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Some Cardinal Invariants for Valuation Domains.

LUIGI SALCE - PAOLO ZANARDO

Introduction.

The condition on a valuation domain h of being maximal, which
goes back to Krull [8], and the very close condition of being almost
maximal, due to Kaplansky [7], were extensively investigated by
many authors, on account of their importance for the consequences
deriving for the ring structure of .R and for many classes of R-modules.

On the contrary, the problem of measuring in some way the fai-
lure of the maximality did not receive too much attention up to now;
the only contributions in this direction known by the authors are by
Brandal [1], and by Facchini and Vamos [2].

As any valuation domain .R is a subring of a maximal valuation
domain ~S, which is an immediate extension of it, it is natural to try
to measure the failure of the maximality for .I~ by looking for cardinal
invariants which measure, roughly speaking, how large is S over .R.

In this paper, given any ideal I of R, we will introduce two cardi-
nal invariants associated with I : the completion defect at I, denoted
by and the total defect at I, denoted by their definition,
which seems very technical, raised up naturally in the investigation
of indecomposable finitely generated modules in [13].

The completion defect measures how large is the com-
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pletion of Raj1 in the ideal topology, and the total defect measu-

res how large is 8jI8 over R/I; recall that both and are

contained in up to canonical isomorphisms.
It is noteworthy that the invariants that we are introducing do

not depend on the ring structure which is not unique up to iso-
morphism, but only on the R-module structure of S, which is a pure-
injective hull of .R (see [7] and [12]).

In the first section we introduce the breadth ideal (of non maxima-
Zity) of the valuation domain R, a concept originally due to Bran-
dal [1], and the breadth ideal o a unit of S, a concept defined in a sligh-
tly different way by Ostrowsky [11], Kaplansky [7] and Nishi [10].

The breadth ideals of the units of S are used in the second section
to define the completion defect and the total defect at an ideal I of .R.
The main result in this section is an inequality which relates the total
defect at an ideal I with the completion defects at the ideals containing I.
This inequality however is in general strict, as is shown, for a special
class of discrete valuation domains, by Facchini and the second
author in [3].

In section 3 we compare the total defect at an ideal I with the Goldie
dimension of 8jI8 as an R/I-module; they turn out to be equal
if I is a prime ideal, while in the non-prime case the total defect becomes
generally larger.

We remark that the invariants of the valuation domain .R that

we investigate here play a relevant role in the study of many classes
of R-modules: besides finitely generated modules (see [13]), the

R-modules JSIIS, where I &#x3E; J are fractional ideals of R(see [4]);
indecomposable injective R-modules (see [2]) and torsion-free R-

modules of finire rank (see [5]).

1. The breadth.

I~ will always denote a valuation domain, P its maximal ideal
and Q its field of quotients. Recall that .R is maximal if it is linearly
compact (in the discrete topology); .R is almost maximal if every
proper factor of it is linearly compact.
A valuation domain 8 containing .R as a subring is an immediate

extension of .R if

(i) every ideal of S is of the form IS, where I is an ideal of .R,
and 
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(ii) S/PS is naturally isomorphic to .R/P or, equivalently,
S = PS -~- .R.

An immediate extension 8 of R is maximal if, given any valuation
domain S’ containing S as a proper subring, either (i) or (ii) fails for S’.

It is well known (see [7] or [12]) that every valuation domain
is contained in a maximal immediate extension S, which is a maxi-
mal valuation domain. However S is uniquely determined up to
R-isomorphism only, and not as a ring, unless R is almost maximal,
in which case S is the completion of .R (in the valuation tolopogy).
.R coincides with S if and only if it is maximal.

Brandal considered in [1] the family of ideals of R

and he showed that either Y = W, or there exists a prime ideal Z
of I~ such that

Fixed a maximal immediate extension S of .R, we reformulate
this result by introducing the following subset of .R, called the breadth
o f I~ (with a more meaningful term we could call it the breadth of non
maximality of R):

Notice that B(.R) _ 0 whenever S = R for all a this

happens exactly if ~‘ = .R, i.e. if .R is maximal; thus from now on we
shall assume that R is a valuation domain not maximal, so B(R) is
an ideal of R.

PROPOSITION 1.1. Let .R be a valuation domain not maximal.
Then its breadth B(R) is a prime ideal of R such that:

PROOF. Assume that a, b Then ~S = .R -~- aS = 1~ +
+ bs, and bS = + as) implies S = .R + + aS) = R + 
Therefore ab 0 B(R), so that B(.R) is prime.
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If .R/I is linearly compact, then 8118 in a natural way,
therefore S = .R + IS; thus It follows that B(R) is contained
in r’1 f I: R/I is linearly compact}. Conversely, if I &#x3E; B(R), then

S = .R -~- IS, thus 8118 is linearly compact. Being B(R)
prime, either B(R) = P, in which case the first equality is trivial,
or is the intersection of the ideals properly containing it, thus
the first equality is obvious. The second equality can be proved in
a similar way. ///

From Proposition 1.1 it follows that does not depend on the
choice of S, and that it coincides with the ideal L quoted in the Bran-
dal’s result. Notice that .R is almost maximal (and not maximal)
if and only if B(R) = 0.

The valuation domain .R/B(.R) is always almost maximal; Bran-
dal gives examples in [1] showing that can be maximal or not.

Let us denote by U(S) and ( U.R) respectively the multiplicative
groups of the units of S and 1~. Every 0 ~ x e S can be written in
a unique way, up to units of E, in the form x = Er, with 8 E U(S)
and r E R; by this reason we will confine ourselves to consider units
of S in the following discussion.

Given any E E consider the ideal of I~, called the breadth
of 8

REMARK. Our definition of breadth of a unit of S is essentially
the same as the one given by Nishi [10], which is a slight modifica-
tion of the original definition of breadth of a pseudoconvergent set
of elements of .l~ given by Kaplansky [7], and originally due to Ostrow-
sky [11]. The definition of breadth (of non maximality) of R is originated
by the two above definitions.

From the definitions of and B(E) it trivially follows that
B(E) ~ B(R). Conversely, let a E B(.R) ; then S &#x3E; R + as, thus there
exists 8 E such that E E R -E- aS, therefore a eB(E); we have
proved

PROPOSITION 1.2. Let .R be a valuation domain not maximal.
Then B(R) = u ~B(E) : E e 

The following result will be useful in the next section; it is similar
to [10, Prop. 6].
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LEMMA 1.3. Let R be a valuation domain not maximale and e E
E If 1t E U(R) and 0 ~ r E P, then B(u + ~~~) - rB(,e).

PROOF. if and only if and this

obviously is equivalent to u + R + raS. ///

We introduce the following notation: given let 

be the canonical surjection; then the image fIll of R is a

subring of SIIS isomorphic to its completion, whenever R/I
is Hausdorff, is denoted by Notice that, being pure in

and 8118 complete, we have the following inclusions:

The topology considered above, as in the following proposition,
on the factor ring is the  ideal topology », which has as a basis
of neighborhoods of 0 the ideals a E BBI.

PROPOSITION 1.4. Let R be a valuation domain, and Then

.R/.I is Hausdorff and non complete if and only if I = B(E) for some
E E 

PROOF. In order to show that is Hausdorff, it is enough
to prove B(E) implies pa 0 B(E) for some p E P. So let E E

ER+aB; then But ~S = R -~- PS implies
that s = t + ps’, for some t E R, p E P and s’ E S ; therefore we get:
E = r --~- at + aps’ E R + paS, as we want. Clearly E + B(E) S 0
0 fB(,,)R, but it is the limit of a Cauchy net of elements of for,
given implies that there exists such
that E - ur E rS; thus E -E-- B(E) S is the limit of the Cauchy net {Ur +

So we have proved that is not

complete.
Conversely, assuming that R/I is Hausdorff and not complete,

from the inclusions (1) we get an element E E such that c 

is the limit of a Cauchy net -~- IS : r ~ l) in f I R. So E + rS
if and only if therefore 1 = B(E). 1/1

From the proof of the preceding proposition we deduce the following

COROLLARY 1.5. and I R. Then ê + IS E
E /7.R if and only if if and only if
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A particular case is when I = 0 ; then the elements of the comple-
tions jS of .R are exactly those x = E E U(S)) such
that B(E) = 0. It was shown by Nishi [10] that 1~ is the center Z(A)
of the ring A = EndR E(RjP), which is isomorphic to so

we have the inclusions:

2. The completion defect and the total defect.

We introduce now a new concept, which first appeared in [13].
Let .R be a valuation domain not maximal, and S a maximal imme-
diate extension of 1~; let 8,, ..., En E U(S) and I P; we say that
the Ei’s are u-independent over I if

implies for all i. Conversely, if (2) holds for some U(.R)
the Eils are said u-dependent over I.

LEMMA 2.1. (i) lT(S)ER, then 8 is u-independent over B(E).
(ii) If ~1, ... , U(S) are u-independent over I P, then

PROOF. (i) If then if and only if al ft P
and, in this case, 8 E -~- .R, which is absurd.

(ii) If, for some j, 8j E R, then (2) holds with ao = E~, aj = -1
and a, = 0 for 0 =1= i ~ j. Assume now that B(Ej)  I for some j.
Then Ej + IS = u + IS for some u E U(l~), so (2) holds with ao = u,
aj = -1 and ai = 0 for 0 # i # j. ///

We say that a family of units of ~S not in .R is u-inde-

pendent over an ideal I C P, if any finite subset of it is u-indipendente
over I; so the u-independence is a property of finite character, and
maximal families of units with this property do exist.

Having fixed the ideal we consider all the families 
of units of S which are u-independent over I, such that = I

for all Let be the minimal cardinal such that &#x3E;

+ I for all these families. 
’
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We call the completion defect of R at I ; clearly is an inva-
riant of R not depending on the choice of ~S, being the u-indepen-
dence defined by linearity.

Obviously B is almost maximal if and only if = 1 for all non-

zero ideals I.
The following result compares the completion defects at isomor-

phic ideals.

PROPOSITION 2.2. Let I ~ J be isomorphic ideals of R contained
in P. Then = c~(J).

PROOF. It is enough to show that, given a family (si : 
which is u-independent over 1, where I = for all 2 E Il., there
exists a family which is it-independent over J, where
J = for all h Being there exists a such that

either J = aI or aJ = I ; we can assume otherwise J = I

and the claim is trivial. If J = aI, let qz = 1-~ asi for all 

Then B(i7,a) = J for E ll follows from Lemma 1.3. Assume now
that

then implies that

thus, by the u-independence of the cAl s, we deduce that 
/ 

n 
Band + j£ a2 E P; it follows that au E P too.i 

Conversely, assume that I (a E P). Notice that a 0 1, because
J c P. Being = I, there exists an u1 E such that ~a, ==

- u1 -f- aqi for some r¡;. E S. Without loss of generality, we can assume
that qi e U(S) : for, if e PS, substitute u~ and qi respectively by

E U(R) and 1 + r¡;. E U(S). From aJ = I = and from

Lemma 1.3, we deduce that aJ = aB(r¡;.), so J. Assume

now that
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Then

recalling that u’, + = (1 c i ; n), and that the are u-
n

independent over I, it follows that acl, ... , an E P; then an -E- ~ e Js

implies ao c P too. /// ~

Given an ideal I  P, we introduce now another invariant; we
consider all the families of units of 8 as in the definition
of but we assume only that the Ea,’s are u-independent over I,
without assuming that = I for all thus, by Lemma 2.1,
we only know that for all A Let dn(1) be the minimal
cardinal such that IAI -f- 1 for all these families. We call dR(l)
the total defect of .R at I ; here too we notice that is an inavriant
of .R not depending on the choice of S.

The following result is an immediate consequence of the defini-
tion.

LEMMA 2.3. (i) If then 

(ii) dn(l) = 1 if and only if I &#x3E; B(R) or I = B(R) and R/B(R)
is complete.

(iii) .R is almost maximal if and only if = 1 for every
I ~ 0. ///

Given an R-module M and an ideal I ~ P, we say that the elements
... , xn E M are linearly independent over I if x. -~- 1M, ... , xn -f - I ~

are linearly independent elements of the R/I-module i.e. if
n

aixi e IM(a; E .R) implies that ai e I for all i. Obviously one can
1

extend this definition to a family of elements of M.
Recall that, if is torsion-free, then the rank rkR if of is the

dimension of the Q-vector space where Q is the field of quo-
tients of R, or, equivalently, the cardinality of a maximal system
of linearly independent elements of M.

PROPOSITION 2.4. Let .R be a valuation domain and I a prime
ideal of .R. Then = and = 
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PROOF. Given a family of elements of which
are linearly independent over I, one can assume, without loss of genera-
lity, that U(S) for all and that one of them, say is 1.
It follows trivially from the definition that (zi: ), ~ 1} is a family
of elements u-independent over I, and I by Corollary 1.5;
theref ore In a similar way one can see that

rkR/ISjIS 
Conversely, y to prove that (respectively 

it is enough to show that, given a family fez: A E A) of
units of S with = I for all (resp. with which
are u-independent over I, then 11, are linearly independent
over I. Assume that

if some ai ft I, let a; be one of the coefficients not in I with minimal
value. By multiplying by c~~ 1, we get

because I; the last relation is absurd, because the coefficienti
of is equal to 1, which contradicts the u-independence of {8A: 2 
over I. ///

Vve wish to compare now the total defect at the ideal I with

the completion defects cR(J) at the ideals J ~ I.

LEMMA 2.5. For every i = 1, ... , n, let .Ei be a family of units
of S u-independent over the ideals Ji, such that Ji = B(e) for all

s E Ea . If J1 &#x3E; J2 &#x3E; ... &#x3E; Jn, and the J/s are pairwise non isomor-
phic, then is u-independent over Jn .

PROOF. We induct on n, the claim being trivial for n = 1. So,
assume that n &#x3E; 1 and that is u-independent over
Jt, for Let
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where (0~~)~ 
for 1  j ~ ~ and nhEEn for First, notice that ai , ... , 
for, let then, for all there exists U(R) such
that nh - vh E rS. It follows that

and the u-independence of the 8j’s implies that a1, ... , Recall

now that is one of the Ji’s, for 1 c i c n -1, for all y*; we will
show that

Being Jn not isomorphic to J1, ... , J n-l, ajB( Bj) ~ Jn for all j ; let

Let for all j E Al we can choose an ele-

ment uy E U(.R) such that

substituting in (3), we get:

where the sums with indexes in A2 ate intended to be 0 when-
ever Ai or Â2 is void. ,

Assume now that A~ ~ ~b. Let and choose for
iEA2

all U(.R) such that substituting in (5) we get :

we will show that (6) is absurd. Let jo E A, be such that has minimal
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value among the aj’s with j E Å2; then

notice that in (7) a701aj E R for all j E A2, and that

therefore also the first summand in (7) is in .R. But then (7) is absurd,
because the coefficient of 8io is 1 and by the inductive hypothesis. Thus
we have proved that A2 = 0, therefore (5) becomes simply:

by the u-independence of the r¡h’S over Jn, (8) gives that bl, ... , bm E P;
being from (3) it follows that ao E P. ///

Given an ideal J R, let [J] denote the isomorphism class of J;
if I ~ .R is another ideal, then [J] ~ I means that there exists J’c- [J]
such that J’ ~ I. By Proposition 2.2, we can define as the common

value where J’ ranges over [J]. We can easily obtain from the
preceding Lemma 2.5 the following

PROPOSITION 2.6.

The inequality in Proposition 2.6 is in general strict, as is shown
by Facchini and the second author in [3]; actually, they prove a multi-
plicative formula relating and the cR[J]’s, [J]&#x3E;I, for I a prime
ideal of a discrete valuation domain R with Spec R well ordered by
the opposite inclusion; they also give a realization theorem for these
domains with preassigned completion defects, using an idea of

Nagata [9].

3. - Total defect and Goldie dimension.

Let I be an ideal of the valuation domain .I~, and let gR(I ) denote
the Goldie dimension of S/IS as an R/I-module. If I is a prime ideal,
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then gR(I) = rkRIISjIS. It follows from the definitions that, for an
arbitrary ideal I, g(I) ~ dR(I ), and Proposition 2.4 shows that this
inequality becomes an equality if I is a prime ideal.

Recall that, if 0 ~ then the subset of R

is a prime ideal, which is the union of all the ideals  R isomorphic
to I (see [10] and [4]). If I == 0, we set Ill == 0.

LEMMA 3.1. Given any I  R, 

PROOF. It is enough to show that, given E,, ...,~e U(S), they
are linearly independent over I# if and only if they are linearly inde-
pendent over I. So, assume that they are linearly independent over I#

n

and If some let be such that v(a) =
1

Then

because is an ideal isomorphic to 1, hence But this
is a contradiction, because some is a unit.

Conversely, let ~i,...,~ be linearly independent over I and let
it

If then for all hence for
1

all i. If then 0153 == rq, where q e and Being 1#
the union of the ideals isomorphic to 1, there exists an ideal 
such that J=7 for some t c P and r c J. Then tr e 1, therefore

n

the independence of the over I implies that tai E
1

e7=J, hence for all i. ll/
Recall that an ideal I  R is archimedean if 1~ = P. As an imme-

diate consequence of the preceding lemma we get

COROLLARY 3.2. Given two ideals 7~J, then 
moreover gR(I) = 1 if I is archimedean.

PROOF. The first claim follows from the equality 1# == J’ ; the second
equality follows from the isomorphism ///
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Lemma 3.1 and Proposition 2.4 give the following

COROLLARY 3.4. Given any ideal

COROLLARY 3.5. Given any ideal I  R, then = 1 if and

only if either 1# &#x3E; B(.R), or 1# = B(R) and R/B(R) is complete. ///
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