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Periodic Solutions of Asymptotically Linear Systems
without Symmetry.

A. SALVATORE (*)

0. Introduction.

Consider the nonautonomous Hamiltonian system of 2n diReren-
tial equations

where H e CI(R 2n+’, R), H(t, z) is T-periodic in t, z c R2,, 

denotes and J = 0 being the identity matrix in Rn./ 1 0

In this paper we are concerned with the existence of T-periodic
solutions of (0.1).

Many authors have studied this problem when ,g is superquadratic,
i.e. H(z)/IZ12 - -~- 00 as lzl - + 00 (cf. [7]. [9], [10], [19], [22]) or

when H is subquadratic, i.e. --&#x3E; 0 as )~ 2013~ -)- 00 (cf. [6], [7],
[10], [12]).

Here we assume that H(t, z) is asymptotically quadratic, i.e. there
exists a symmetric matrix 2n X 2n boo(t) for any t E [0, T] such that

(*) Indirizzo dell’A.: Dipartimento di Matematica, Via G. Fortunato,
Bari (Italy).
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Denote by Loo the  linearized operator at infinity)) i.e. Looz = -

(for a more precise definition see section 1 ) . Then we

say that (0.1) is not resonant if

G(LoJ being the spectrum of Loo.
On the contrary we shall say that (0.1) is resonant if

We recall that asymptotically linear autonomous Hamiltonian systems
have been studied in [2], [3], [8].

Nonautonomous and asymptotically linear Hamiltonian systems
have been studied in [1], [2], [3], [15], [16] under the non resonance
assumption 

Here we study the existence of T-periodic solutions of (0.1) with
the assumption (.g1) both in the non resonant case and in the resonant
case (cf. th. 1.1, 1.2 and 1.3).

The proof of theorems is based on an abstract critical point theorem
contained in [12] (cf. th. 1.4 in section 1).

In the second section we shall look for T-periodic solutions of
the nonlinear wave equation:

where

(0.2) has been studied in the case where f (x, t, ~ ) is monotonic (cf. [1],
[2], [9], [11], [21]) and without monotonicity assumption of f (cf. [5],
[17], [20], [24]). Here we study (0.2) in the asymptotically linear
case, i.e. we suppose that there exists a real continuous function
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t) defined on [0, such that

uniformly in

Using a trick contained in [17] and theorem 1.4 we prove, under suita-
ble assumptions, the existence of T-periodic solutions of (0.2), with-
out assuming that f is monotonic (cf. th. 2.5 and 2.9).

1. Consider the sistem (0.1). First of all we shall prove the following
theorem:

THEOREM 1.1. I f .gl), .H2) hold, then (0.1) has at least one T-periodic
solution.

The solution we find in this theorem can be constant. If we sup-
pose that 0 is an equilibrium point of the Hamiltonian vector field,
it is interesting to find T-periodic and nontrivial solutions.

Precisely, we shall require that

In this case Hz can be written

where

We set

We shall denote by A’ (resp. the smallest positive (resp. the greatest
negative) eigenvalue of Loo in L2 and and ¡~l the analogous in

(cf. the following for definition of W-). The following theorem
holds :



150

THEOREM 1.2. Under the assumptions .g1), .g2), .g4) and

there exists at least one T-periodic nontrivial solution of (0.1).

Analogous results as in theorems 1.1 and 1.2 have been obtained
in [3] under the assumption that bo and ~oo do not depend on t; more-
over in [3] the hamiltonian function H(t, z) is C2 and the Hessian H zz
is uniformly bounded. On the other hand in theorem 1.2 we need
an additional condition on the signe of G. (H6) establishes the connec-
tion between bo(t) and b~(t) which guarantees that the solution we
find is nontrivial. (H6) corresponds to the assumption of theorem 2
in [3]

infact in the special case of two harmonic oscillators with frequencies
ao and a~, one can easily verify that (.gg) and (*) are equivalent.

Now we suppose that the problem has a ((strong resonance)) at
infinity, holds and

Autonomous Hamiltonian systems with a strong resonance at infinity
have been studied in [14] under assumptions of symmetry. For time-
dependent Hamiltonian systems we shall prove the following theorem :

THEOREM 1.3. If H(t, z) satisfies (.Hl), (H3), (.g~), then (0.1 ) has

at least one T-periodic solution. Moreover, if (H4), (Hs), (H6) (resp.
(.~14), (.g5) and (H’)) hold too, then there exists at least one T-periodic
nontrivial solution.

Proof of the theorems.
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In order to prove theorems 1.1, 1.2 and 1.3 we need an abstract
critical point theorem proved in [12]. For completeness we shall
state here this result.

THEOREM 1.4. Given an Hilbert space E and a, # real constants,
a  fl, let f be a functional satisfying the following ass2cmptions :

i) L is a continuous self-adjoint operator on E

ii) y~ E C1(E, R) and y’ is a compact operator

(f2) 0 does not belong to the essential spectrum of L

given c E ]a, -~- 00[, every sequence ~un~, for -~ c

and (~ -+ 0, possesses a bounded subsequence.

lVloreover given a constant .R &#x3E; 0 and two closed L-invariant sub-

spaces El and E2 such that E = El (f) E2, we set Q = BR n El; S = q +
+ E2 (with q E Q, 11 q (~  R) and suppose that

then f possesses at least a critical value c E [P, c~].

Now some notations are needed. ive set Z2 = Z2([o, T], R2n ) and

where Ujk(jEZ, 1~ = 1, 2, ... , 2n) are the Fourier components of u

with respect to the basis in L2
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where and (T~ = 1, ... , 2n) is the standard basis in

R2n .

W’ equipped with the inner product

is an Hilbert space.
We denote by ( ’ , ’ ) ) and ((’?’)) the inner products in .L2 and in

Wi, and by ] I and 1/." 11 the corresponding norms. We consider the
functional

where Wi is the self-adjoint, continuous operator defined by

It is known that f is continuously Fréchet-differentiable and that
its critical points are the solutions of (0.1).

We are proving that f satisfies the assumptions of the theorem (1.4).
Standard arguments show that ( fo), (fi), ( f2) hold. It is known that
the non resonance assumption (H2) implies (cf. e.g. [18]). Now
we show that also ( f 4)-( f g) hold. Set

with .5~ the subspace of Wi where Loo is negative (resp.
positive) definite and BR the sphere of center 0 and radius .R in Wi,
.R large enough.

In the following we shall denote by ei a positive constant. By 
there exists a positive constant if such that, fixed 8 positif, it results

(cf. [8] for a detailed proof). Obviously there are real constants
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and

Moreover there exists a E R s.t.

In fact, by (1.6) there exists c2 depending on E and a real numbers, s.t.

We can choose I~ large enough such that a  f3..

Theorem 1.4 assures that f has at least one critical value 
Clearly, we can not exclude the trivial solution.

We prove now theorem 1.2. Let Lo be the selfadjoint realization
of bo(t)z in W". It follows that

Let Ht (resp. H,-) be the subspace of Wi where Lo is positive (resp.
negative) definite. The following lemma holds:

LEMMA (1.11 ) . Under the assumptions of theorem 1.2 it results

PROOF. Let q be an eigenvector corresponding to the eigenvalue
in L2. Then it is known that q E W2 and q is an eigenvector corres-

ponding to 1’-, in Wi. Moreover
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Obviously q E Ht and i) follows. Proving (ii), we observe that

and the inclusion (ii) is strict because of property (i).

Let us prove theorem 1.2. It is obvious that the functional (1.5)
verifies the hypotheses (/j)-(/3) of the abstract theorem 1.4; ( f 4)-( f g)
hold as before setting

where q is an eigenvector of Loo corresponding to (and to with

llqll  R. We shall show that, in this case, the functional f is bounded
from below on S by a strictly positive constant fl. In fact, taken

we have

Fixed 8 small, we distinguish two cases:

In the first case, if we choose llqll small enough, llzll is small and it

turns out that

because z E Ho and &#x3E; 0.

In the second case, it results
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we conclude that

Thus, there exists a critical value c &#x3E; # &#x3E; 0 and therefore, being
f(0) = 0, there exists at least one critical nontrivial point.

REMARK. If (H1), (.H~4), 9 (.g5) and hold, we can prove
that H-¡; =I=- {0} and the functional - f satisfies the assumptions
of the theorem 1.4 setting Q = Nt + H~ , q E Hto n H-

~~ small.

Lastly we prove theorem 1.3. Following the same argument as
in [14] it can be proved that hold. In order to prove ( f 4)-( f g)
we have to make a different choise of Q and S since Ker Leo =I=- f 0

We set now

q being an eigenvector corresponding to as above, small enough
and .R the constant which will be determined in the following.

As usual, we have

Let .M = 2,-,; z)|, , and e a positive constant
such that

Then (cf. lemma (3.2) of [8]) there exists &#x3E; 0 large enough such
that f or z E Ker - R, z = zo + z_ , z_ E Be , we have

Taking .z E aQ, there are two possibilities
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In the first case, by (1.13) we have

In the second case, by (1.12 ) it follows that

Then ( f 4) holds with a = ~~~; on the other hand it is obvious that f
is bounded from above on Q, So by theorem 1.4, the conclusion of
theorem 1.3 follows.. ·

2. Now we study (0.2). Obviously the T-periodic solutions of (0.2)
are the 2R-periodic solutions of

where a~ = T/2yr.
Let us denote by L) the selfadjoint realization of Utt-

(resp. in a suitable Hilbert space E

(cf. [5] f or definition of E) .
We recall that the eigenvalues of L in Z~=Z~([0~)x[Oy2~J)

are

At first we shall assume a non resonance condition at infinity, y i.e.

As in section 1, we assume that f is linear at u = 0. More precisely, y
we suppose that
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By ( W2) and it follows that

It is known that the periodic solutions of (2.1) correspond to the criti-
cal points of the functional

being the inner product in j i

We observe that we do not apply directly theorem (1.4) to the
functional I, because E is not compactly imbedded in L2 and therefore
the non linear term f g(x, tcv, u) dxdt is non compact. In order to

Q

overcome this difficulty, we restrict, as in [17], I to a suitable closed
subspace E of E such that

Conditions ii)-iv) assure that the critical points of are still
critcal points of I; hence they are classical solutions of (2.1).

Following Coron, we define
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We assume now

Then the following lemma holds:

LEMMA 2.4. If T = 2a bla, b odd and f satisfies (Ws), the subspace
Ê verifies ( i ) - ( iv) . Moreover

,

being the components of u belonging to eigenspaces corresponding
to eigenvalues Âjk of L in L2.

Let us denote the restrictions of I and Loo to Ê by 1 and Zoo. If

we denote by (resp. ~,i ) the first negative (resp. positive) eigen-
value of £00 in L2 and by and the analogous in f, the following
theorem holds :

THEOREM 2.5. Under the assumptions (WI), ( yY2), and 

if T = 2n b/a, b odd, (0.1) has at least one T-periodic solution. More-
over if ( W 4 ) ,

are satisfied, then the solution we find is nontrivial.

In the case where f’(oo) = t) and f’(0) = (x, t, 0) are

constant, it follows that L~= .L - Therefore the eigenvalues
of Lm in .L2 are

Thus (W7) (resp. ( W7)) becomes

(2.6) 1 there exists eigenvalue of .L in L2, j odd and k even, s.t.
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We recall that Amann and Zendher have studied (0.2) in the case
where there exist a, fl E R, a  fl, such that a &#x3E; 0 or fl  0 and

Moreover they assume that

5 and A being two consecutive eigenvalues of L belonging to ]a, fl[.
In theorem (2.5) we have dropped assumption (2.7), which implies

the monotonicity of f in u, but we have to add the new assumptions
( yY5)-( Wg) and to replace (2.8) by (2.6). We find a T-periodic solution
of (0.2) if b is odd.

If b is even, we should study (2.1) replacing by the assump-
tion

and choosing

We recall that Amann and Zendher consider only the case where
f’(0) and are constant and problem (2.1) is non resonant. On

the contrary, we consider the strong resonance case too, i.e. we assume

The following theorem holds:

THEOREM 2.9. The conclusion o f theorem (2.5) still holds if we
replace (W3) by (W7).

REMARK. The proof of theorems (2.5) and (2.9) follows as in sec-
tion 1.
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