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REND. SEM. MaT. UN1v. PADOVA, Vol. 72 (1984)

Affinities of Groups.

ROLAND ScEHMIDT (*)

There are many examples of non-isomorphic groups ¢ and G with
isomorphic coset lattices &(G) and &(G); the first were given by Baer [1]
and Curzio [2]. These isomorphisms between &(G) and S(G) in general
map cosets of one subgroup of G onto cosets of different subgroups
in G. So it is natural to ask for examples in which this does not hap-
pen or to study isomorphisms o of coset lattices even satisfying

(%) (xH)e = xoH°c and (Hx)°= Hoxe

for all subgroups H of G and xe€ G. This was done by Loiko who
considered the two conditions in (%) separately and who proved in [5]
that in a group @G generated by elements of infinite order any isomor-
phism from &(@) to S(G) satisfying one of these conditions is a group-
isomorphism.

In a joint paper with W. Gaschiitz [3] we studied permutations ¢
of finite groups satisfying (%) and therefore of course also inducing
automorphisms of &(G) which we shall call normed affinities. It is
the aim of the first three sections of this paper to show that the results
of [3] carry over to normed affinities of infinite groups and also to
normed affinities between different groups. Moreover, we introduce
two characteristic subgroups—Am (G) and Reg (G)—of a group G

(*) Indirizzo dell’A.: Mathematisches Seminar der Universitit, 2300 Kiel,
Germania occidentale.

This work is a slightly shortened version of a course of lectures given at
the University of Padova in March, 1982. The author wishes to thank the
C.N.R. for support and Prof. G. Zacher for hospitality.



164 Roland Schmidt

which measure how near to isomorphisms the normed affinities of G
are. Am (G) is the group generated by all the ((yo)~X(x°)~Y(xy)o)s™
where z,9 € @ and o runs through the normed affinities from G to
groups G, and Reg (G) is the set of all g€ G such that (xg)s= zoge
and (gr)°= gox° for all xe€ G and all normed affinities 6. We show
that Am (G) is «small —it is locally cyclic and contained in the
centre of @—and that Reg (G) is « big »—it contains all elements of
infinite order of G and G/Reg (&) is n-closed for every set sz of primes.
Hence for many groups every normed affinity is an isomorphism.

In the remaining three sections we give a characterization of
Am (@) and Reg (@) inside the group ¢ in terms of p-collecting sub-
groups and p-collectors, p a prime, defined in § 5. For this in § 4 we
present a number of constructions for normed affinities which by the
way also yield examples of normed affinities between non-isomorphic
groups. Finally, our characterizations of Am (@) and Reg (G) in § 6
show that these characteristic subgroups are invariant under index-
preserving projectivities and therefore also under normed affinities.

1. Simple properties of affinities.

We give the exact definitions of the concepts mentioned in the
introduction. For this let G and G be groups and &(@) be the lattice
of cosets of G, i.e. the set of all cosets of subgroups of & and the empty
set with the set-theoretical inclusion as relation. In[3] we called two
cosets X, Y of G right parallel (resp. left parallel) if there exists an ele-
ment ge G such that X = Yg (resp. X = gY).

1.1. DEFINITION. (a) A map o from G to G is called normed if
lo=1.
(b) A bijective map ¢ from G to G is an S-isomorphism if
XeB(@) < XoeB(@)
for every subset X of @, i.e. if o induces an isomorphism from S(&)
onto &(G).

(¢) An S-isomorphism ¢ from G to G is an affinity if X right
parallel to Y implies X¢ right parallel to Yo and X left parallel to Y
implies X¢ left parallel to Ye for all X, Y € &(G).
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It is easily shown (see[3], p. 188) that an affinity o from @ to G
satisfies X right (left) parallel to Y if and only if X¢ right (left) parallel
to Ye for all X, Y € &(G@). Hence products and inverses of affinities
are affinities. Since for every ge G the right translation g,: # — xg
(# € &) and the left translation 1,: x — g2 (2 € G) are affinities ([3],
p. 189), the existence of an affinity ¢ between G and G immediately
leads to the existence of a normed affinity between @ and G. Therefore
we shall restrict our attention to normed affinities throughout. We
give a firgt characterization of normed affinities.

1.2. THEOREM. The bijective map o from G to G is a normed affinity
if and only if,

(a) o induces a projectivity from G to G, i.e. satisfies X <G iff
Xo<@ for all subsets X of G, and

(b) (xH)° = x°H° and (Hzx)s= Hoxc for all x€ G, H<G.

Proor. If ¢ is a normed affinity, then (a) holds since the cosets
containing 1 are exactly the subgroups of ¢. Furthermore, zH is left
parallel to H and therefore (xH)o is left parallel to He,i.e. (zH)® = yH¢°
with y € @. Since z°ecyHo and H°<@, we get acHo = yHo= (vH)e.
Similarly, (Hxz)e= Hoxo.

If o satisfies (@) and (b), then ¢ is a normed S-isomorphism.
If X=2oH and Y= yK are left parallel (»,y€@; H, K<@G), then
there exists ge @@ such that gyK—=g¢gY = X=xH. This implies
K =H and Yo= yoH° is left parallel to xzcHo= Xo. Since every
left coset is also a right coset we get in the same way that o preserves
right parallelism and hence is a normed affinity.

Every bijective map ¢ with 1°=1 from the cyclic group G of
order 4 to the elementary abelian group G of order 4 satisfies (b) of 1.2;
hence (a) is needed in this theorem. On the other hand, 1.2 shows that
the normed affinities are exactly the S-isomorphisms satisfying con-
dition (%) of the introduction. An easy consequence of 1.2 is the fol-
lowing result.

1.3. THEOREM. If o: G — G is a normed affinity and he @ is an
involution, then (xh)e = x°he and (hx)°= hox° for all x € G. Hence if G
18 generated by involutions, every normed affinity of G is an isomorphism.

ProoF. Let H = {1, h}. Then Hx = {x, hz} and by 1.2 we have
{x, (ha)°} = (Hx)° = Hewxe = {x°, hoa} .
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Hence (hz)= hex°, and in the same way one gets the other equation.
By a trivial induction then, if &, ..., h, € G are involutions, (&, ... h,)° =
= h{... k. So if @ is generated by involutions and x, y € G, there are
involutions h;, k;e@ such that x =h,...h,, y=F, ...k, and then

(@y)= h{... BJk] ... k] = a°y° .

Hence ¢ is an isomorphism. _ _
In [3] we introduced the amorphy a: @ XG — G of a map ¢: G -G
defining

(1.4) a(@,y) = (y°) xo)May)® for all 2,y G .
Using ((wy)2)° = (x(y2))° one gets the associativity identities
(1.5) a(x, y)*a(xy, 2) = a(y, 2)a(z, y2) for all x,y,2€ G .

Normed affinities are characterized by the behaviour of their
amorphies. In order to prove this we need the following result due
to Loiko; for a proof see[5], p. 151 or[6], p. 293.

1.6. LEMMA. If 0: G — G is a normed S-isomorphism and u e G
has infinite order, then (us)t= (u*)e for all k € Z.

1.7. THEOREM. The bijective map o from G to G with amorphy a
is a normed affinity if and only if

(@) o induces a projectivity from G to G and
(b) a(z, y) € {xdo N {y)e for all x,y € q.

If o is a normed affinity, then (vy)°= x°yc for all x,ye€ G with
o(x) or o(y) infinite.

PrOOF. By 1.2, if ¢ is a normed affinity, () holds and for x,y € &
we have (zy)°e (w<y>)“— x9(y)® and hence a(z,y) € (y>* since {y)°
is a subgroup of G. Similarly, (zy)ee (x)oye and so a(x, y)¥" 7 € {z)e.
Since <{y)7 is cyclic, a(z,y)* "= a(x, y) and hence (b) holds.

Now assume that ¢ satisfies (a) and (b) and let x€ G, H<G. For
he H we have (xh)°= x°hoa(x, h) € x°H° since a(, h) € {hYye<H°<G.
Hence

1) (xH)eCacHs  for all x€ @, HLG .
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If ge @ is of infinite order and U = {g), then U¢ is infinite cyclic.
Using induction on |U:.H| we show that (zH)c= x°cHe° for all xe U,
H<U. This is true for |U:H| = 1; so assume it to be true for sub-
groups of smaller index than |U:H|=mnand let U =2,HVU ... Uz, H
with ;= x. Then

U= (2, H)°U ..U (w,H)eCagH U ...U 22 Ho

and therefore |U:H°| <n. By the induction assumption, |Us.H°| = n.
Then the #{H° are distinct and we have (x,H)c= o{H° for all 1.
In particular, (zH)°= xeHe. This shows that o induces a normed
S-isomorphism (by 1.2 even a normed affinity) in U and by 1.6,

(2) (g¥)° = (g°)* for all ke Z.

Now assume that a(z,y) %1 for elements z,y€G with  or y of
infinite order. Since a(z, y) € {x>* N {y)7, then i(r) = i(y) = oo and
a(z, t) = (x9)"= (y°)* for r,se€Z. By (2), 2= y* and applying the
associativity identities 1.5 to z, z—", a7y we get

a(@, &) a(@, a'y) = a(@~, @'Y)a(®, ¥) .
Again by (2), a(xz,2~") =1 and

(y°)* = a(x, y) € (oY) = {y*+)Ho = {(y°)*+) .
This contradiction shows that a(x,y) =1 and proves
(3) (xy)s = xoys  for all x,y € G with o(x) or o(y) infinite .
It remains to show that o satisfies (b) of 1.2. So let vre G, H< (G, and
heH. If o(h) is infinite, then a°h®= (wh)°e (®H)° by (3), and if
o(h) is finite, then [(x<h))?| = o(h) = |xo¢h)°| and xoho e xo(h)o =

= (@<h))° by (1). Hence (zH)® = «°H°. Since (hx)°= hoxoa(h, x) =
= hoa(h, x)x° e Hox’, we get in the same way that (Hx)o= Hoxo,

An easy consequence of 1.7 is that normed affinities map abelian
groups onto abelian groups.
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1.8. THEOREM. Let o: G — G be a nmormed affinity.
(a) If @,y € G such that vy = yx, then x°y® = yoxo,
(b) If H<@G is abelian, then H° is abelian.

(¢) Z(G) = Z(B).

Proor. If o(2) or o(y) is infinite, then xoys = (vy)° = (yx)°= y°x°
by 1.7. Hence assume that o(x) and o(y) are finite. Then H = (&, ¥)
is a finite abelian group, hence H = {h,, ..., b,y with (b)) N <B,)) =1
for ¢ j. Since ¢ induces a projectivity, H°= (&, ..., b and hlh] =
= (h;h;)9 = (h;h;)° = h5hT, since a(h;, h;) = 1 by 1.7 if a is the amorphy
of ¢. So He is abelian and x°y°= yox°. This proves (a). Obviously,
(a) implies (b) and also Z(G)°<Z(G). Since o-* also is a normed af-
finity, we get the other inclusion.

It is clear that a normed affinity of a group induces a normed af-
finity in every subgroup. Theorem 1.2 shows that it also induces a
normed affinity in every factor group.

1.9. LEMMA. Let 0: G — G be a normed affinity. If N < @, then
Ne < @ and the map &: ¢/N — G/N° with (xN)7= acNe = («N)° is a
normed affinity. If a and a are the amorphies of o resp. &, then
a(@N, yN) = a(z, y) N° for all x,y € G.

ProoF. For we@ we have N = Nz and by 1.2 therefore
29 No= (xN)o= (Nx)°= Nox°. Since ¢ is surjective, N°=<1 G. Fur-
thermore 1.2 shows that G is bijective and induces a projectivity from
G/N to G/N°. For z,y€c G we have
a(@N, yN) = (y° No)~*(ae No)~*(xy)° N° = a(x, y) N°,
and since a(z, ¥) € (x)° N {y)o = (w7 N {y°),
a(xN, yN) € @ N> N (Yo No» = {&NY° N {yN)® .
‘We ghall need the following simple result; for a proof see [6], p. 293.

1.10 LemmA. If o: G — G is a normed affinity, then also v: G — @
given by g7= ((g7)°)* for g€ G is a normed affinity.
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2. The amorphy and regular elements.

In this section we define two characteristic subgroups of @ which
in a way measure how near to isomorphisms the normed affinities of
G are.

2.1 DeFINITION. Let G and G be groups, ¢: G—G be a map,
a the amorphy of 0. The element xze G is called right (left) reg-
ular for ¢ if (xg)°= x°ge ((g»)°= g°x°) or, equivalently, a(z,g) =1
(a(g, ) =1) for all g € @; w is called regular for o if » is left and right
regular for 6. Reg" (¢) resp. Reg! (o) is the set of right resp. left regular
elements for o and Reg () = Reg" (¢) N Reg! (o) is the set of regular
elements for o.

2.2. LEMMA. If o: @ — G is a normed affinity, then Reg’ (¢) and
Reg! (o) are subgroups of Q.

Proor. Since 1°=1, 1 € Reg’ (s). If x,y € Reg’ (s), then for all
g€ G we have

(zyg)° = x°(yg)° = x°y°g° = (vy)°9°,

hence zy € Reg" (¢). If o(x) is finite, this also implies that #— € Regr (o)
and if o(x) is infinite, z-* € Reg” (¢) by 1.7. Hence Reg" (¢) is a sub-
group of G. The proof that Reg! (¢) <G is similar.

2.3. THEOREM. Let G be a group and let Regr (G) (Reg!(G)) be
the set of elements of G which are right (left) regular for every mormed
affinity from G to any group G.

(a) Regr (@) = Reg! (@) =: Reg (G).
(b) If 7: G@ - H is a normed affinity, then Reg (G)* = Reg (H).

Hence Reg (@) is a characteristic subgroup of G containing all ele-
ments of infinite order and all involutions of G.

PrOOF. (a) By 2.2, Reg" (&) and Reg!* (@) are subgroups of G. Let
z € Reg’ (G) and let ¢: G —@G be a normed affinity. By 1.10, also
7: G — @ with g7= ((g7%)°)* for all g€ @ is a normed affinity. Since
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x' € Reg’ (1), we have for ge G

((gm)9) 2 = (((@1g)7)7) ™ = (@27 = (@ Y)e(g~)*
= (29)7(g°)* = (g°a°)",

i.6. (gx)°= g°x°. Since ¢ and g were arbitrary, xec Reg!(G). So
Reg” (@) <Reg! (G), and the other inclusion we get similarly.

(b) Let x<cReg (&) and let ¢: H -~ H be a normed affinity.
For he H there is ge G such that gr= h, and since e Reg (G)
and 7 and 7o are normed affinities, we have

(acfh)" — (wrgr)a — (wg)w — .’L‘"’g"" j—— (xt)ahu ,

i.e. 27 € Reg" (H) = Reg (H). Hence Reg (G)*<Reg (H), but since
771 algo is a normed affinity, we get the other inclusion. This proves (b).

Since every automorphism of G is a normed affinity, Reg (G) is
a characteristic subgroup of G which contains all elements of infinite
order (by 1.7) and all involutions (by 1.3) of G.

Now we prove our first main result on the amorphy of a normed
affinity.

2.4. THEOREM. If o: G — G is a normed affinity and a the amorphy

of o, then a(x,y) € Z(G) for all x,y € @.

PROOF. Suppose that a(z,y) ¢ Z(G) for elements z,y € ¢. By 1.7,
x and y have finite order and we chose @, y with a(z, y) ¢ Z(@) so that
o(x) is as small as possible. If ¢ = x,2, with o(x,) and o(x,) less than
o(x), then the associativity identities 1.5 with x,, #, and y would imply

a(®, y) = (a(@1, ©)")2a(@y, y) a(@y, 2,y) € Z(G)
a contradiction. Hence o(z) = p", p a prime, ne N.
Let z€@ such that a(x,y) does not permute with z°. Then

a(x, y) € {z°>. Since o(x°) = o(x) = p", the subgroups of (x°) form
a chain and by 1.7, we have

a(zy @)y <<@7) N (27 < Lalw, §)) <2 N (Yo -

Hence a(z, 2)*" = a(z, ) = a(«, y)** with &k € Z. The associativity iden-
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tities for 2z, x and y yield
() 1= a(w, y)' " a(z, zy)a(zr, y)~t.

Since a(z, y) and a(2x,y) are elements of (y°), they permute with y°
and therefore also a(z, xy) permutes with y°. Furthermore, a(z, xy)
permutes with (xy)e= x°yca(xr,y) = 29(y°)* (s€Z) and hence also
with zo. Since a(x, y) permutes with ¢, by (%) also a(zx, y) does. But
a(zz, y) also permutes with (22)9 = 29(2°)* (t€Z) and hence with z°.
Certainly, a(z, vy) permutes with 2°, by (%) also a(x, y)**® does. Since
a(x, y) € {z°) is a p-element, finally a(z,y) permutes with 29, a con-
tradiction.

Theorem 2.4 is fundamental to our study of affinities. We give
two immediate consequences.

2.5. COROLLARY. If @ is a group with Z(G) = 1, then every normed
affinity of G is an isomorphism.

This follows from 2.4 and 1.8 whereas the next result, the simplified
associativity identities, of course follow from 1.5 and 2.4.

2.6. COROLLARY. If 0:@ — G is a mormed affinity and a the
amorphy of o, then

a(z, y)a(xy, 2) = a(y, 2)a(z, y2) for all r,9,%€ G.

We define a second characteristic subgroup connected with the
normed affinities of G.

™ 2.7. DEFINITION. If 0: G — G is a normed affinity with amorphy a,
we let Am (¢) = {a(®, y)° |¢,y € @>. The amorphy Am (G) of G is
the gsubgroup of @& generated by all the Am (o) where o ranges over the
normed affinities from @ to any group G.

2.8. THEOREM. If G is a group, Am (@) is a characteristic subgroup
of @G contained in the centre Z(@) of G.

PROOF. That Am (@) < Z(@) follows from 2.4 and 1.8. Let ¢: G — @G
be a normed affinity with amorphy a and let « € Aut(G). Then
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7= o"10 is a normed affinity. If b is the amorphy of 7, then for
z,y € G we have

woyoa(w, y) = (vy)°= (@*Y*)a™" 0= x°y°b(a*, ¥*) .
Hence (a(z,¥)°")*=Db(z* y*)* € Am (¢) and so Am (6)*<Am (G).
Thus Am (@) is a characteristic subgroup of G.
3. The structure of Am(G) and G/Reg(G).

We show in this section that Am (@) is locally cyelic and G/Reg (@)
is m-closed for every set @ of primes.

3.1 LEMMA. Let o: @ — @G be a normed affinity, a the amorphy
of o, and let g¢,,9.€ G such that g¢,9.= g.9, and <{g,) N {g,) =1.
Then a(919:, €) = a(gs, #)a(gs, @) and a(w, §19,) = a(, ¢,)a(#, g;) for all
zed.

ProoF. By 2.6, we have
(g1, 92)a(9192, %) = (g2, @) (81, 927) ,
and by 1.7, a(g,, g) € {g.)° N {g,)°=1. Hence
1) (9192, @) = a(gz, %) (g1, g2) -
Replacing g, by g, and ¢, by g,, we get
(2) (9192, @) = a(gs, 2)a(ge; 6:2)

Since_a(g,, #), a(gs, §1%) €{g2)° N Z(G) and a(gy, §:2), a(gs, ¥) €< N
N Z(G) and the product of {g,>°* N Z(G) and {g,)>° N Z(QR) is direct, it
follows that a(gy, g.2) = a(g,, ) and hence by (1), a(¢,9., ) = a(g, )+
‘a(gs, ). The other equation is proved similarly.

3.2. COROLLARY. Let o: G — G be a normed affinity, a the amorphy
of o, and let x,yc @ be of finite order, x = [[=,, y = [Jy, with
peP

veP
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p-primary components x,,y, of x resp. y. Then

a(a:, Y) = ]__I a(wm fy) = l—La(wy Yp) = l—!)a(wm :’/w) ]

peP DE.
and a(x,,y,) is the p-primary component of a(x, y).

The main tool in the description of Am (G) and G/Reg (G) is the
following result.

3.3. THEOREM. Let G be a group. If g, h € G such that {g) N {h) =
=1 = {gh) N <{h), then h e Reg (G).

PrOOF. Let o: G — G be a normed affinity, a the amorphy of o
and let x € @. We have to show that a(h, z) = 1; then h € Reg" (G) =
= Reg (G). By 1.7 and 3.2, it suffices to do this for all e G of prime
power order. So let ze€ G of prime power order and assume that
a(h, ) 1. Then <h)° N {x)°#1 and hence by our assumption, (g> N
N<xy =1 and <{gh) N<x) =1. Therefore, in the associativity
identity

a(g, k) a(gh, x) = a(h, x)a(g, ho)
we have a(g, k) = 1 and a(gh, ) =1 by 1.7, and hence
a(h, @) = a(g, he)relg* N (@)*=1,
a contradiction.

3.4. COROLLARY. Let p be a prime. If g and h are p-elements of a
group G with g ¢ Reg (G) and h¢ Reg (@), then {(g) N <{h)y #1.

Proor. If {g> N (k) =1, then by 3.3, we would have {gh) N
N by =1, But then {gh) N <{g) =1, hence <hg) N {g) =1, and
by 3.3, g € Reg (@), a contradiction.

3.5. LEMMA. Let 0: G —H and 7: G — K be normed affinities
with amorphies a and b resp. and let x,y, u, v be p-elements of G, p a
prime. Then either {a(x,y)o "> <{b(u, v)7 > or {b(u, v)*"> <<a(@, y)* .

PROOF. Assume that this is false. Then N = {a(z,y)° > N
N {b(u, v)*™") is a proper subgroup of these two cyclic p-groups. By
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2.8, N<Z(@) and hence by 1.9, ¢ and 7 induce normed affinities &
and 7 in G/N with amorphies a resp. b given in 1.9. Since z and u
are p-elements, the subgroup lattices of {(x) and {(u) are chains and
hence (x> N {u) = N, i.e. <¢N) N {uN) = 1. By 3.4, N € Reg (G/N)
or uN € Reg (G/N). But N € Reg (G/N) implies 1 = a(zN,yN) =
= a(z, y) No, i.e. a(x,y)° €N, and uN € Reg (G/N), similarly, im-
plies b(u, v)*" € N, a contradiction.

3.6. THEOREM. If G is a group, then Am (G) = [] Am (@), where
peP

Am (@), =~ Z,» with ne NU {0, co}. Hence Am (G) is locally cyclic.

PrOOF. By 1.7 and 2.8, Am (G) is a periodic abelian subgroup of G.
Hence Am (G) = HAm (@), where Am (@), is the p-component of
peP
Am (G). By 3.2, Am (G), is generated by the a(z,y)°" with =,y e @
p-elements, ¢ a normed affinity with amorphy a from G to some
group H. By 3.5, Am (@), ~ Z,» with neN U {0, oo} (see for ex-
ample [7], p. 98).

3.7. LEMMA. If = is a set of primes, g and h are m-elements of the
group G and x is the n'-component of gh, then x € Reg (G).

Proor. If gh has infinite order, then # = 1 € Reg (G). So assume
that o(gh) is finite and let gh = 2y = yx where y is a nm-element. As in
the proof of 3.3 we have to show that a(wx, 2) = 1 for every g-element
2€ @, q a prime, a the amorphy of a normed affinity ¢ from G to some
group G. If qem, this follows from 1.7. So let ¢¢x. Then in

a(g, k)a(gh, 2) = a(h, 2)a(g, k2) ,

a(g, h), a(h,2) and a(g, h2) are m-elements whereas a(gh,2) is a

nt'-element in Z(G). Hence a(gh,2) =1 and by 3.1,
a(gh, 2) = a(xy, 2) = a(®, 2)a(y, 2) = a(z,2),
since y is a m-element.

3.8. THEOREM. If G is a group, then G/Reg (G) is m-closed for every
set w of primes. In particular, if G/Reg (G) is finite, it is nilpotent.
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Proor. If g Reg (@) and h Reg(G) are nontrivial m-elements in
G/Reg (G), then o(g) and o(k) are finite by 1.7 and so we may assume
that g and h are m-elements. By 3.7, then gh Reg (@) is a m-element
in G/Reg ().

4. Construction of normed affinities.

wasm

Most of our results so far show that normed affinities are near to
being isomorphisms and that for many groups every normed affinity
is in fact an isomorphism. In this section we want to show that on
the other hand there do exist normed affinities which are not isomor-
phisms if the group has certain structural peculiarities suggested by 3.4.
These results will be used in § 6 to give a characterization of Am (@)
and Reg (G) in arbitrary groups G. Furthermore we present examples
of normed affinities between non-isomorphic groups. Basic for all
these examples is the following construction.

4.1. LEMMA. Let G be a group and let N and M be subgroups of G
such that

(@) 1< N<M <G and
(b) N< (x> for all xe G\ M.

Then for every 1 ~d e N the map o = o4: G - G with x°= x for
all xe M and x°= xd-* for all xe€ A\ M is a normed affinity. For
2,y € A\M and the amorphy a of ¢ we have

a ifaeyeM
WN=1a itay¢ M.

So Reg (o) = M except when |G.M|= 2 and d*= 1 in which case o
is an automorphism.

Proor. Obviously, ¢ is bijective. Furthermore, if U<@, then
Us=TU if U<M and Us<UN="U if ULM. Hence U= U for
all subgroups U of G. Since G is generated by the elements g € G\ M,
N<Z(@). Hence a(x,y) =1 if one of # and y is contained in M,
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and if x, y e G\ M, then

— dut da- )0 — a: if xye M

So always, a(@, y) e N<{&) N ) ={@d>enNy)yifr,ye AN M. Byl.7,
o i3 a normed affinity. The last assertion of the lemma follows im-
mediately from the formula for a(z,y).

It is easy to construct groups with subgroups N, M having the
properties of 4.1.

4.2. ExAMPLE. Let p be a prime and let G = {a) X B be a p-group
with o(a) =p»> pm»=exp(B), m>1. Then N = {(a*"™") = U,(G)
and M = (a®*" ™)X B = 2,(Q) satisfy (a) and (b) of 4.1. If 1 #d€ N,
then o; is a normed affinity of ¢ which is an automorphism only for
p=2and n=m-+ 1.

If @ is a cyclic p-group, (b) of 4.1 is automatically satisfied if (a)
holds, and so 4.1 produces normed affinities of ¢. We shall, however,
also need normed affinities of G of a different kind.

4.3. LEMMA. Let p > 2 be a prime, G = {g)> a cyclic group of order p»,
n>1, and let H = <g?*). Then o: G — G defined by (gr)°= g*z,
(9?x)°= gx for all x€ H and y°=1y for all ye G\(gH U g*H) is a
normed affinity of G with H<Reg (o) and a(g,g)=g® if a is the
amorphy of ¢.

PROOF. Since ¢ only permutes the cosets gH and ¢g2H and fixes
every other element of @, it is bijective and induces a projectivity.
Let u, v € G. If one of these elements, % say, is contained in H, then v
and wv are in the same coset of H and a(uw,v) =1. If u,ve NH,
then a(u, v) e<ude N W)= G. By 1.7, ¢ is a normed affinity, H<
<Reg (o) and a(g,9) = g~°97*9 =g

If H< G with G/H cyclic of order » and H has the same prop-
erties in @, then it is quite clear how to extend a map from H to H
to a map from G to G. We describe how to construct normed affinities
in this way.

4.4. LEMma. Let G =H{g), H= @G, |G:H|=n>1 and G=
=H{g), H= @, |G:H|=mn, let v: H—~H be an isomorphism and
define o: @ — @ by (gw)° = G'w® for i€{0,..,n—1}, xcH. Then
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(a) o is an isomorphism if and only if (#7)7 = (x°)* for all xe H
and (g")*= g".
(b) o is a normed affinity with H = Reg (o) if and only if
(1) (x7)7 = (9)® for all x€ H,
(2) (gn)r=grt with 1#te () () and t7€ () <=,
vEG\H #€G\H

(3) o(g) and o(g) are finite.

PrOOF. We only prove (b) since the proof of (a) is quite similar
and rather obvious. So let ¢ be a normed affinity with amorphy a
and H = Reg (¢). Then for re H

2og® = (2g)° = (g2°) = g°(2*)°

and since g°= g, this proves (1). Furthermore, for ie{l,...,n —1}
we have

(g")fx"': (g".’b‘)" — (g"—")ﬂ(giw)“a(gﬂ—‘, giw) — gn—igiwra(gn—i, g‘x) .
Since ¢ is a normed affinity, a(g"—, g'z) € Z(G) and hence
t =g (9" = a(g", g'@) € {g*T)°

and " =1"e{g'z) for all iefl,...,n—1}, x€ H. Since ¢ is not
an isomorphism, ¢ %1 by (a). Hence (2) holds and (3) follows from 1.7
and H = Reg (o).

Conversely, let 7 satisfy (1)-(3). Then ¢ is a bijective map, and
an easy computation shows that for w,ve @, u = g'w, v= g’y (i,j€
€{0,...,n—1}; 2,y € H) we have

(w)oz{w’vﬂ -if 'l.l+.’{'<n

wsvet if it j>n.

This shows that H = Reg (o) and that a(u,v)e {us> N (o> for all
u, v € G, by (2). By 1.7, it remains to show that o induces a projec-
tivity. So let U<@. If U<H, then Uc= Ur<H. If U<H, then
t*"eU N H and so for w,ve U we have uvs = (uv)s € U or uov° =
= (uv(t-l)d")deUd. Hence also (u°)~*eUc if o(wo) is finite, but if u°
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has infinite o_rder, then by (2) and (3), u°¢ eﬁ_and 80 (u%)~1= (u~1)ce Uo.
Hence Uc<(@, and similarly, V<@ if Vo<(@. This proves the lemma.

We saw in 4.1 that o; is an automorphism if |N| =2 = |G: M|
there. 4.4 shows how to construct then and also in more general

situations a normed affinity from G to a new group @ which is not an
isomorphism.

4.5. LEMMA. Let G be a group and let N and M be subgroups of G
such that

(@) 1< N<M< G,
(b) N<<z> for all xe€ G\ M,
(o) 16:M] =2,
(@) o(y)>4|N| for every 2-element y € G\ M.
Let ge A\ M and N = (t). Take G = M{G)> with g2= g*t~* and

wW=a9 for all xe M. Then o: G — G defined by (gz)°= Gz for
i1€{0,1} and we M is a normed affinity with amorphy a(g,g) =t.

Proor. By (b) and (¢), there are 2-elements in G\ M and N is a
2-group. Since t € N <Z(@), the extension G exists, and if v: M - M

is the identity, (1) and (3) of 4.4, (b) are satisfied. Furthermore,

te ) <{y>. But if we G\ M, then w = g for some v M and so
veG\ M

w? = Jravr = g*tlavw = 17 (gw)? .
If » is the 2-component of gz, then by (d), o(u)>4|N| and hence
te {tign)®y = (wt) <(w).

Thuste ] <{w) and by 4.4, ¢ is a normed affinity. Clearly, a(g, 9) =
WEG\M
=g =1t
We remark that it is in general not possible to have such an af-
finity if there are elements of order 2|N| in G\ M.

4.6. LEMMA. Let G be a group and let N and M be subgroups of G
such that

(@) 1< N<M < G,
(b) N<<x) for all xe A\ M,
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() |G:M|=2=|N|,
(d) there exists y € G\ M with o(y) = 4,

(e) for every mormal subgroup M, of G properly contained in M
with G| M, a 2-group there is x,e G\ M, with N £{x,>.
Then every 2-element of G is contained in Reg (G).

ProOF. Assume that there are 2-elements in G\ Reg (G). By 3.8,
G/Reg (G) = (8/Reg (G)) X (T/Reg (G)) where S/Reg(G) is a non-
trivial 2-group and 7/Reg (&) is a 2'-group. Since M and T are proper
subgroups of @, there is g € G such that g¢ M and g ¢ T, and since
G/M and G/T are 2-groups, also h ¢ M and h ¢ T if h is the 2-component
of g. By (b), N<<h). If xe G\(M N T), then either # ¢ M and then
N<<x) or ¢ T and then also x,¢ T if x, is the 2-component of z.
By 3.4, {w,) N <(h)+*1 and s0o N<<{x). By (¢), MNT = M. This
implies that M = T and |S:Reg (G)| = 2. Hence y ¢ Reg (&) and so
by 3.2, there exists a group @, a normed affinity ¢: @ — G with amorphy
a and a 2-element z2e G with a(y,2)=1. Since |S: Reg(&)| = 2,
z = yw with w e Reg (@) and by 2.6,

a(y, ¥) = a(y, ¥) a(y? w) = a(y, w)a(y, yw) = a(y, 2) #1.

But ¢ induces a normed affinity on (y) which is an isomorphism since
[{y>| = 4. This contradiction proves the lemma.

Note that the assumptions in 4.5 and 4.6 are satisfied in abelian
groups of type (27, 2,...,2) with n>3 resp. n = 2 if one takes N =
= 0,,4(G) and M = Q, ,(G). Hence both cases arise and lead to
different situations in the characterizations of Am (@) and Reg (G) in § 6.

We now use 4.4 to give an example of a normed affinity between
two non-isomorphic groups.

4.7. EXAMPLE. Let p > 2 be a prime,
H= {2,y lor=yr=2=1[y,0] =2 = =2

the non-abelian group of order p® and exponent p and « the auto-
morphism of order p of H given by z*=ay~%, y*=y. Finally, let s
be a quadratic non-residue modulo p and G = H{g), @ = H{(j) with
g*=2, g»=2", and h9 = h*= k7 for all he H. Then G and @ are two
non-isomorphic groups of order p* (see[4], p. 347), but since (@) =
= Q(G) = H and U(G) = U(F) = {2), the identity v on H satisfies
(1)-(3) of 4.4, (b). Hence there exists a normed affinity from G to G.
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It is easy to see that if @ = H X K is a torsion group with (o(),
o(y)) =1 for all ze H, ye K (so that (@) ~ QH)XL(K)) and if
v: H —-H and u: K - K are normed affinities, then ¢: HX K - HXK
with (zy)°= a*y# (x€ H, y € K) is a normed affinity. We shall need
a similar result in the case that the product is not direct.

4.8. LEMMA. Let G = HK be a torsion group, K<Z(@) a p-group,
P a prime, and assume that every element in H/H N K has order prime
to p. Let v be an automorphism of H, u: K — K a normed affinity with
amorphy b and let

(1) x*= a* for all xe H N K and
(2) HN K<Reg (u).

For g="hke@ (he H, ke K) we define g°= h*k*. Then o: G —> G
is a normed affinity, and if a is the amorphy of o, we have a(g, g') =b(k, k')
for ¢ =n'E (WeH, keK).

Proor. Let 7: @ — G be defined in the following way. For
g = a2y €@ with p’-component = and p-component y let gv= zry~.
Clearly, since v € H, y € K <Z(@), this is well-defined and bijective.
If g=hk (heH,keK) and h = wuv with p’-component % and
p-component v, then ve H N K and % is the p’-component and vk
the p-component of g. Hence by (2) and (1),

g7 = w(vk)# = workr = b k»,
i.e. ¢ =17 is a well-defined and bijective map. Now
(99')° = (hW' kE')e = B*(R')* k(K )#b (K, k') = g°(9')°D(K, k') ,

and hence a(g,g9') =0b(k,k'). If U is a subgroup of @G, then
U= (UN H)(UN K) by our assumptions, and hence Uc= (U N H)*-
(U N K)# is a subgroup of G; similarly, V" <@ if V<@. So ¢ induces
a projectivity of @. If g = hk = wvk as above and similarly ¢' =
= hkEk' = u'v'k', then g°= g*= w*(vk)* and (vk)* is the p-component
of g°. Hence (wk)#<<g)° and (v'k'Hr<{g'>. Since v,v' € Reg (u),
b(vk, v'k') =b(k, k') and so finally, a(g,g’) = b(k, k') € {g)° N {g’)°.
By 1.7, o is a normed affinity.

We use 4.1 to describe all groups having Am (G),~Z,~ for some



Affinities of groups 181

prime p. For the definition of a central product with amalgamated
subgroup see [4], p. 49.

4.9. THEOREM. Let G be a group, p a prime.

If Am (@), = Z,«, then there exist H<G and r€ N U {0} such that

(1) H is a torsion group,
(2) o(x)<p" for every p-element xe H,
(3) Z(H) contains an element of order pr, and

(4) G is the central product of Am (G), and H where the subgroup
of order p* of Am (G), is amalgamated with a central subgroup of
order p™ of H.

Conversely, if H is a group and r € N U {0} with properties (1)-(3)
and if G is the central product of Z and H where Z ~ Z,» and the sub-
group of order p* of Z is amalgamated with a central subgroup of order pr
of H, then Am (G),= Z.

Proor. Let Am (G),~Z,-. We show that

(*) of x€G is a p-element and ze Am (@), with o(z) = o(x), then
(w) Reg (G) = <z) Reg (G).

For this observe that since z € Z(G), A = (x, z) is abelian of exponent
o(x) = o(2) and hence there exists a subgroup B of A with A = (x> X
XB =<{2)XB. Then BN Am (G),= BN<{z)=1 and B<Reg(G)
by 1.7. Thus {(x)> Reg (G) = <{z> Reg (G) as asserted.

Since Am (G),#1, there exist p-elements in G\ Reg (G) and
hence by (%), there exists z€ Am (@), with z ¢ Reg (G). Let

H[Reg (G) = {y € G/Reg (G)|(o(y), p) = 1}

be the p’-component of G/Reg (¢). By 3.8, H is a subgroup of G,
and H N Am (G),= Reg (@) N Am (G),< <{#) since &(Z,») is a chain.
Put |[H N Am (G),| = p*. We show that H and r satisfy (1)-(4).

If g€ G would be of infinite order, then (g, z) = {g> X (2> would
be generated by elements of infinite order and therefore would be
contained in Reg (G) by 1.7. But 2 ¢ Reg (G). Hence G is a torsion
group and (1) holds. If y € H would be of order pr, then we would
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take we Am (@), with o(w) = o(y). By (%), we y) Reg (G)<H, a
contradiction since [H N Am (G@),| = p. Hence (2) holds, and since
Am (G)<Z(G), also (3) is satisfied. Finally, (%) shows that every
p-element of @ lies in Am (G),H. Hence G = Am (G),H by definition
of H, and since Am (@), <Z(@), G is a central product of Am (G), and H
and (4) holds.

Conversely, assume that @ is the central product of Z and H as
in the theorem, let N be the subgroup of order p* in Z (n € N) and let
M = HS where 8§ is the subgroup of order p™t of Z. If xe G\ M,
then « = 2h with z€ Z, he H and o(z) > p*+. Then 2* = 2*'h*" and
(o(h*"), p) =1. Thus N<<{2”)<<x), and N<Am (G) by 4.1. This
holds for every proper subgroup of Z and therefore Z<Am (G),.
Conversely, if g e Am (@), take z € Z with o(z) = o(g). By 3.6, <{g,2)
is cyclic and hence ge<2)<Z. Thus Z = Am (G), and the theorem
is proved.

5. p-collecting subgroups and p-collectors.

To determine Am (G) and Reg (G) for a group G we have to con-
sider every affinity from @ to any group G. We shall use 3.4 to give
a characterization of Am (@) and Reg (@) within the group G. For
this we define further characteristic subgroups of G.

5.1. DEFINITION. Let p be a prime, G a group. Put
0°(G) = {w € Glo(w) = oo or (o(x),p) =1).
A subgroup 8 of G is a p-collecting subgroup of G if

(a) 0*(G)<S < G and

() K:= ] &> 1.
2EG\S

We call K the p-collector of 8, K = J(8). We also call G a p-collec-
ting subgroup of G and 1 its p-collector.

5.2. REMARK. (a) If K is a p-collector, then the intersection of
all p-collecting subgroups of G with p-collector K is a p-collecting sub-
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group of @. Hence there is a unique minimal p-collecting subgroup S(K)
with given p-collector K.

(b) Certainly, K is centralized by every « € G\ 8, and since these
elements generate G, we have that K<Z(@) if K is the p-collector
of some p-collecting subgroup S of G.

(¢) If 0*(G)< S < G, then

K= ] &< {dlre S, ¢ p-element} = L.

2EG\S

But if x € G\ 8, then o(zx) is finite, let © = wv with p-component u
and p’-component v. Then v € 0?(G) <8, hence u € G\ S and L <{u) <
<{xy. Thus L<K and so, finally, L = K. Therefore, in order to
find out whether 8 is a p-collecting subgroup and to determine J(8)
we only have to look at p-elements in G\ S. Furthermore, J(S) is a
p-group, if S is a p-collecting subgroup of G.

We show that there is a minimal p-collecting subgroup in G.

5.3. THEOREM. Let p be a prime, G a group and let T,(G) be the
intersection of all p-collecting subgroups of G. Then T,(Q) is a p-collecting
subgroup of G, and the p-collecting subgroups of G are precisely the sub-
groups of G containing T,(G).

Proor. There is nothing to show if G is the only p-collecting sub-
group of G. So assume T,(G)< G. Then 0°(@)<T,(G) since 0*(G)
is contained in every p-collecting subgroup. Let x and y be p-elements
in AN\ T,(@). Then there exist p-collecting subgroups S and 7T of G
with #¢ 8, y¢ T. Since ¢ is not the set theoretical union of two
proper subgroups, there exists ge G with g¢ 8 and g¢7T. Then
g N<Lx)y#1£g> N {y)> since 8§ and T are p-collecting subgroups
of @, and hence 2({z)) = 2(<{¥)) is the subgroup of order p of (g>.
Thus

Q)< N Kzl € GNT,(@), « p-element} ,

and T,(@) is a p-collecting subgroup of @ by 5.2, (¢). Clearly, all sub-
groups of G containing 7,(G@) are also p-collecting subgroups of G.

5.4, THEOREM. Let p be a prime, G a group and let L,(G) be the
subgroup of G generated by all p-collectors of G. Then L, (G)<Z(@)
and L,(G) =~ Z,. for some n e N U {0, co}.
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ProoF. By 5.2, L,(G)<Z(@). If @ is the only p-collecting sub-
group of @, then L,(G) =1 ~ Z,.. So assume there are proper p-col-
lecting subgroups S;, S, of G, let K,, K, be their p-collectors and take
ge @ with g¢ 8, and g¢ 8,. Then K, and K, are p-subgroups of {g)>
and hence K,<K, or K,<K,. As in the proof of 3.6, L,(G)~Z,
with » e NU {oo}

We shall need the following result.

5.5. LEMMA. Let p be a prime, S a p-collecting subgroup of G and
K = X(8) its p-collector. If K <S8, then |[K: KNS|=p and every
element in S/K N 8 has finite order prime to p.

Proor. K is a p-group, and for every x € K\ § we have K = {(z)>
by the definition of a p-collector. Hence |[K: K N 8| = p. If G would
contain an element g of infinite order, then K{g) = K X<{g)> since
K<Z(@). But KX<{g> would be generated by elements of infinite
order and so K <0”(G) <8, a contradiction. Hence @ is a torsion group.
If S/K N8 would contain a subgroup U/K NS of order p, then
UK/K N 8 would be elementary abelian of order p? and UK would
contain an element g with g¢ K and g¢ U = UK N 8. But then also
K £{g>, a contradiction since K = J(S). This proves the lemma.

6. A characterization of Am (@) and Reg(@).

Theorems 3.6 and 5.4 look very similar and there is a good reason
for this. We show in fact that L,(G) and Am (@), are nearly the same
subgroup of G.

6.1. THEOREM. If p is a prime and G a group, then Am (G),= L,(G)
except in the following cases:

(a) p =3, L:= L,(Q) #1 is finite, and G = LT where T = $(L)
i8 the minimal 3-collecting subgroup of G with 3-collector L; here Am (G),
i8 the maximal subgroup of L.(@).

(b) p =2, L:= L,(G)+#1 is finite, let T = S(L) be the minimal
2-collecting subgroup of G with 2-collector L, and
(01) G = LT, |L|>4,
(b2) G = LT, |L| =2,
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(b3) |@G: LT| =2, LT,
(b4) |@G: LT| =2, L<T, and there exists ye G\ T with o(y) =
= 2|L].
Here Am (@), is the subgroup of L,(G) of index 4 in case (bl) resp.
index 2 in the other cases.

Proor. We first show that always
(I) Am (G), < L,(G).

For this we take a generator of Am (G),, i.e. by 3.2, we take a
normed affinity ¢ from G to some group @, a the amorphy of o,
p-elements x,y € @ and let K =<a(x,y)® ». We have to show that
K<L, @). If K=1, this is clear, so assume K 1. We define

S = {ge G|z € G, a(x,2)) = Ko = {a(x,29)) = K°}
and show that

(1) ¢f g€ G with K <{g), then g€ 8S.

For this take 2z € G with <a(z,2)) = K°. Since x is a p-element,
the subgroup lattice of (x> is a chain and hence () N {g> < K since
K <£<{g> but Ke<{x)s. The associativity identities 2.6 for z,z,¢g
together with 2.4 and 1.7 give

a(z, 2)a(z, 29)* = a(?, g)a(xz, g)* € {x)° N {g)° < K°

and therefore with a(z, 2) also a(x, 2g9) generates K¢. Thus g€ 8.

Now (1) shows that S contains all elements of infinite order and
all g€ @ with (o(g), p) = 1, since 1 5= K <<{&) is a p-group. So if we
can show that 8 is a subgroup of @, then certainly

(2) 0”(@)<8<8@.

But 1€ 8, and if g, h € 8, then for all z € G, {a(x, 2)> = K¢ implies
{a(», 29)) = Ko, this implies that {a(x, 2gh)) = K¢, and hence gh e S.
Since S contains all elements of infinite order, 8 is a subgroup of G.

Since <a(z,y)> = K° and <{a(z,yy™")) = <a(x,1)) =1#~K we
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have that y—¢S. Hence § < G and by (1), K< [] <{g). Thus 8§ is
0eG\ 8
a p-collecting subgroup of G and K <X(8)<L,(@). This proves (I).

(IT) If Am (@), L,(G) =: L, then p =3 or 2, L+#1 1is finite,
and G = LT or |G: LT| = 2, where T = 8(L) is the minimal p-col-
lecting subgroup of G with p-collector L.

To show this we take a p-collector K 41 in G and a p-collecting
subgroup S of G with p-collector K.

(3) Let KS<G. If |G: KS| #2, then K<Am (@),. If |G: KS|=2,
then the mawimal subgroup of K is contained in Am (G),.

For this let M = KS, N=K, and ¢ = o; given by 4.1 with
1#deN. If |G.M|5~2, there are x,y € A\ M with 2y ¢ M. Then
d=a(x,y)° " € Am(§),, i.e. K<Am(Q@),. If |G:M|=2, then for
2,y € N M, d* = a(z,y)* € Am (G),, and so the maximal subgroup
of K is contained in Am (@),.

(4) Let K8 =@G. If p#2 and 3, then K<Am (@),. If p=3,
then Am (GQ), is the maximal subgroup of K. If p = 2, then Am (G),
is the subgroup of index 4 in K if |K|>4 and Am (@),=1 if |K| = 2.

To prove this observe that K <£S since S< @ By 5.5,
|K: KN 8)=p and every element in S/K N 8 has finite order prime
to p. Let K = {(g), » be the identity on § and u: K — K for p > 2
be the normed affinity given by (gr)*= g®x, (g2x)#= gz for all
rze KN 8 and y#»=y for all other y€ K. By 4.3 and 4.8, 0: G —> G
with (sk)°= s*k# (s€ S, k€ K) is a normed affinity of G and g—2e
€ Am (@),. This shows that K<Am (@), if p >3 and that KN 8<
<Am (@), if p = 3. But in this case by 1.9, every normed affinity
of @ induces a normed affinity in the cyclic group @/8 of order 3 which
of course is an isomorphism. Hence Am (@); <8 and so Am (@), =
=KNAS. If p=2 and |K|>4, we take y = 0, with d =g N =
= M = K N § in the notation of 4.1 and construct ¢ as above. Then
d* = g*e Am (@),. By 1.9, every normed affinity of ¢ induces a normed
affinity in K/{(g*) which again is an isomorphism. Together with 3.2
this shows that Am (@), = {(¢g*> and, similarly, Am (¢),=1 if |K| = 2.

Now (II) follows immediately from (3) and (4). For if K is any
generator of L,(G), then (3) and (4) show that the second maximal
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subgroup of K is contained in Am (G),. By 5.4, L,(G) is finite if
Am (@), < L,(G). Then we may take K =L,(¢)=L and S=1T
in (3) and (4) and get that p =2 or 3 and G = LT or |G: LT| = 2.

By (4), also Am (@), is as stated in the theorem if G = LT. So it
remains to consider the case that p =2 and |G .LT|=2. If LLT,
then by 5.5, |[L:LNT|=2 and hence |G:T|=4. Again every
normed affinity of G induces a normed affinity in G/T which is an
isomorphism and so Am (G),<T. By (3), Am (#),= LN T is the
maximal subgroup of L. Finally, let L<T and hence |G.T|=2.
If (b4) does not hold, then L<Am (@) by 4.5. If (b4) holds and L,
is the maximal subgroup of L, then (a)-(d) of 4.6 are satisfied in G/L,
with M = T/L, and N = L/L,. And if M,= §/L, is as in (e) of 4.6,
then there exists ¥ € G\ S with L £{z) since T = §(L) is the minimal
2-collecting subgroup with 2-collector L. Then <z)L, N L< L, and so
also (¢) of 4.6 holds. Hence every 2-element in G/L, is regular and
therefore Am (G),<L, by 1.9 and 3.2. By (3), Am (G),= L, what
we had to show.

We now characterize Reg (@) in terms of the minimal p-collecting
subgroups T,(G) defined in 5.3.

6.2. DEFINITION. If p is a prime and G a group, let Reg (G)? be
the subgroup of G with Reg (G)?/Reg (G) = 0?(G/Reg (G)).
By 3.8, Reg (@) = [ Reg (G)*. So as in 6.1 the following theorem
peP

not only characterizes Reg (G)® but also Reg (G@).

6.3. THEOREM. If p is a prime and G a group, then Reg (G)*> = T,(Q@)
except in the following cases:

(a) p=3, @ = HXK is a torsion group, |K|= 3, and (o(x),3) =1
for all x€ H; here Reg (G)*= G and T,(G) = H.
b p=2,let T:= T,(G) and L = X(T) be the 2-collector of T,
and
3) LNnT=1, |G.LT|>4,
(b2) LNT =1, |G.LT|<2, T+#4G,
®3) ILNT| =2, |G:T| =2, LT,

(b4) ILNT| =2, |G:T| =2, LT, and there exists an element
of order 4 in G\ T.
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Here Reg (@)*= LT in case (bl) and Reg(@)*= G in the other
three cases.

Proor. By 2.3, every element of G of infinite order is contained
in Reg (@)%, and so 0?(G)<Reg(G)*. By 3.4,

N {{g>|g € G\Reg (G)?, g p-element} 51,

and remark 5.2, (¢) shows that Reg (G)? is a p-collecting subgroup
of G. Hence

(1) T,(G)<Reg(G)*.

Let T = T,(G) and L = X(T) be its p-collector and assume first
that LN T#1. Then TG and 4.1 shows that «¢ Reg(G) for
x € G\ T and therefore T = Reg (G)?, except possibly when |[L N T| =
= 2 = |G.T|. But in this case if LT, then |L| = 4, LT = G and L
contains every 2-element of G by 5.5. On L every normed affinity of
@ is an isomorphism and therefore L <Reg (G) by 3.2. So Reg (G)2=
=G+#Tby (1). If LT, then |[L| =2 = |@¢:T| and 4.5 and 4.6 show
that Reg (@) T if and only if there exists an element of order 4 in
G\T. By (1), Reg(G)*= G in this case and Reg(G)2= T if there
is no element of order 4 in G\ 7.

Now assume that LN T = 1. If T = G, then Reg (G)*= T by (1).
So let T 4G and therefore L 1. Then L<«7 and 5.5 shows that
|L| = p, LT = LXT, and T is a p’-group. We show

(2) If v: L — L is any bijective map with 1= 1, then ¢: G — G
defined by x°= x for r€ G\(LXT) and ()= 1*t for le L, teT is
a normed affinity.

Clearly, o is bijective and since every subgroup of LXT not
contained in 7 contains L, o fixes every subgroup of LX T and hence
also of G. Thus ¢ induces the trivial autoprojectivity on G and if a
is the amorphy of o, a(z,y) € L for all #,y € . This is contained in
(@) = (x)7 if p|o(»). But if x or yis a p’-element, it is contained in 7
and then a(z,y) =1. By 1.7, ¢ is a normed affinity.

Now (2) shows that every normed affinity v: L — L can be extended
to a normed affinity of G. Thus L <Reg (@) if |L| = p>5 and since
L = 3(T), Reg (@)< T in this case. By (1), T = Reg (G)?. For p = 3,
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we take the automorphism » of order 2 of L and define ¢ as in (2).
If G contains an element « of order 9, then L = (%) and

(2wa®)e = ot 5= 0" = a°(x®)° .

Again, L<Reg (G) and T = Reg (G)®. But if G does not contain an
element of order 9, then G = LXT and (a) holds. In this case
L<Reg(G) by 3.2 and hence Reg (G)*= G. Finally, let p =2. If
|G:LT|<2, then |G:T|<4 and every normed affinity ¢: G — @ in-
duces an isomorphism in @G/T. For «,y € G and the amorphy a of ¢
therefore a(z, y) e To N {x)° =1 if v is a 2-element. So every 2-element
of G is contained in Reg (G) and Reg (@)= G. If |G.LT|>4, then
41 with N=1L and M = LT shows that Reg (G)<LT. Hence
Reg (G)2< LT, but L<Reg () by 1.3 and so Reg(G)2= LT in this
case.

We remark that 6.1 and 6.3 nearly give lattice theoretic char-
acterizations of Am (G) and Reg (G). At least an index-preserving
projectivity from G to a group H maps 0?(G) to 0?(H), hence T,(Q)
to T,(H) and L,(Q) to L,(H) for every prime p and preserves the
other conditions in 6.1 and 6.3.

6.4. COoROLLARY. If o is an index-preserving projectivity from the
group G to the group H, then Am (G)°= Am (H) and Reg(G)°= Reg (H).

So, finally, Am (@) is not only a characteristic subgroup of G but
also satisfies Am (G)°= Am (G°) for every normed affinity o of G.
For Reg (@) the corresponding statement was proved in 2.3.
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