C. Năstănescu
N. Rodinò

Group graded rings and smash products

Rendiconti del Seminario Matematico della Università di Padova,
tome 74 (1985), p. 129-137

<http://www.numdam.org/item?id=RSMUP_1985__74__129_0>
Group Graded Rings and Smash Products.

C. Năstăcescu - N. Rodinò (*)

Introduction.

Let $R = \bigoplus_{\sigma \in G} R_{\sigma}$ be a k-algebra graded by a finite group G, with R_e the component corresponding to the identity element e of G (k is a commutative ring). In the paper [1] M. Cohen and S. Montgomery define the ring $R \neq k[G]^*$, called the «Smash product» associated to the graded ring R. This ring may be used to obtain many properties of the graded ring R. The main tools are provided by the two Duality Theorems: Duality Theorem for Action and Duality Theorem for Coaction (see Theorem 3.2 and 3.5 of [1]). In this paper we give a new characterization of the Smash Product $R \neq k[G]^*$ (Theorems 1.2 and 1.3) and we deduce directly from it and in a little more general form Cohen and Montgomery Duality Theorems (Theorems 2.2 and 2.3).

1. **The rings $\text{End}_{R,gr}(U)$, $\text{End}_R(U)$ and their structure.**

If $R = \bigoplus_{\sigma \in G} R_{\sigma}$ is a k-algebra graded by a finite group G, we denote by R-gr the category of all unital right graded R-modules. If $M = \bigoplus_{\sigma \in G} M_{\sigma}$, $N = \bigoplus_{\sigma \in G} N_{\sigma}$ are two objects of R-gr, then the morphisms in R-gr are R-homomorphisms $f: M \to N$ such that $f(M_{\sigma}) \subset f(N_{\sigma})$ for all $\sigma \in G$. It is well known that R-gr is a Grothendieck category (see [2]).

(*) Indirizzo degli AA.: C. NĂSTĂCESCU: Facultatea de Matematica, University of Bucharest, Str. Academiei 14, 70105 Bucharest 1, Romania; N. RODINÒ: Istituto di Matematica «U. Dini», Viale Morgagni 67/A, 50134 Firenze (Italy).
If $M = \bigoplus_{\lambda \in \mathbb{G}} M_{\lambda}$ is a graded R-module and $\sigma \in G$, then $M(\sigma)$ is the graded module obtained from M by putting $M(\sigma)_{\lambda} = M_{\lambda\sigma}$; the graded module $M(\sigma)$ is called the σ-suspension of M [2]. It is well-known that the mapping $M \to M(\sigma)$ defines a functor from R-gr to R-gr which is an equivalence of categories for all $\sigma \in G$. $M \in R$-gr is said to be G-invariant [2] if for all $\sigma \in G$, $M \simeq M(\sigma)$ in R-gr. Consider now the graded modules M and N. A R-linear mapping $f: M \to N$ is said to be a graded morphism of degree τ, $\tau \in G$, if $f(M_{\sigma}) \subset N_{\sigma\tau}$ for all $\sigma \in G$. Graded morphisms of degree τ build up an additive subgroup $\text{HOM}_R(M, N)_\tau$ of $\text{Hom}_R(M, N)$. It is clear that $\text{HOM}_R(M, N) = \bigoplus_{\tau \in \mathbb{G}} \text{HOM}_R(M, N)_\tau$ is a graded abelian group of type G and $\text{HOM}_R(M, N)_\sigma = \text{Hom}_{R$-$\text{gr}}(M, N)$. In particular, if $M = N$, then $\text{HOM}_R(M, N) = \text{End}_R(M)$ is a graded ring of type G. In the sequel we will denote by $U = \bigoplus \mathbb{R}(\sigma)$. Since $\{\mathbb{R}(\sigma)\}_{\sigma \in \mathbb{G}}$ is a family of generators for R-gr [2], it follows that U is a generator for R-gr. When G is a finite group, we also remark that $\text{End}_R(U) = \text{End}_R(U)$ (see [2]).

Proposition 1.1. [2] If $G = \{g_1 = e, g_2, \ldots, g_n\}$ is a finite group, then the ring $\text{End}_R(U)$ is isomorphic to the matrix ring $M_n(R)$ equipped with the grading

$$M_n(R) = \bigoplus_{\lambda \in \mathbb{G}} M_n(R)_\lambda,$$

where

$$M_n(R)_\lambda = \begin{pmatrix}
R_{g_1\lambda^{-1}} & R_{g_1g_2^{-1}} & \cdots & R_{g_{n-1}g_{n}^{-1}} \\
R_{g_2\lambda^{-1}} & R_{g_2g_2^{-1}} & \cdots & R_{g_{n-2}g_{n-1}^{-1}} \\
& & \ddots & \vdots \\
& & & R_{g_{n-1}\lambda^{-1}} & R_{g_{n-1}g_{n}^{-1}} & \cdots & R_{g_{n-1}g_{n}^{-1}}
\end{pmatrix}.$$

In particular, the ring End_{R-$\text{gr}}(U)$ is isomorphic to the matrix ring

$$\begin{pmatrix}
R_e & R_{g_1^{-1}} & \cdots & R_{g_{n-1}^{-1}} \\
R_{g_1g_1^{-1}} & R_e & \cdots & R_{g_{n-1}^{-1}} \\
& & \ddots & \vdots \\
& & & R_e & R_{g_2^{-1}} & \cdots & R_{g_{n-1}^{-1}}
\end{pmatrix}.$$
PROOF. See Corollary 1.5.3 of [2].

By an \textit{action} of a group G on a k-algebra A we mean a group morphism $\alpha: G \to \text{Aut}_k(A)$; let α_g denote the image of $g \in G$ in $\text{Aut}_k(A)$. We may define the skew group ring (or \textit{trivial crossed product}) denoted by $A \ast G$, as being the free right and left A-module with basis $\{g; g \in G\}$ and with multiplication given by $(ag) \cdot (bh) = ax(b)gh$, where $a, b \in A$, $g, h \in G$. The ring $A \ast G$ is a graded ring: $A \ast G = \bigoplus_{\sigma \in G} (A \ast G)_\sigma$, where $(A \ast G)_\sigma = A\sigma = \{a\sigma; a \in A\}$.

Theorem 1.2. If $G = \{e, g_2, \ldots, g_n\}$ is a finite group, then the ring $\text{End}_R(U)$ is isomorphic to the skew group ring $\text{End}_{R, gr}(U) \ast G$.

Proof. By Proposition 1.1 we have that $\text{End}_R(U)$ is isomorphic to the matrix ring $M_n(R)$. We consider the set

$$U_\lambda = \begin{pmatrix} 0 & \cdots & 0 & R_{e} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{pmatrix}$$

where on the first row R_{e} is on the k_1-th position, k_1 being such that $g_{k_1} = g_1 \lambda$; on the second row R_{e} is on the k_2-th position, where k_2 is such that $g_{k_2} = g_2 \lambda$; \ldots; on the n-th row R_{e} is on the k_n-th position, where $g_{k_n} = g_n \lambda$. Since G is a group it is easy to see that $\{1, 2, \ldots, n\} = = \{k_1, k_2, \ldots, k_n\}$. Moreover one may see that $U_\lambda \subset M_n(R)\lambda$. Let $u_\lambda \in U_\lambda$, $u_\lambda = \begin{pmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \end{pmatrix}$.

From the definition of U_λ it follows that u_λ has a 1 on each column and all the other entries are 0. We will show now that the system $\{u_\lambda\}_{\lambda \in G}$ has the property that $u_\lambda u_\mu = u_{\lambda \mu}$, for all $\lambda, \mu \in G$. Let

$$u_\mu = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \\ 0 & \cdots & 1 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & \cdots & 1 & 0 \\ \end{pmatrix}$$
where 1 in the first row is on the \(\lambda_i \)-th column, where \(g_{i_1} = g_{1_1} \mu \); 1 in the second row is on the \(\lambda_2 \)-th column, where \(g_{i_2} = g_{2_2} \mu \); \ldots ; 1 in the \(n \)-th row is on the \(\lambda_n \)-th column, where \(g_{i_n} = g_{n_n} \mu \).

There exists a unique column, say the \(s \)-th, such as its intersection with the \(\lambda_i \)-th row has a 1 and the rest of its entries are zero. Thus we have that \(g_s = g_{s_1} \mu \). Since \(g_{s_1} = g_{s_1} \lambda \), then \(g_s = g_{s_1} \lambda \mu \) and so in the matrix \(u_1 u_\mu \) we have 1 on the first row in the \(s \)-th position, all the other entries of the first row being zero. Hence the first row of the matrix \(u_1 u_\mu \) is the same as the first row of the matrix \(u_{\lambda_1} \).

Using the same argument for the other rows, we deduce that \(u_{\lambda_1} u_\mu = = u_{\lambda_1} \). In particular, since \(u_\lambda \) is equal to the unit matrix, we obtain that \(u_{\lambda_1}^{-1} = u_{\lambda_1}^{-1} \), for each \(\lambda \in G \). Using now Theorem 5.3.23 of [2], we obtain that \(\text{End}_R(U) \) is isomorphic to the skew group ring \(\text{End}_{R \# G}(U) \). Q.E.D.

Let now \(A = \bigoplus_{g \in G} A_g \) be a graded \(k \)-algebra, where \(k \) is a commutative ring and \(G \) is a finite group. By [1], the construction of the smash product \(A \neq k[G]^* \) is the following: \(A \neq k[G]^* \) is the free left and right \(A \)-module with basis \(\{ p_g : g \in G \} \), a set of orthogonal idempotents whose sum is 1 and with the multiplication given by the rule: \(\cdot (bp_h) = abp_{gh}, \ a, b \in A. \)

Theorem 1.3. Let \(R = \bigoplus_{g \in G} R_g \) be a graded \(k \)-algebra, where \(G = \{ e, g_1, g_2, \ldots, g_n \} \) is a finite group. Then the ring \(\text{End}_{R \# G}(U) \) is isomorphic to the smash product

\[\text{End}_{R \# G}(U) \cong k[G]^*. \]

Proof. We have seen that the ring \(\text{End}_{R \# G}(U) \) is isomorphic to the matrix ring

\[T = \begin{pmatrix} R_e & R_{g_1 g_2}^{-1} \cdots R_{g_1 g_n}^{-1} \\ R_{g_2 g_1}^{-1} & R_e & \cdots & R_{g_2 g_n}^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ R_{g_n g_1}^{-1} & R_{g_n g_2}^{-1} \cdots & R_e \end{pmatrix}. \]

Define \(\varphi : R \to T \) as follows: if \(a = \sum_{g \in G} a_g, a_g \in R_g \) for all \(g \in G \), then
It is clear that \(\varphi \) is additive and injective. It is straightforward to check that if \(b \in R \), then we have \(\varphi(ab) = \varphi(a)\varphi(b) \). Consequently, \(\varphi \) is a ring morphism. Let \(S = \varphi(R) \). Hence \(S \) is a subring of \(T \). Consider the elements:

\[
\varphi(a) = \begin{pmatrix}
 a_0 & a_0 a_1^{-1} & \cdots & a_0 a_n^{-1} \\
 a_0 a_1^{-1} & a_0 & \cdots & a_0 a_n^{-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_0 a_1^{-1} & a_0 a_2^{-1} & \cdots & a_0 a_n^{-1}
\end{pmatrix}
\]

i.e. \(p_{s_k} \) is a matrix with 1 at the intersection of the \(k \)-th row with the \(k \)-th column, all its other entries being zero. Then the system of elements \(\{p_{s_k}\}_{1 \leq k \leq n} \) is a system of orthogonal idempotents whose sum is 1. It is clear that

\[
T = Sp_{s_1} + Sp_{s_2} + \ldots + Sp_{s_n} = p_{s_1}S + p_{s_2}S + \ldots + p_{s_n}S
\]

Let us prove that \(\{p_{s_k}\}, 1 \leq k \leq n \), is a linear independent system over the ring \(S \). Let \(\sum_{k=1}^{n} s_k p_{s_k} = 0 \), where \(s_k \in S \). Hence

\[
s_k = \begin{pmatrix}
 a_0^k & a_0^k a_1^{-1} & \cdots & a_0^k a_n^{-1} \\
 a_0^k a_1^{-1} & a_0^k & \cdots & a_0^k a_n^{-1} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_0^k a_1^{-1} & a_0^k a_2^{-1} & \cdots & a_0^k a_n^{-1}
\end{pmatrix}
\]
Then

\[\sum_{k=1}^{n} s_{k} p_{x_{k}} = \begin{pmatrix} a_{1}^{1} & 0 & \cdots & 0 \\ a_{2g_{1}^{-1}}^{1} & 0 & \cdots & 0 \\ 0 & a_{2g_{2}^{-1}}^{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1g_{1}^{-1}}^{2} & 0 & \cdots & 0 \\ a_{2g_{n}^{-1}}^{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1g_{n}^{-1}}^{2} & 0 & \cdots & 0 \end{pmatrix} + \begin{pmatrix} 0 \\ a_{2g_{2}^{-1}}^{2} \\ \vdots \\ a_{2g_{n}^{-1}}^{2} \\ 0 & a_{2g_{2}^{-1}}^{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{2g_{n}^{-1}}^{2} & 0 & \cdots & 0 \end{pmatrix} + \cdots + \begin{pmatrix} 0 & a_{2g_{n}^{-1}}^{n} \\ \vdots & \vdots & 0 & \cdots & 0 \\ 0 & a_{2g_{n}^{-1}}^{n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{2g_{n}^{-1}}^{n} \end{pmatrix} \]

and hence \(a_{k}^{k} = a_{g_{1}g_{k}^{-1}}^{k} = \ldots = a_{g_{n}g_{k}^{-1}}^{k} = 0 \), for all \(k, 1 \leq k \leq n \). Thus \(s_{1} = s_{2} = \ldots = s_{n} = 0 \). The ring \(S \) is a graded ring of type \(G \) with the grading \(\{ S_{g} : g \in G \} \), where

\[S_{g} = \begin{pmatrix} 0 & \cdots & R_{g} & 0 & \cdots & 0 \\ 0 & R_{g} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & \cdots & R_{g} \end{pmatrix} \]

and \(R_{g} \) is on the first row on the \(k_{1} \)-th position, \(k_{1} \) being such that \(g = g_{1}g_{k_{1}^{-1}} \), on the second row on the \(k_{2} \)-th position such that \(g = g_{2}g_{k_{2}^{-1}} \), \ldots, on the \(n \)-th row on the \(k_{n} \)-th position such that \(g = g_{n}g_{k_{n}^{-1}} \). Thus it is clear that \(\varphi : R \to S \) becomes an isomorphism of graded rings. To finish the proof we need to show that:

\[(s_{p_{g}})(t_{p_{h}}) = st_{p_{g}^{-1}p_{h}}, \text{ for all } s, t \in S. \]

To see this let \(g = g_{m}, h = g_{e} \) and

\[t = \begin{pmatrix} b_{e} & b_{g_{1}g_{2}^{-1}} & \cdots & b_{g_{1}g_{n}^{-1}} \\ b_{g_{2}g_{2}^{-1}} & b_{e} & \cdots & b_{g_{2}g_{n}^{-1}} \\ \vdots & \vdots & \ddots & \vdots \\ b_{g_{n}g_{n}^{-1}} & b_{g_{e}} & \cdots & b_{e} \end{pmatrix}. \]
We have that
\[p_{m} \cdot t = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
b_{m,g_{m}^{-1}} & b_{m,g_{m}^{-1}} & \cdots & b_{m,g_{n}^{-1}} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{pmatrix} \equiv \text{m-th row}
\]
and thus
\[p_{m}(tp_{s}) = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix} \equiv \text{m-th row}.
\]

On the other hand, since \(t_{m,g_{i}^{-1}} \) is a matrix which has on the first row a single non zero element, \(b_{m,g_{i}^{-1}} \), on the \(k_{1} \)-th position, for which \(g_{m}g_{i}^{-1} = g_{1}g_{k_{1}} \), on the second row a single non zero element, \(b_{m,g_{i}^{-1}} \), on the \(k_{2} \)-th position, where \(g_{m}g_{i}^{-1} = g_{2}g_{k_{2}} \), \(\ldots \), on the \(n \)-th row a single non zero element, \(b_{m,g_{i}^{-1}} \), on the \(k_{n} \)-th position such that \(g_{m}g_{i}^{-1} = g_{n}g_{k_{n}} \), it is clear that \(k_{m} = 1 \) and \(k_{s} \neq 1 \) for \(s \neq m, 1 \leq s \leq n \). We deduce that
\[t_{m,g_{i}^{-1}} \cdot p_{s} = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{pmatrix} \equiv \text{m-th row}
\]
and thus \(p_{s}(tp_{h}) = t_{d_{h^{-1}}p_{h}} \), so clearly \((sp_{s})(tp_{h}) = st_{d_{h^{-1}}p_{h}}\), for all \(s, t \in S \) and \(g, h \in G \).

2. Cohen-Montgomery duality theorems.

The notation in this section will be the same as the one in section 1.
THEOREM 2.1. Let \(R = \bigoplus_{\sigma \in G} R_{\sigma} \) be a graded ring of type \(G \), where \(G \) is a finite group. If we denote \(U = \bigoplus_{\sigma \in G} R(\sigma) \), then the functor \(M \mapsto \text{Hom}_{R-gr}(U, M) \) is an equivalence from the category \(R-gr \) to the category \(\text{End}_{R-gr}(U) \)-mod.

PROOF. Since \(\{R(\sigma)\}_{\sigma \in G} \) is a set of generators for \(R-gr \) [2], then \(U \) is a generator for \(R-gr \). On the other hand, \(U \) is a finitely generated projective \(R \)-module. Hence \(U \) is a small projective generator for \(R-gr \) and therefore, after a classical result of B. Mitchel (see [3]), the functor \(M \mapsto \text{Hom}_{R-gr}(U, M) \) is an equivalence between the categories \(R-gr \) and \(\text{End}_{R-gr}(U) \)-mod. Q.E.D.

REMARKS:

1) Bearing in mind Theorem 1.2, Theorem 2.1 is nothing else that Theorem 2.2 of [1].

2) If \(M = \bigoplus_{\sigma \in G} M_{\sigma} \), then \(\text{Hom}_{R-gr}(U, M) \simeq \bigoplus_{\sigma \in G} \text{Hom}_{R-gr}(R(\sigma), M) \).

Let \(R = \bigoplus_{\sigma \in G} R_{\sigma} \) be a graded ring. \(R \) is called a crossed product if for every \(\sigma \in G \) there exists a homogeneous invertible element \(u_{\sigma} \in R_{\sigma} \). The structure of crossed products is given in Theorem I.3.23 of [2].

THEOREM 2.2. Let \(R = \bigoplus_{\sigma \in G} R_{\sigma} \) be a graded k-algebra which is a crossed product, where \(G \) is a finite group with \(n = |G| \). Then

\[
R \# k[G]^* \simeq M_n(R_{e}).
\]

PROOF. Since \(R \) is a crossed product, then \(R \simeq R(\sigma) \) in the category \(R-gr \) for any \(\sigma \in G \). Therefore \(U = \bigoplus_{\sigma \in G} R(\sigma) \simeq R^{(e)} \).

LEMMA. Let \(C \) be an abelian category and \(M \) an object of \(C \). Then, for \(n > 0 \)

\[
\text{End}_C(M^{(e)}) \simeq M_n(\text{End}_C(M)).
\]

PROOF. Straightforward (see [3]).

We may use the Lemma to obtain that \(\text{End}_{R-gr}(U) \simeq M_n(\text{End}_{R-gr}(R)) \).

But \(\text{End}_{R-gr}(U) \simeq R_{e} \) and therefore \(\text{End}_{R-gr}(U) \simeq M_n(R_{e}) \). We apply
now Theorem 1.3 and obtain that

\[R \neq k[G]^* \simeq M_n(R_e). \quad \text{Q.E.D.} \]

REMARK. This result is a slight extension of Theorem 3.2 (Duality Theorem for Action) of Cohen and Montgomery [1], which is given in the case \(R = S \star G \) is a skew group ring.

THEOREM 2.3. (Duality for Coactions) (see [1]). Let \(\text{End}_k(R_e) \) be a graded \(k \)-algebra, where \(G \) is a finite group with \(n = |G| \). Then

\[(R \neq k[G]^*) \star G \simeq M_n(R). \]

PROOF. By Theorem 1.2 and Theorem 1.3 we have that \(\text{End}_R(U) \simeq (R \neq k[G]^*) \star G \). Since \(U = \bigoplus_{\sigma \in G} R(\sigma) \), then in the category \(R \text{-mod} \) it is \(U \simeq R^{(n)} \). Therefore

\[\text{End}_R(U) \simeq \text{End}_R(R^{(n)}) \simeq M_n(R). \quad \text{Q.E.D.} \]

REFERENCES

Manoscritto pervenuto in redazione il 18 luglio 1984.