, e.c. L3E-group G acts faithfully on each of its non-trivial
normal subgroups N by conjugation: For Theorem 4.7 yields Ca(N) N
or and since the Baer-radical of G is trivial by Theorem 3.1,
every abelian normal subgroup of G must be trivial; hence, N = 1
or CG(N) = 1.
We will now investigate, how G acts on its chief factors by

conjugation.

THEOREM 4.9. Let N satisfy (1 ), (2) and (3), and let be a chief
factor of a countable, e.c. EX-group G.

in f inite.

(b) Suppose, MIN is not torsion-free abelian, or every torsion-

free divisible abelian group is an X-group. Denote by t : 
- Aut (M/N) the canonical embedding via conjugation and assume
the existence of Xl’ X2 E with r1 N = 1 = ~x2~ r1 N. If
there exists an 0153 E Aut with (xl.N ) a = x2 N such that the sub-
group 1m í) o f Aut (MIN) is an then there already exists
g E G with xi = X2.

(c) Any two elements Xl’ x2 E mN (m E M~N) of equal order

satisfying r1 N = 1 = ~x2~ r1 N are conjugate in G.

PROOF. Denote factor groups and cosets modulo N by bars.

( a) Theorem 4.7 yields M or 11 5- In the first

case we have Now, assume Fix 

with Z5 If is the chief factor of G satisfying
by Theorem 4.7. Fix 

and Then the equation mx = mg with coefficients m, mg c
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has the solution x = g. Therefore Theorem 4.8 ensures

the existence of hE M1 such that Now, h E 
and mY = mh == m. This holds for every g E G and every m E M.

Hence 
_ _ _

In the case Z(G) we have = Z(M) and since G
0

does not contain a proper normal subgroup of finite index, 
 Aut (M) yields 1 - 00.

(b) At first we will embed G into an EX-group H, in which the
images of xl and x2 are conjugate. In the case = 1 we choose
H = and the embedding : then (X1T)a = 

Now let CG(1~1 ) ~ 1. Denote by  0153, Im the subgroup of

the holomorph of M, which is generated by M and 0153, Im r). If

0: G - .L denotes the canonical epimorphism, and if 
is an ascending chain of f.g. subgroups of G with X2) and
G = U Gne then the standard embedding 0’1: G1 ~ (GI r1 M) Wr .L

nEN 
_

with respect to the countermap 8i - 1 (for 0 rOl) can be continued
to an embedding 0’: I - «, Im T») Wr L by modifying
Construction 4.1 in the following Instead of the maps p": L - Gn
of Construction 4.1 use the maps qn : L - 0153, Im i), given by qn(l) =

for all then define for all g E Gn, n E N, the
embedding 0’: by gf1 === sg) E 0153, Im T&#x3E;) Wr L, where

for all l E L.

By choice of 0: we have xid = (1, (1, with f-xi e for i = 1, 2.
Hence - X2C1, where 0153* == (1, s) e W is given ((Xy 1).
We choose &#x3E; and have to show H G -LX.

Let Ho be a finite subset of H; choose n E N with Ho c (Gnd, 
Then and it suffi-

ces to show e ZX. The base group of Wo is the split extension of a
cartesian power of 1¥ by a cartesian power of 
Because of 1 we obtain from (a), that M is abelian. If if
is not torsion-free, then Tf must be elementary- abelian, and every
cartesian power of is an 3i-group by (2). If M is torsion-free, then
ill must be divisible, and every cartesian power of M is an X-group
by assumption. Since (2) ensures, that every cartesian power of the
f.g. -T-group is an 3E-group 
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yields that the base group of Wo is an X-group. But then E LX.
Hence we have shown, that there exists an embedding of G into an
EX-group H, in which the images of xl and x2 are conjugate.

Denote by yi : G - H the composition of the canonical epimorphism
G -~ G and the above embedding G ~ g. Then Construction 4.1

gives an embedding where VE .L~.

Because of (si) r1 N = 1 = ~x2~ r1 N and Lemma 4.2, the elements
= 1,, 2, are conjugate in

Moreover, we have 1}«(X*,l) - (x21p, 1). Hence, the equation
x2r¡ with coefficients x2r¡ E G?7 is solvable in T~’, and

there must already exist g E G w ith xi = x2 .

(c) Because of x1N = mN = x2N we can follow the proof of

(b) with g = G/M and a* = 1. 0

It should be noted, that the assumption ~x~ n N = 1 of Theorem 4.9
is always met, if xN E M/N has infinite order.

Every abelian chief factor of a countable, e.c. LY-group G
is an elementary-abelian p-group or a torsion-free divisible abelian

group. Hence, is a vector space over GF(p) or Q. In the following
theorem we will prove, that there exists for every coset mN, 1n E 
of the abelian chief factor an element YE .M with yN = mN
and y&#x3E; n N = 1. Therefore Theorem 4.9 yields, that any two one-
dimensional subspaces and m2N&#x3E; of the vector space 
are transposed onto one another by conjugation with an element
of GIN, if and only if the image B of under tIle cano-

nical embedding into Aut(MfN) is contained in an LX-subgroup of
Aut(M/N), which contains an automorphism « such that 
- m2N&#x3E;. In particular, GIN acts transitively on the one-dimensional
subspaces of if and only if there exists an L*-subgroup of

which contains B and acts transitively on 3f/jV.

THEOREM 4.10. Let Y, satis f y (1), (2) and (3), and let lYl /N be a
chief factoi- of a countable, e. c. G such that V(M) =,4 M for
a non-trivial set V of words. Then N = V ( M), and the following holds :

(a) If gN E MfN%1 is of infinite order, then every element con-
tained i1~ gN has infinite order, and any two elements of gN are conjugate
in G.

(b) I f gN E o f finite order m, then gN contains for
every m, which is a multiple of m, an element of order m,
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any two elements of orde~° m, which are contained in gN, are conjugate
in G.

PROOF. Clearly N is a maximal normal subgroup of M, while the
normal subgroup of M contains N by Theorem 4.8. Hence
N = 

(a) Follows from Theorem 4.9. (c).

(~) Because of Cm E EN the group G contains an element z
of order m. Choose 1 ~ ..., xv) E V", and let be an ascending
chain of f.g. subgroups of G with Gl = g~ and G = U Gn : Denote

nEN

by 0: G -¿. GIN the canonical epimorphism, and define the counter-
map
where T is a right transversal of in GIN. Then Construction 4.1
gives an embedding

Moreover f(GfN) is finite by choice of 8~ . Hence Lemma 4.5 yields

Now (i), (ii), (iii), and (iv) can be expressed as a system of finitely
many equations and inequations with coefficient ga E Ga, which is

solvable in 1V. Hence there must exist elements g, g,, ... , g, E G such
that o(g) = 1n and gl, ... , g, E (gaG) and g = g) - It follows

that g = g - w(gl, ... , g,)-l E g. = gN. As in (ac) any two ele-

ments of order m, which are contained in gN, are conjugate in G. 11

Please note, that the above condition V~(.M) ~ .M is equivalent
to 1 for every chief factor MJN of a countable, e.c. LX-
group.

THEOREM 4.11. Let ~ satisfy (1 ), (2) and (3), and let G be a countable,
e.c. L2E-group such that f or every chief factor of G there exists a

non-trivial set of words VM with M. Then the following hold :
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(a) For any two chief factors M1/N1 and M2/N2 of G with 
and for any prime p E tlx there exists a chief factor M/N in G with

which contains an element of order p.

(b) The order-type of the unique chief series of G is the ordei- of
the rationals.

(e) If M/N is a chief factor of G, then (a), (b), (c) of Theorem 4.8,
hold for N in the role of K.

(d) If Inx I =1= 1, then every central chief factor of G is 

(e) I f ~ contains every torsion-free, divisible, abelian group, then
there exists no central chief factor in G.

(f) For every proper subnormal subgroup 8 of G there exists a

chief factor M/N in G satisfying N  S C~ M.

PROOF. IfM1==N2
would hold, then Theorem 4.10 would yield Ni = for i = 1, ~,
and we would get the contradiction == ==

- VMl(M1) == N2. Hence, N2. Choose g E 

Then, by Theorem 4.7, the unique chief factor M;/N7 in G with
satisfies Similarly, there exists a

chief factor M*IN* in G such that
Fix h E and let p E 7rx be any prime. Because of Lemma 2.5

there exists x E G of order p with h E xG&#x3E;. Therefore the system

with coefficient has a solution in G (for some kEN).
By Theorem 4.8 there exists already a solution in M:, i.e., there exists
an y e .M2 such that h e and o(y) = p. Let M/N be the chief
factor of G with Then

. But the element yN e 1Vl/N
has order p.

(b) Suppose, G has a minimal normal subgroup ~. Then

1. Choose p E ny and 1 ~= ..., E VM. P. Hall [3],
Lemma 7 there exists a finite p-group A = ... , a2v&#x3E; such that
1 ~ 2v([a1, a2J, ..., a2v]) E Z(A). Identify G in the obvious way
with the top group and A with the 1-component of the L*-group
W = A Wr G. Because of Lemma 4.3 we have [a1, ... , 
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E for some g E Since G is e.c. in ZX, there must already
exist gl, ..., gv E ~gG~ with 1- =A W(gl’ ..., gv). This yields the contradic-
tion 1 ~ ~v(gl, ... , gv) E Y~M( ~gG~ ) = Vm(M) = 1. Hence G has no mini-
mal normal subgroup.

Correspondingly, G has no maximal normal subgroup, since other-
wise =1= G would contradict the verbal completeness of G. To-

gether with (a) we obtain, that the order-type of the unique chief
series of G must be a dense linear order without endpoints. But the
number of chief factors of G cannot be greater than the number of
elements of G. Hence, the order-type is countable too. Now a well-
known theorem of Cantor yields that the order-type must be the order
of the rationals.

(c) Follows from (a).

(d) Suppose, there exists a central chief factor in G, which
is not torsion-free. Then for some Because of

ae== Q~ and 1 there exists q E Denote by D the diagonal
and by X the base group of IT == C, Wr Cq . The top group Y of K
is a q-group acting on the abelian p-group X via conjugation, and there-
fore X = [Y, X]X CX(Y) = [Y, X] XD (cf. H. Kurzweil [14], Satz

7.13). Here, [ Y, X] and D are nontrivial, Y-invariant subgroups
of X. Let Xo be a minimal Y-invariant subgroup of X, which is con-
tained in [ Y, X]. Because of Cgo( Y)  CX( Y) n Xo c D r’1 [ Y, X] =1, the
group Y acts non-trivially on Xo via conjugation. Let U = ~Xo, Y)
and 

Now, a standard embedding Ti: GIN 4- Wr with respect
to some countermap for the canonical epimorphism 8 : 

maps the central subgroup of G/N onto the diagonal of 
Wr Identifying MfN with Z we can regard MfN Wr as

a subgroup of g = U Wr and ~1 as an embedding into .g. Define
T2: U 4- H by VT2 = (1, where for all v E U. Clearly, 

By Theorem 4.10 there exists with order p. Let 

be an ascending chain of f.g. subgroups of G with ~g~ and G =
- U Gn . Denote by 0: the composition of the canonical

nEN

epimorphism G - GIN and the embedding z1: G/N ~--~ ..8. Then a

standard embedding d1: Wr H with respect to some counter-

map for 8 IG1 can be continued to

by Construction 4.1. Now,
The group V can be described by finitely
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many equations and inequations with coefficients in c Ga. Hence,
there must already exist an embedding Q: with ~g~.

But Xo o is a minimal normal subgroup of 1Io. r)

and imply == 1 and 
In particular we have (Xoe)NIN, and every coset mN, m E
E contains exactly one element from .Xo ~. Since acts non-

trivially on via conjugation, G/N must act non-trivially on MfN ==
== via conjugation. This contradiction to M/N c Z(G jN)
shows, that has to be torsion-free.

(e) Suppose, there exists a central chief factor in G. By
assumption, N contains a torsion-free group. Hence, nx is the set
of all primes. Now (d) implies, that is torsion-free. But then

is isomorphic to the additive group of Q, and 
is a non-trivial automorphism of infinite order on MIN. Now Theo-
rem 4.9 gives an element in G/N, which acts non-trivially on M/N
by conjugation. This contradicts 

( f ) Choose 8 == ... with m ~ 2 minimal. Sup-
pose, that there exists no chief factor MfN with M. Then Theo-
rem 4.8 yields ~’2a G, in contradiction to the choice of m. Hence,
81 == M for some chief factor MIN. We will show N c ~’k for 1  

Assume by induction, that we have for some 

Suppose  N. Then gives N, and (c) yields G,
in contradiction to the choice of m. Hence, there exists x E 

Fix g E N and denote by 6 : G - GfN the canonical epimorphism.
Let T be a right transversal of in GIN, and choose 1 0

=1= w(x1, ... , xv) E From the verbal completeness of G we obtain ele-
ments E G, 1 c j c 2v, such that gl = Y2]’ ... , Y2vJ) and

satisfy g = [91, 921. Because of (c) we
can even assume, be an ascending
chain of f.g. subgroups of G with
and G = U Gn . In the case _ ,u  oo define a countermap 8i

nEN

otherwise choose 6i arbitrarily. Now the standard embedding
with respect to 6i can be continued to

by Construction 4.1.
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First, we consider the case o(s0) = p oo. Then xd = (1, fx)),
where

Hence, fz(H) is finite, and Lemma 4.5 yields elements

Every w = (1, s) from the base group of (G2ÀG2) ~%r G/N c W has
a unique decomposition w = w(1) ... w(tt), where W(i) _ (1, s~i~) is given by

It follows, y that

Moreover, y we have

The statements (i) to (vi) can be expressed as finitely many equations
with coefficients xor, ga E Gc~ and solution in W. Therefore we obtain
elements x, h1, ... , h2p, E G such that x c- x - T~’M(xG~), h1, ... , h2p, E
E and

Now implies x E xN 9 and
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Next, consider the case o(xO) = 00. Here, We decom-

pose every w _ (1, s) from the base group of

where

Then similar considerations as in the case o(xO) = It  oo yield g E 
This works for every g E N. Hence, As 8 is a proper

subnormal subgroup of G, we have N  S  M. 0
0 0

Concerning Theorem 4.11 (a) it should be noted, that a corres-

ponding result for chief factors with an element of infinite order cannot
be proved by the above method, since we cannot express with finitely
many equations and inequations, that an element has infinite order.

Part (b) shows, that under the assumptions of Theorem 4.11 every
countable, e.c. EX-group G contains exactly three kinds of normal

subgroups : Firstly the normal closures ~g°’~, g E G, which correspond
to the groups M in the chief factors by Theorem 4.7; secondly
the verbal subgroups which are exactly the groups N in
the chief factors and finally the normal subgroups .g, which
do not occur in any chief factor. The latter give the pairs (K, K) E
E where Za denotes the unique chief series of G (cf. Lemma 4.6),
and if we index the chief factors M/N with the rationals q E Q in such
a way, that ql C q2 « M,,l C Nq2’ then we can find for every .K an
irrational number r such that ql  r  q2 =&#x3E; C Nq2.

With regard to Theorem 4.11. (d) please note, that In, = 1 if
and only if every LX-group is a p-group.

Part ( f ) can be used to obtain a bound on the defect of the sub-
normal subgroups, if we know something about the chief factors.

In order to prove the results of this section for uncountable, e.c.
LX-groups one could of course try to generalize Construction 4.1.

Can we find for any homomorphism 8: G -* H an embedding cr: G 4-
y U [(SÄ8) Wr H, where denotes a local system

SEI

of f.g. subgroups of G~ The main difficulty when trying this arises
from the fact, that 27 will in general not be totally ordered by inclu-
sion. Although we can choose E in such a way that it contains a minimal



221

member So, it is not clear whether we can continue a standard

embedding Wr H to embeddings Wr H,
8 E I, satisfying Up for all with T’ ~ ~’.

In a subsequent paper we will develop other methods to prove
some of the results of this section for uncountable, e.c. EX-groups,
where 3E C La.

5. The automorphisxn groups of the countable groups.

An automorphism a of a group G is called locally inner, if there
exists for every finite subset of G an element g E G satisfying f9 =foe
for all f E 1~’. By O. H. Kegel and B. A. F. Wehrfritz [13], Theorem 6.1
every automorphism of an e.c. La--group is locally inner.

Assume X = ~X = Then every automorphism a of an e.c.
LX-group G with o(a) a RX-number must be locally inner (consider
the LX-supergronp G, a&#x3E; in the holomorph of G ! ). Conversely, if G
is periodic, the order of every locally inner automorphism of G must
be a n3c-number or infinite. We will show now, that every countable,
e.c. LX-group has the maximal number of locally inner automorphisms.

THEOREM 5.1. Let * = = and let G be a countable, e.c.

Lx-group. Then G has 2No locally inner automorphisms of order m for
every m and f or m = oo. Moreover, for any 
there exist locally inner automorphism al and a2 of order m with o(aia2) -
00.

PROOF. Consider the case ~~ ~ ~ first. Let be a sequence
of RX-numbers with Let be an ascending chain of
f.g. subgroups of G with G = U Gn . We will construct an ascending

nEN

chain of f.g. subgroups of G and elements such
that the following holds (with = 1) for every 
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Assume by induction, that .Hn_1 has been constructed. Choose a

nx-number and V’n = 0,. wr where °pn = d&#x3E; and OAn =
c&#x3E;. Define f : °pn by

Then VI = (c-1, 1) and V2 = (c, are elements in V n with _

- o(v2) = An and Considering the LX-supergroup
GX Vn of G we therefore obtain elements satisfying (b), (c)
and ... gng,~)  Next, identify G in the obvious way
with the 1-component of G wr No element of the top group com-
mutes with an element of Hence, y there must already exist

satisfying [~~~]=~1 and [x, hn~ ~ 1 for all 
and all }. Now choose

We assign to every the map aa : G --~ G,
which is defined as follows:

For every g E .Hn let = where

Using the properties (a) to (e) it can be shown easily, that every a,5,
is a locally inner automorphism of G, and that the assignment 6 -+ aa
is one-to-one. If we choose with then every aa will have
infinite order, whereas the choice In= m for all n E N will ensure
that every has order m. In the latter case oco a1 is an automorphism
of infinite order (here 0 (resp. 1) denotes the map 6 == 0 (resp. 6 = 1)).

Finally, consider the ~6. Here, we can construct similarly
the chain and the elements E .gn such that the following
holds for every n e N:
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and

(cf. F. Leinen [15], p. 101 for details of construction.) Now the result
will follow in the same way as in the case nx =1= ~. 0

It should be noted, that = cannot be proved for
uncountable, e.c. L3i-groups G, since S. Thomas has shown in [23],
that 0 implies the existence of e.c. and 
all of whose automorphisms are inner.

COROLLARY class of periodic groups with 3E == SY, =
Then there exist countable, e.c. G, H, U and embeddings

(!1: U ~ G, (!2: U - H such that no can be generated by iso-
morphic copies and H r¡2 of G resp. H, where = (*)

PROOF. Choose any countable, e.c. L3i-group U. Theorem 5.1

yields automorphisms 01531 and a2 of U with = oo and such that
the subgroups  U, ai) and ( U, (X2) of the holomorph of U are countable
L3i-groups. By J. Hirschfeld and W. H. Wheeler [8], Proposition 1.1.3
there exist embeddings ~ U, ~ G and (!2:  U, (X2) into

countable, e.c. LX-groups G and H. Now, in any group W = Hn2&#x3E;
with U = ~02~2 ~’ U the element ((X2(!21]2) induces an auto-
morphism of infinite order on =  W. Hence, W cannot
be periodic. D

If we assume in addition to the situation in Corollary 5.2, that
there exists a unique countable, e.c. IN-group, then R. Grossberg
and S. Shelah [1], Theorem 23 yields that 2No  implies, that no
e.c. LX-group of cardinality N1 can contain an isomorphic copy of
every e.c. LX-group of cardinality This applies in particular to
X = LF and X = LFp.

Now assume (1), (2) and (3), and let G be a countable, e.c. IN-

group. Then there exists a unique chief series L == f (mi .Ni) : i E 1}
in G by Theorem 4.7, and every automorphism of G must pass the
pairs of E onto one another. Hence,

(*) Added in proof: LX is not a variety by [3], Lemma 7 ; the negation
of Corollary 5.2 holds for varieties by B. JONSSON, Amalgamation of pure
embeddings, Algebra Univ., 19 (1984), pp. 266-268.
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(mN) a = m.llT for every (M, N) E ~ and every mE M)
are two normal subgroups of Aut(G) with The

factor group can be embedded canonically into the
cartesian product fl while an embedding of 

1EI

into the group of all order-preserving permutations of the index
set I is defined by 0153. Inv(E) H where

for all i E I. Moreover, we note

THEOREM 5.3..Let ~ satisfy (1), 1 (2), (3), and let G be a countable,
with chief series E. Then every automorphism a E Stab(.E)

o f finite order is locally inner.

PROOF. Because of 3E = S3i = Q3E every chief factor of G is an
L3i-group. By P. Hall and B. Hartley [6], Lemma 4 the group

must therefore have a series E J} with LX-factors.
Then ~(a~ (a) is a series in with 3E-factors,
and a&#x3E; must be a finite X-group. But now o(a) must be a RX-number,
and « is locally inner. 0

Because of Theorem 5.3 it could be conjectured, that every auto-
morphism of Stab(E) is locally inner. But this cannot be proved
with the above method, since an extension of the G

by 000 will in general not be an ZX-group (choose for example N = 
However, in the case 2E = it will be shown in a subsequent paper,
that Stab(E) coincides with the set of all locally inner automorphisms
of 

6. The number of countable, e.c. -LG5,,-groups.

In contrast to the situation for N - Lij and 3i = the following
theorem holds.

THEOREM 6.1. is an in f inite set of primes, then there exist 
non-isomorphic, countable e.c. LS,,-groups.

PROOF. Since every countable LGR-group can be embedded into
a countable, e.c. L6n-group by J. Hirschfeld and W. H. Wheeler [8],
Proposition 1.1.3, it suffices to establish the existence of 2No non-

isomorphic, f.g. Define Ga = ((IT cj Wr Coo) Wr Coo for’ VEG 
~ 

every l1 ç n. Then B. H. Neumann and H. Neumann have shown
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in [18], p. 470, that GQ contains a two-generator subgroup Hj with
But is an Go-group containing an element of order p

for every p E d. Hence, for all or, T with cr =1= r. 0

It should be noted that the idea of the proof cannot be used, if
X is a class of La-groups, since there exist only countably many finite
groups.
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