B. Felzenszwalb
P. Misso

Rings S-radical over PI-subrings

Rendiconti del Seminario Matematico della Università di Padova, tome 73 (1985), p. 55-61

<http://www.numdam.org/item?id=RSMUP_1985__73__55_0>
Rings \mathcal{S}-Radical Over PI-Subrings.

B. FELZENSZWALB - P. MISSO (*)

1. A ring R is said to be radical over a subring A if, for every $x \in R$, there exists an integer $n(x) \geq 1$ such that $x^{n(x)} \in A$. One of the results concerning the structure of radical extensions is a result due to Herstein and Rowen. In [5] they proved: if R is a ring with no nil right ideals, radical over a subring A and A satisfies a polynomial identity, then R satisfies the same multilinear identities. In [6] Zelmanov showed that the conclusion still holds if we merely assume that R is without nil ideals.

In this paper we shall be concerned with the same problem of lifting polynomial identities in the setting of rings with involution. If R is a ring with involution and S the set of symmetric elements of R, we say that R is S-radical over a subring A if, given $s \in S$, then $s^{n(s)} \in A$ for some integer $n(s) \geq 1$.

S-radical extensions were studied in [1] where it was shown that if R is a division ring S-radical over a proper subring A then, for all $x \in R$, xx^* is central in R and so, R is at most 4-dimensional over its center.

Here we shall prove the following: let R be a prime ring with no nil right ideals and char $R \neq 2, 3$. If R is S-radical over a subring A and A satisfies a polynomial identity of degree d, then R satisfies a polynomial identity (PI) and PI-deg (R) $< d$.

We remark that if every element in S is nilpotent then R contains

(*) Indirizzo degli AA.: B. FELZENSZWALB: Instituto de Matematica, Universidade Federal do Rio de Janeiro, C.P. 68530, 21944 Rio de Janeiro, Brazil; P. Misso: Istituto di Matematica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy.
a nonzero nil right ideal; however it is not known if R contains a nonzero nil ideal (this is tied in with a conjecture due to McCrimmon [4]).

Throughout this paper R will denote a ring with involution \ast, Z its center and $S = \{x \in R : x = x^\ast\}$ and $K = \{x \in R : x = -x^\ast\}$, the set of symmetric and skew elements respectively. Finally $N = \{x^{**} : x \in R\}$ will denote the set of norms of R.

If R is a prime ring satisfying a polynomial identity, then its ring of central quotients, Q, is a central simple algebra of dimension n^2 over its center and we define $\text{PI-deg}(R) = n$.

2. We first prove a result of independent interest which will be very useful in proving the main theorem, namely:

Theorem 1. Let R be a ring with no nonzero nil right ideals. If R is S-radical over a division ring A, $A \neq R$ then either

1) R is a direct sum of a division ring and its opposite with the exchange involution or

2) R is simple, $N \subseteq Z$ and $\dim_Z R \leq 4$.

Proof. Since R is also S-radical over $A \cap A^\ast$, we may assume $A = A^\ast$. Let $U = U^\ast$ be a proper \ast-ideal of R. Since U is proper and A is a division ring, $U \cap A = 0$. Thus $U \cap S$ consists of nilpotent elements. Let $s \in U \cap S$ be such that $s^2 = 0$. If $r \in R$, $sr + r^\ast s \in U \cap S$, so, for a suitable n, $0 = (sr + r^\ast s)^n = (sr)^n + (r^\ast s)^n + \text{sys}$ for some $y \in R$. Hence $(sr)^n s = 0$. This shows that sR is nil and so, $sR = 0$ consequently $s = 0$. Therefore we get $U \cap S = 0$. Let $x \in U$, then $x + x^\ast = 0$ implies $x = -x^\ast \in K$ and so $x^2 \in U \cap S = 0$. Thus every element in U is nilpotent of index 2. It follows that $U = 0$.

We have proved that R is \ast-simple. Since $J(R)$, the Jacobson radical of R, is a \ast-ideal and $J(A) = 0$, we immediately get $J(R) = 0$ that is R is semisimple. Now each $s \in S$ is either nilpotent or invertible so by ([4], Theorem 2. 3. 4) R is one of the following types:

(i) a division ring,

(ii) a direct sum of a division ring and its opposite with the exchange involution,

(iii) the 2×2 matrices over a field F, or

(iv) a commutative ring with trivial involution.
If the first case occurs, by the result of Chacron and Herstein [1] we are done. In case (ii) or (iii) we are obviously done. In case (iv) \(R \) is radical over a division ring and so by ([2], Theorem 1.1) \(R \) is a field. This completes the proof of the theorem.

We now state our main theorem.

Theorem 2. Let \(R \) be a prime ring with involution of characteristic \(\neq 2, 3 \) which is \(S \)-radical over a subring \(A \). If \(R \) has no nonzero nil right ideals and \(A \) satisfies a polynomial identity of degree \(d \), then \(R \) satisfies a polynomial identity and PI-deg \((R) < d \).

The proof of theorem 2 requires several lemmas; we first make a few preliminary remarks and then state and prove the required lemmas.

In what follows \(A \subset R \) will be rings satisfying the hypotheses of the theorem and \(f(X_1, \ldots, X_d) \) will be a multilinear polynomial identity of degree \(d \) satisfied by \(A \). Moreover we assume, as we may, that \(A = A^* \).

We remark that, by a theorem of Giambruno [3], either \(S \subset Z(R) \) or \(Z(A) \subset Z(R) \). In the former case \(R \) satisfies the standard identity of degree 4 and there is nothing to show. Hence, we shall always assume that \(Z(A) \subset Z(R) \). In particular since \(R \) is prime, every nonzero element in \(Z(A) \) is regular in \(R \).

We begin with

Lemma 1. If \(A \) is a domain then \(R \) is PI.

Proof. By ([4], Theorem 1.4.2) we have that \(Z(A) \neq 0 \). If we localize \(A \) and \(R \) at \(Z(A) \) we get rings with induced involution \(A_1, R_1 \) respectively. Then \(R_1 \) has no non-zero nil right ideals and is \(S \)-radical over \(A_1 \). Moreover, since \(A \) is a domain, by ([4], Theorem 1.3.4), \(A_1 \) is a division algebra. From theorem 1 we get that either \(A_1 = R_1 \) or \(S = S(R_1) \subset Z(R_1) \). In any case \(R_1 \), and so \(R \), is PI.

Lemma 2. If \(R \) is PI then PI-deg \((R) < d \).

Proof. By ([4], Theorem 1.4.2), \(Z(R) \neq 0 \). Hence, since \(Z(R) \) is \(S \)-radical over \(Z(A) \), \(Z(A) \neq 0 \). If we localize \(R \) at \(Z(R) \) and \(A \) at \(Z(A) \subset Z(R) \), we get rings \(R_1, A_1 \) respectively. Then, by ([4], Theorem 1.4.3), \(R_1 \) is a finite dimensional central simple algebra with induced involution which is \(S \)-radical over \(A_1 \). Moreover, \(A_1 \) satisfies the polynomial identity \(f(X_1, \ldots, X_d) \). Thus, in order to complete the proof of the lemma, we may assume that \(R \) is a finite dimensional central simple algebra. Therefore, \(R = D_n \), the ring of \(n \times n \) matrices over a division ring \(D \), and the involution \(* \) is either symplectic or of transpose type.
Suppose first that \(* \) is symplectic. Then \(D \) is a field, moreover, since \(S \notin Z(R) \), \(n > 2 \). Let \(e_{ij} \) be the usual matrix units in \(R \). For \(\alpha \in D \) and \(i > 1 \) odd, the elements

\[
e_{11} + e_{22},
\]

\[
e_{11} + e_{22} + \alpha(e_{1i} + e_{i+1,2}),
\]

and

\[
e_{11} + e_{22} + \alpha(e_{1i} + e_{2,i+1})
\]

lie in \(A \) since they are symmetric idempotents. Hence \(\alpha(e_{1i} + e_{i+1,2}), \alpha(e_{1i} + e_{2,i+1}) \in A \) and multiplying these elements first from the left and then from the right by \(e_{11} + e_{22} \) we conclude that

\[
(1) \quad De_{1i} + De_{i+1,2} + De_{1i} + De_{2,i+1} \subseteq A \quad (i > 1 \text{ odd}).
\]

Similarly, since for \(i > 2 \) even the elements

\[
e_{11} + e_{22} + \alpha(e_{1i} - e_{i-1,2})
\]

\[
e_{11} + e_{22} + \alpha(e_{1i} - e_{2,i-1})
\]

are symmetric idempotents, we obtain

\[
(2) \quad De_{1i} + De_{i-1,2} + De_{11} + De_{2,i-1} \subseteq A, \quad (1 > 2 \text{ even}).
\]

From (1) and (2) since \(e_{11} + e_{22} \in A \), it follows that \(De_{ij} \subseteq A \) for all \(i, j \). Thus \(A = R \) and we are done.

Suppose now that \(* \) is of transpose type, that is, there exists an invertible diagonal matrix \(C = \text{diag} \{ c_1, \ldots, c_n \} \in D_n \) with \(c_i = c_i^* \in D \) such that \((x_{ij})^* = C(x_{ij}^*)C^{-1} \) for all \((x_{ij}) \in D_n \). In this case \(e_{ii} (i = 1, \ldots, n) \) is a symmetric idempotent and so lies in \(A \).

We claim that for every \(e_{ii} \) there exists \(0 \neq \alpha = \alpha_{ii} \in Z \), the center of \(D \), such that \(\alpha \cdot e_{ii} \in A \). Since \(A \) is a subring and \(e_{ii} \in A \) \((i = 1, \ldots, n) \), it is enough to show that this holds for \(e_{i,i+1} \) and \(e_{i+1,i} \) \((i = 1, \ldots, n-1) \).

Moreover, since \(* \) restricted to the diagonal \(2 \times 2 \) block \(De_{ii} + De_{i,i+1} + De_{i+1,i} + De_{i,i+1} \) is still an involution of transpose type, in order to prove the claim, we may assume that \(R = D_n \).

Now, since \(D \) is \(S \)-radical over \(A \cap D \), it follows by [1] that either \(S(D) \subseteq Z \) or \(D \subseteq A \). Moreover, by [3], since \(e_{11} \notin Z \), there exists \(s \in S \)
such that, for some k, $e_{11} s^k \neq s^k e_{11}$ and $s^k \in A$. In particular $s^k = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is not a diagonal matrix, say $b \neq 0$.

If $S(D) \subseteq Z$, then $C = \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} \in Z_2$ and $*$ induces an involution on Z_2.

Thus, in this case we may assume that $s \in Z_2$. Hence $e_{11} s^k e_{22} = b e_{12} \in A$ and $(b e_{12})^* = b' e_{21} \in A$ with $b, b' \in Z$.

On the other hand, if $D \subseteq A$, $b e_{12} = e_{11} s^k e_{22} \in A$ and $e_{12} \in A$. Hence $c_2 c_1^{-1} e_{21} = e_{12}^* \in A$ and e_{21} lies also in A. Thus the claim is established; in other words, there exist $0 \neq \alpha_{ij} \in Z$ such that $\alpha_{ij} e_{ij} \in A(i, j = 1, \ldots, n)$.

Now, if $D \subseteq A$, then clearly $D_n = A$ and there is nothing to prove. Therefore we may assume that $S(D) \subseteq Z$ and so $\text{PI-deg} (D_n) \leq 2n$.

Let f be the multilinear identity for A of degree d. If $d < 2n$, then

$$f(\alpha_{11} e_{11}, \alpha_{12} e_{12}, \alpha_{22} e_{22}, \ldots) \neq 0,$$

a contradiction. Hence $d > 2n > \text{PI-deg} (D_n)$ and the lemma is proved.

Lemma 3. If R satisfies a generalized polynomial identity (GPI), then R is PI and $\text{PI-deg}(R) < d$.

Proof. Suppose that R is not a PI ring. Then, by a theorem of Montgomery ([4], Corollary to Theorem 2.5.1), for every positive integer n, R contains a *-subring $R(n)$ which is a prime PI ring with $\text{PI-deg}(R(n)) > n$. But $R(n)$ is S-radical over $R(n) \cap A$ and $R(n) \cap A$ satisfies the polynomial identity $f(X_1, \ldots, X_d)$ of degree d. By Lemma 2, $d > \text{PI-deg}(R(n)) > n$, for every positive integer n, a contradiction. Thus R is PI and by Lemma 2, $\text{PI-deg}(R) < d$.

We are finally able to prove our main theorem.

Proof of Theorem 2. Since, by assumption, $S \notin Z(R)$, by ([4], Theorem 2.2.1), either S contains non-zero nilpotent elements or the involution is positive definite, that is $xx^* = 0$ in R forces $x = 0$.

Suppose first that there exists $s \neq 0$ in S with $s^2 = 0$. If $x \in R$, let $n(x, s) > 1$ be such that $(sx + x^* s)^{n(x, s)} \in A$ and let A_1 be the subring of R generated by all $(sx)^{n(x, s)}$, $x \in R$. Then $R_1 = s R$ is radical over A_1. Now, if $b \in A_1$, say

$$b = \sum (sx_i)^{m_i} (sx_i')^{m_1} \ldots (sx_i)^{m_k}$$

then, since $s^2 = 0$,

$$bs = \sum (sx_i + x_i^* s)^{m_i} (sx_i + x_i^* s)^{m_1} \ldots (sx_i + x_i^* s)^{m_k} s = as$$
where \(a \in A \). From this it easily follows that if \(b_1, \ldots, b_d \in A_1 \) then
\[
(b_1 \ldots b_d) s = (a_1 \ldots a_d) s \quad \text{where} \quad a_1, \ldots, a_d \in A.
\]
Hence,
\[
f(b_1, \ldots, b_d)s = \sum a_{\sigma(b_1)} \ldots a_{\sigma(b_d)} s \\
= \sum a_{\sigma(a_1)} \ldots a_{\sigma(a_d)} s \\
= f(a_1, \ldots, a_d)s = 0.
\]

In other words \(A_1 \) satisfies the polynomial identity \(f(X_1, \ldots, X_d)X_{d+1} \).

Let \(R_2 = R_1/N(R_1) \) where \(N(R_1) \) is the nil radical of \(R_1 \). Since \(R \) has no non-zero nil right ideals, neither does \(R_2 \). Moreover, \(R_2 \) is radical over \(A_2 \), the image of \(A_1 \) in \(R_2 \). Since \(A_1 \), and so \(A_2 \), satisfies \(f(X_1, \ldots, X_d)X_{d+1} \) by [5], \(R_2 \) also satisfies \(f(X_1, \ldots, X_d)X_{d+1} \). Therefore \(R \) satisfies a GPI and by Lemma 3 the result follows.

Suppose now that \(* \) is positive definite. We proceed by induction on the degree of the multilinear polynomial identity \(f(X_1, \ldots, X_d) \) satisfied by \(A \).

Since \(* \) is positive definite, \(A \) is semiprime. Moreover, since the center of a prime ring is a domain, \(Z(A) \subseteq Z(R) \) is also a domain. But in a semiprime PI-ring, every ideal hits the center non-trivially ([4], Corollary to Theorem 1.4.2), therefore \(A \) is prime.

If \(A \) has no non-zero nilpotent elements, then \(A \) is a domain and we are done by Lemma 1. Hence we may assume that there exists \(a \neq 0 \) in \(A \) with \(a^2 = 0 \).

Let \(R' = aRa^*; \) then \(R' \) is a *-subring of \(R \), \(S \)-radical over \(A' = aRa^* \cap A \), and, since \(* \) is positive definite, \(R' \) is a prime ring.

Let
\[
f(X_1, \ldots, X_d) = X_dh(X_1, \ldots, X_{d-1}) + g(X_1, \ldots, X_d)
\]
where \(X_d \) never appears as first variable in any monomial of \(g \). Since \(a^2 = 0 \), if \(x_1, \ldots, x_{d-1} \in A' \) and \(x_d \in A \), we have
\[
0 = af(x_1, \ldots, x_{d-1}, x_d) = ax_d h(x_1, \ldots, x_{d-1})
\]
Hence \(aAh(x_1, \ldots, x_{d-1}) = 0 \) and, since \(a \neq 0 \), the primeness of \(A \) forces \(h(x_1, \ldots, x_{d-1}) = 0 \). In other words \(A' \) satisfies \(h(x_1, \ldots, x_{d-1}) \).

By our induction hypothesis, \(R' \) is PI. From this we get that \(R \) satisfies a GPI. By Lemma 3, the result follows.
REFERENCES

Manoscritto pervenuto in redazione il 16 dicembre 1983.