RENDICONTI del Seminario Matematico della Università di Padova

MARTIN HUBER A simple proof for a theorem of chase

Rendiconti del Seminario Matematico della Università di Padova, tome 74 (1985), p. 45-49

http://www.numdam.org/item?id=RSMUP_1985_74_45_0

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 74 (1985)

A Simple Proof for a Theorem of Chase.

MARTIN HUBER (*)

Dedicated to Professor Laszlo Fuchs on the occasion of his sixtieth birthday.

In this note all groups are abelian. A group G is called a W-group (Whitehead group) if $\operatorname{Ext}(G, \mathbb{Z}) = 0$. Whitehead's problem asks whether every W-group is free. This problem has been solved by Shelah [S1, S2] in the sense that the answer depends on the underlying set theory. The deepest result on Whitehead's problem prior to Shelah's work is Chase's theorem, saying that under $2^{\aleph_0} < 2^{\aleph_1}$ every W-group G is strongly \aleph_1 -free i.e., G is \aleph_1 -free and every countable subset of G is contained in a countable \aleph_1 -pure subgroup of G. In fact, Chase proved the following somewhat stronger result.

THEOREM [C; Thm. 2.3]. Assume $2^{\aleph_0} < 2^{\aleph_1}$. If G is a torsion-free group such that $\text{Ext}(G, \mathbb{Z})$ is torsion, then G is strongly \aleph_1 -free.

Among other nontrivial tools, Chase's proof uses the derived functors of the inverse limit. An entirely different proof has been given in [EH]; in there the above theorem is a corollary to a more general result involving the set-theoretic principle « weak diamond ». That in the given situation weak diamond is equivalent to $2^{\aleph_0} < 2^{\aleph_1}$ is a nontrivial result of set theory due to Devlin and Shelah [DS].

In this note an alternative proof is given for the above theorem which the author has found a few years ago (cf. p. 167, Remark 2 in [EH]). Since the present proof is both shorter and more elementary

(*) Indirizzo dell'A.: Mathematisches Institut der Universität, Albertstrasse 23 b, D-7800 Freiburg i. Br., Rep. Fed. Tedesca. than those in [C] or [EH], I think it is well worth being published.

We shall make use of the description of Ext in terms of factor sets. Recall [F; § 49] that $Ext(G, \mathbb{Z})$ can be identified with Fact $(G, \mathbb{Z})/Trans(G, \mathbb{Z})$ where Fact (G, \mathbb{Z}) is the group of factor sets on G to Z and Trans (G, \mathbb{Z}) is the subgroup of transformation sets. A transformation set is a factor set δg , given by

$$\delta g(x, y) = g(x) - g(x + y) + g(y) ,$$

where $g: G \to \mathbb{Z}$ is a map with g(0) = 0.

Our proof is divided into three steps, the first of which consists in establishing a lemma.

LEMMA. Let K be a subgroup of H such that $\text{Ext}(H/K, \mathbb{Z})$ contains an element of infinite order. Then there is an element $\tilde{f} \in \text{Fact}(H, \mathbb{Z})$ extending $0 \in \text{Fact}(K, \mathbb{Z})$ such that for all n > 0 there is no map $g: H \to \mathbb{Z}$ for which $g \upharpoonright K = 0$ and $n\tilde{f} = \delta g$.

PROOF. Let $h \in \text{Fact}(H/K, \mathbb{Z})$ represent an infinite order element of $\text{Ext}(H/K, \mathbb{Z})$. Let $\pi: H \to H/K$ denote the natural map and define $\tilde{f} \in \text{Fact}(H, \mathbb{Z})$ by

$$\overline{f}(x,y) = h(\pi x,\pi y)$$
.

We claim that \tilde{f} satisfies the required conditions. Clearly \tilde{f} extends $0 \in \operatorname{Fact}(K, \mathbb{Z})$. Suppose that there is an n > 0 and a function $g: H \to \mathbb{Z}$ such that $g \upharpoonright K = 0$ and $n\tilde{f} = \delta g$. Then for each pair $(x, y) \in H \times K$ we have

$$g(x) - g(x + y) = \delta g(x, y) = n \tilde{f}(x, y) = n h(\pi x, 0) = 0$$

Therefore g is actually a function on H/K i.e., there is a $\bar{g}: H/K \to \mathbb{Z}$ with $\bar{g}\pi = g$. It follows readily that $nh = \delta \bar{g}$, contradicting the choice of h. \Box

The second and main task is to prove the following proposition. This is in fact contained in [C; Thm. 1.8]; we notice that the use of factor sets simplifies its proof considerably. By $r_0(A)$ we denote the torsion-free rank of the group A.

PROPOSITION. Let G be a nonzero torsion-free group that does not contain any subgroup H of smaller cardinality such that G/H is \aleph_1 -free. Then $r_0(\text{Ext}(G,\mathbb{Z})) = 2^{|G|}$.

PROOF. Let \varkappa denote the cardinality of G. Suppose first that $\varkappa = \aleph_0$. By hypothesis G is not free; thus, as is well known, $r_0(\text{Ext}(G, \mathbb{Z})) = 2^{\aleph_0}$ (cf. [C; L. 1.4]). Now suppose that \varkappa is uncountable. The hypothesis enables us to define inductively an increasing chain $\{G_{\alpha}: \alpha < \varkappa\}$ of pure subgroups of G with the following properties:

- (o) $G_0 = 0;$
- (i) $G_{\alpha} = \bigcup_{\beta < \alpha} G_{\beta}$ if α is a limit ordinal;
- (ii) for all $\alpha < \varkappa$, $G_{\alpha+1}/G_{\alpha}$ is nonzero and countable;
- (iii) for all $\alpha < \varkappa$, Hom $(G_{\alpha}, \mathbb{Z}) = 0$.

We have to choose $G_{\alpha+1}$ as a pure subgroup of G which contains G_{α} such that $G_{\alpha+1}/G_{\alpha}$ is nonzero, countable, and satisfies Hom $(G_{\alpha+1}/G_{\alpha}, \mathbb{Z}) = 0$. That this is possible follows from the facts that G/G_{α} contains a nonfree countable subgroup and that every countable group is the direct sum of a free group and a group C satisfying Hom $(C, \mathbb{Z}) = 0$. (For the latter see [F; Cor. 19.3]). For all $\alpha < \varkappa$, since G_{α} is pure in G, it follows that $\text{Ext}(G_{\alpha+1}/G_{\alpha}, \mathbb{Z})$ contains an element of infinite order.

Let $G' = \bigcup_{\alpha < \varkappa} G_{\alpha}$. We will prove that $r_0(\text{Ext}(G', \mathbb{Z})) = 2^{\varkappa}$. To this end we assign to each sequence $\eta \in 2^{\alpha}$, $\alpha < \varkappa$, a factor set f_{η} on G_{α} such that

(a) if ξ is an initial segment of η , then f_{η} extends f_{ξ} ;

(b) if $\xi \neq \eta$ have the same domain α , then $f_{\xi} - f\eta$ represents an element of Ext (G_{α}, \mathbb{Z}) of infinite order.

The definition is by induction on the domain of η . Suppose f_{η} has been defined, where $\eta \in 2^{\alpha}$. Let $\eta^{\wedge}\langle 0 \rangle$, $\eta^{\wedge}\langle 1 \rangle$ denote the two extensions of η in $2^{\alpha+1}$. Extend f_{η} to $f_{\eta^{\wedge}\langle 0 \rangle}$ arbitrarily (possible, cf. [HHS; Lemma 1]) and then define $f_{\eta^{\wedge}\langle 1 \rangle}$ according to the lemma above, so that there is no $g: G_{\alpha+1} \to \mathbb{Z}$ for which $g \upharpoonright G_{\alpha} = 0$ and $n(f_{\eta^{\wedge}\langle 1 \rangle} - f_{\eta^{\wedge}\langle 0 \rangle}) = \delta g$ for any n > 0. We claim that $f_{\eta^{\wedge}\langle 1 \rangle} - f_{\eta^{\wedge}\langle 0 \rangle}$ represents an element of $\text{Ext}(G_{\alpha+1}, \mathbb{Z})$ of infinite order. Suppose to the contrary that there is a map $h: G_{\alpha+1} \to \mathbb{Z}$ such that for some n > 0, $n(f_{\eta^{\wedge}\langle 1 \rangle} - f_{\eta^{\wedge}\langle 0 \rangle}) = \delta h$. Then of course $(\delta h) \upharpoonright G_{\alpha} = 0$; hence $h \upharpoonright G_{\alpha}$ is a homomorphism. But by definition of G_{α} , Hom $(G_{\alpha}, \mathbb{Z}) = 0$, whence we obtain a contradiction.

Martin Huber

It follows that the factor sets f_{η} , $\eta \in \bigcup_{\alpha < \varkappa} 2^{\alpha}$, satisfy (a) and (b), and in the limit we obtain 2^{\varkappa} factor sets on G' to \mathbb{Z} which represent pairwise different elements of Ext (G', \mathbb{Z}) modulo torsion. We conclude that

$$2^{|G|} \leq r_0(\operatorname{Ext}(G, \mathbb{Z})) \leq 2^{|G|}$$

the latter inequality being obvious. \Box

The final step is to deduce the Theorem from the Proposition: Assume that $2^{\aleph_0} < 2^{\aleph_1}$ and let G be an uncountable torsion-free group which is not strongly \aleph_1 -free. Thus G contains a countable subgroup H such that for every countable subgroup K containing H, G/K is not \aleph_1 -free. Therefore by the proposition we have $r_0(\text{Ext}(G/H, \mathbb{Z})) > 2^{\aleph_1}$. Considering exactness of the sequence

$$\operatorname{Hom} (H, \mathbb{Z}) \to \operatorname{Ext} (G/H, \mathbb{Z}) \to \operatorname{Ext} (G, \mathbb{Z})$$

we infer that $r_0(\operatorname{Ext}(G, \mathbb{Z})) \ge 2^{\aleph_1}$, since $|\operatorname{Hom}(H, \mathbb{Z})| = 2^{\aleph_0}$ and $2^{\aleph_0} < 2^{\aleph_1}$. Hence, in particular, $\operatorname{Ext}(G, \mathbb{Z})$ is not a torsion group. \Box

Finally we wish to mention that the Theorem is not true without the hypothesis of $2^{\aleph_0} < 2^{\aleph_1}$. It follows from results in [S1] and [S3] that in a model of Martin's Axiom plus the denial of the Continuum Hypothesis there exist *W*-groups which are not strongly \aleph_1 -free.

REFERENCES

- [C] S. CHASE, On group extensions and a problem of J. H. C. Whitehead, in Topics in Abelian Groups, pp. 173-197, Chicago: Scott, Foresman and Co., 1963.
- [DS] K. DEVLIN S. SHELAH, A weak version of \diamondsuit which follows from $2^{\aleph_0} < 2^{\aleph_1}$, Israel J. Math., 29 (1978), pp. 239-247.
- [EH] P. EKLOF M. HUBER, On the rank of Ext, Math. Z., 174 (1980), pp. 159-185.
- [F] L. FUCHS, Infinite Abelian Groups, Vol. I, London, New York, Academic Press, 1970.
- [HHS] H. HILLER M. HUBER S. SHELAH, The structure of $Ext(A, \mathbb{Z})$ and V = L, Math. Z., 162 (1978), pp. 39-50.

- [S1] S. SHELAH, Infinite abelian groups. Whitehead problem and some constructions, Israel J. Math., 18 (1974), pp. 243-256.
- [S2] S. SHELAH, A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math., 21 (1975), pp. 319-349.
- [S3] S. SHELAH, On uncountable abelian groups, Israel J. Math., 32 (1979), pp. 311-330.

Manoscritto pervenuto in redazione il 9 maggio 1984.