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Affinities of Groups.

ROLAND SCHMIDT (*)

There are many examples of non-isomorphic groups G and G with
isomorphic coset lattices 6(G) and C~ (G) ; the first were given by Baer [1]
and Curzio [2]. These isomorphisms between 6(G) and G5(0) in general
map cosets of one subgroup of G onto cosets of different subgroups
in G. So it is natural to ask for examples in which this does not hap-
pen or to study isomorphisms a of coset lattices even satisfying

for all subgroups .g of G and x E G. This was done by Loiko who
considered the two conditions in (*) separately and who proved in [5]
that in a group G generated by elements of infinite order any isomor-
phism from 6(G) to 6(G) satisfying one of these conditions is a group-
isomorphism.

In a joint paper with W. Gaschütz [3] we studied permutations (1

of finite groups satisfying (*) and therefore of course also inducing
automorphisms of 6(G) which we shall call normed afhnities. It is
the aim of the first three sections of this paper to show that the results
of [3] carry over to normed afhnities of infinite groups and also to
normed affinities between different groups. Moreover, we introduce
two characteristic subgroups-Am (G) and Reg (G)-of a group G

(*) Indirizzo dell’A.: Mathematisches Seminar der Universitat, 2300 Kiel,
Germania occidentale.

This work is a slightly shortened version of a course of lectures given at
the University of Padova in March, 1982. The author wishes to thank the
C.N.R. for support and Prof. G. Zacher for hospitality.
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which measure how near to isomorphisms the normed affinities of G
are. Am (G) is the group generated by all the 

and a runs through the normed affinities from G to
groups G, and Reg (G) is the set of all g E G such that (xg)a = xaga
and (gx)a = gaxa for all x E G and all normed affinities a. We show
that Am (G) is « small »-it is locally cyclic and contained in the
centre of G-and that Reg (G) is « big »-it contains all elements of
infinite order of G and G/Reg (G) is n-closed for every set n of primes.
Hence for many groups every normed affinity is an isomorphism.

In the remaining three sections we give a characterization of
Am (G) and Reg (G) inside the group G in terms of p-collecting sub-
groups and p-collectors, p a prime, defined in § 5. For this in § 4 we
present a number of constructions for normed affinities which by the
way also yield examples of normed afhnities between non-isomorphic
groups. Finally, our characterizations of Am (G) and Reg (G) in § 6
show that these characteristic subgroups are invariant under index-
preserving projectivities and therefore also under normed affinities.

1. Simple properties of affinities.

We give the exact definitions of the concepts mentioned in the
introduction. For this let G and G be groups and G5(G) be the lattice
of cosets of G, i.e. the set of all cosets of subgroups of G and the empty
set with the set-theoretical inclusion as relation. In [3] we called two
cosets X, Y of G right parallel (resp. left parallel) if there exists an ele-
ment g E G such that X = Yg (resp. X = gY).

1.1. DEFINITION. (a) A map o from G to G is called normed if
1c=1.

(b) A bijective map a from G to G is an S-isomorphism if

for every subset X of G, i.e. if a induces an isomorphism from 6(G)
onto 6(G).

(c) An S-isomorphism u from G to G is an affinity if X right
parallel to Y implies Xa right parallel to Ya and X left parallel to Y
implies Xa left parallel to Ya for all X, Y E 6(G).
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It is easily shown (see [3], p. 188) that an affinity a from G to G
satisfies X right (left) parallel to Y if and only if ~~ right (left) parallel
to Ya for all X, Y E 6(G). Hence products and inverses of affinities
are affinities. Since for every g E G the right translation 
(x E G) and the left translation 2,: (x c G) are affinities ([3],
p. 189), y the existence of an affinity a between G and G immediately
leads to the existence of a normed affinity between G and G. Therefore
we shall restrict our attention to normed affinities throughout. We
give a first characterization of normed afnnities.

1.2. THEOREM. The bijective map a f rom G to G is a normed at f inity
if and only if,

(a) a induces a projectivity f rom G to G, i. e. satis f ies .~ c G i f f
tor all subsets X o f G, and

PROOF. If a is a normed affinity, then holds since the cosets

containing 1 are exactly the subgroups of G. Furthermore, x.,g is left
parallel to .g and therefore (x.H~)a is left parallel to i.e. = y.H~
with Since xa E y,Ha and we get (rH)°.
Similarly, y = 

If c satisfies (a) and (b), then a is a normed S-isomorphism.
If and Y = y.K are left parallel (x, y E G; .g, .K c G), then
there exists g E G such that This implies
K = H and Ya = is left parallel to Xa. Since every
left coset is also a right coset we get in the same way that a preserves
right parallelism and hence is a normed affinity.

Every bijective map with la = 1 from the cyclic group G of

order 4 to the elementary abelian group G of order 4 satisfies (b) of 1.2;
hence (a) is needed in this theorem. On the other hand, 1.2 shows that
the normed affinities are exactly the S-isomorphisms satisfying con-
dition (*) of the introduction. An easy consequence of 1.2 is the fol-
lowing result.

1.3. THEOREM. G - G is a normed affinity and h E G is an
involution, then (xh)a = xaha and (hx)a = haxa for all x E G. Hence if G
is generated by involutions, every normed affinity of G is an isomorphism.

PROOF. Let .8’ = 11, h}. Then Hx = {x, hx~ and by 1.2 we have
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Hence = and in the same way one gets the other equation.
By a trivial induction then, if hl, ... , hn E G are involutions, (h1 ... hn)a =
- h~ ... h,.. So if G is generated by involutions and x, y E G, there are
involutions E G such that x = hl ... hr , y = kl ... ks and then

Hence a is an isomorphism. 
_ _

In [3] we introduced the amorphy map a: G --~ G

defining

Using one gets the associativity identities

Normed affinities are characterized by the behaviour of their

amorphies. In order to prove this we need the following result due
to Loiko; for a proof see [5], p. 151 or [6], p. 293.

1.6. LEMMA. I f a : G -+ G is a normed S-isomorphism and u E G
has infinite order, then (UO)k= (Uk)cl for all k E Z.

1.7. THEOREM. The bijective map a from G to G with amorphy (t

is a normed affinity if and only if

(a) a induces a projectivity f roxn G to G and

It C1 is a normed affinity, then = xaya for all x, y E G with

o(x) or o(y) in f inite.

PROOF. By 1.2, if a is a normed affinity, (a) holds and for x, y E G
we have (xy)a E (x_y~)a = and hence a(x, y) E (y)a since 
is a subgroup of G. Similarly, (xy)a E and so a(x, 
Since is cyclic, a(x, a(x, y) and hence (b) holds.

Now assume that a satisfies (a) and (b) and let x E G, H  G. For
h E H we have (xh)a = h) E since a(x, h) E c G.
Hence
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If g of infinite order and U = g~, then Ua is infinite cyclic.
Using induction on I we show that for all 

H  U. This is true for - 1; so assume it to be true for sub-
groups of smaller index than = n and let U = U ... V x~.~
with x, = x. Then

and therefore By the induction assumption, == n.

Then the are distinct and we have for all i.
In particular, (x,bC)~ = This shows that a induces a normed

8-isomorphism (by 1.2 even a normed affinity) in U and by 1.6,

Now assume that a(x, y) for elements x, y E G with x or y of

infinite order. Since a(x, y) E n then i(x) = i(y) = oo and
a(x, t) = = (y°)8 for r, s E Z. By (2), xr = y8 and applying the
associativity identities 1.5 to x, x-r, xry we get

Again by (2), a(x, = 1 and

This contradiction shows that a(x, y) = 1 and proves

It remains to show that a satisfies (b) of 1.2. So let x E G, H  G, and
11, E H. If o(h) is infinite, then (xh)6 E (x.g)a by (3), and if

o(h) is finite, then and
= by (1). Hence = XU HU. Since (hr)d= haxaa(h, x) =
= haa(h, x)xa E Haxa, we get in the same way that (HX)C1 = ,a6x6,

An easy consequence of 1.7 is that normed affinities map abelian

groups onto abelian groups.
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1.8. THEOREM. Let a : G - G be a normed affinity.

(a) If x, y E G such that xy = yx, then xaya = ydxa.

(b) If H c G is abelian, then Hcr is abelian.

PROOF. If o(x) or o(y) is infinite, then x6ya = (xy)a = (yx)a = 
by 1.7. Hence assume that o(x) and o(y) are finite. Then H = (x, y~
is a finite abelian group, hence H = (hl, ... , h,.~ with n = 1
for i 0 j. Since a induces a projectivity, .H° - ... , and =

- = (hjhi)C1= since a(hi, hj) = 1 by 1.7 if a is the amorphy
of a. So HC1 is abelian and yaxa. This proves (a). Obviously,
(a) implies (b) and also Since also is a normed af-

finity, we get the other inclusion.
It is clear that a normed affinity of a group induces a normed af-

finity in every subgroup. Theorem 1.2 shows that it also induces a
normed affinity in every factor group.

1.9. LEMMA. Let ar : G -~ G b_e a normed affinity. If then

G and the map c:G/N -+ G/Nc with (xN)Q = (xN)a is a
normed affinity. If a and a are the amorphies of a resp. ii, then

a(xN, yN) = all x, y E G.

PROOF. For x E G we have xN = Nx and by 1.2 therefore

(xN)~ _ (Nx)6 = Since a~ is surjective, N6 a G. Fur-
thermore 1.2 shows that 6 is bijective and induces a projectivity from
G/N to GjNC1. For x, y E G we have

We shall need the following simple result; for a proof see [6], p. 293.

1.10 LEMMA. If d : G -+ G is a normed affinity, then also 7:: G -+ G
given by gt = ((g-~)a)-1 for g E G is a normed affinity.
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2. The amorphy and regular elements.

In this section we define two characteristic subgroups of G which
in a way measure how near to isomorphisms the normed affinities of
(~ are.

2.1 DEFINITION. Let G and G be groups, a: G - G be a map,
a the amorphy of (1. The element x E G is called right reg-
ular for (1 if (xg)~ = xaga gaxa) or, equivalently, a(x, g) = 1
(a(g, x) = 1) for all g E G; x is called regular for (1 if x is left and right
regular for (1. Regr (a) resp. Reg’ ((1) is the set of right resp. left regular
elements for (1 and Reg (a) = Regr ((1) r1 Reg’ ((1) is the set of regular
elements for a.

2.2. LEMMA. If a : G ~ G is a normed affinity, then and

Reg’ (ar) are subgroups o f G.

PROOF. Since 1~ = 1, 1 E Regr ((1). If x, y E Regr ((1), then for all

g E G we have

hence xy E Regr (~) . If o(x) is finite, this also implies that x-1 E Regr (cr)
and if o(x) is infinite, 0153-l E Reg’’ (a) by 1.7. Hence Regr (a) is a sub-
group of G. The proof that Reg’ (a)  G is similar.

2.3. THEOREM. Let G be a group and let Regr (G) (Reg’ (G)) be
the set of elements o f G which are right (left) regular for every normed
affinity f rom G to any group G.

(b) If ~: G -~ .g’ is a normed affinity, then Reg (G),r = Reg (H).

Hence Reg (G) is a characteristic subgroup of G containing all ele-

ments of in f inite order and all involutions of G.

PROOF. (a) By 2.2, Regr (G_) and Reg1 (G) are subgroups of G. Let
x E Regr (G) and let 0’: G -+ G be a normed affinity. By 1.10, also
,r: G - G with gz = ((g-1) a) -1 for all g E G is a normed affinity. Since
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we have for g E G

i.e. (gx)6 = g6x6. Since a and g were arbitrary, x E Regl (G). So

Regr (G), and the other inclusion we get similarly.

(b) Let and let be a normed affinity.
For there is such that and since x E Reg (G)
and z and Tor are normed affinities, we have

i.e. x7: E Regr (H) = Reg (H). Hence Reg (.g), but since

also is a normed affinity, we get the other inclusion. This proves (b).
Since every automorphism of G is a normed affinity., Reg (G) is

a characteristic subgroup of G which contains all elements of infinite
order (by 1.7) and all involutions (by 1.3) of G.

Now we prove our first main result on the amorphy of a normed
affinity.

2.4. THEOREM. I f or: G -~ G is a normed and a the amorphy
of a, then a(x, y) E Z(G) E G.

PROOF. Suppose that a(x, Z(G) for elements x, y E G. By 1.7,
x and y have finite order and we chose x, y with a(x, Z(G) so that
o(x) is as small as possible. If x = with o(xl) and o(x2) less than
o(x), then the associativity identities 1.5 with x1, x2 and y would imply

a contradiction. Hence o(x) = pn, p a prime, n e N.
Let z E G such that a(x, y) does not permute with za. Then

a(x, z,7&#x3E;. Since o(xa) = o(x) = pn, the subgroups of ~xa~ form
a chain and by 1.7, we have

Hence a(z, x)~~ = a(z, x) = a(x, y)k’P with k E Z. The associativity iden-
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tities f or z, x and y yield

Since a(x, y) and a(zx, y) are elements of y6?, they permute with yo
and therefore also a(z, xy) permutes with ya. Furthermore, a(z, xy)
permutes with (xy)6 = xayaa(x, y) = xa(ya)$ (s E Z) and hence also
with Since a(x, y) permutes with x6, by (*) also a(zx, y) does. But
a(zx, y) also permutes with = za(x6)t (t E Z) and hence with za.

Certainly, a(z, xy) permutes with za, by (*) also a(x, y)1-k9 does. Since

y) E is a p-element, finally a(x, y) permutes a con-

tradiction.
Theorem 2.4 is fundamental to our study of afhnities. We give

two immediate consequences.

2.5. COROLLARY. I f G is a group wish Z(G) = 1, then every normed
a f f inity of G is an isomorphism.

This follows from 2.4 and 1.8 whereas the next result, the simplified
associativity identities, of course follow from 1.5 and 2.4.

2.6. COROLLARY. I f normed affinity and a the

amorphy of 1, then

We define a second characteristic subgroup connected with the
normed affinities of G.

~ 

2.7. DEFINITION. If 0’: is a normed affinity with amorphy a,
we let Am (Q) = («(z, y E G&#x3E;. The amorphy Am (G) of G is
the subgroup of G generated by all the Am (Q) where 0’ ranges over the
normed affinities from G to any group G.

2.8. THEOREM. If G is a group, Am (G) is a characteristic subgroup
of G contained in the centre Z(G) of G.

PROOF. That Am (G)  Z(G) follows from 2.4 and 1.8. Let or: G - G
be a normed affinity with amorphy a and let a E Aut (G). Then
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T = M-1 a is a normed affinity,. If b is the amorphy of T, then for

x, y E G we have

Hence and so 

Thus Am (G) is a characteristic subgroup of G.

3. The structure of Am ( G) and 

We show in this section that Am (G) is locally cyclic and G/Reg (G)
is a-closed for every set n of primes.

3.1 LEMMA. . be a normed affinity, a the amorphy
of or, and let such that g2 gl and r1 g2~ = 1.
Then a(glg2’ x) = a(gl, x) a(g2’ x) and a(x, glg2) = gl) g2) for all
xEG.

PROOF. By 2.6, we have

and by 1.7, «(gi , g2) E g2~a = 1. Hence

Replacing g2 by gi and gl by g2, we get

Since a(g2,x), a(g2,g1x)Eg2&#x3E;dnZ(G) and a(g1,g2x), a(g1,x)Eg1&#x3E;6n
n Z(G) and the product of n Z(G) and g2~~ r1 Z(G) is direct, it
follows that a(gi , g2x) = x) and hence by (1), a (glg2’ x) = x) ~
~a(g2, x). The other equation is proved similarly.

3.2. COROLLARY. Let or: G ~ G be a normed a the amorphy
of a, and let x, y E G be of f inite order, with
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p-primary components xp , y, of x resp. y. T hen

and y~) is the p-primary component of a(x, y).

The main tool in the description of Am (G) and G/Reg (G) is the
following result.

3.3. THEOREM. Let G be a group. such that (g) n (h) =
- 1 = gh&#x3E; r1 h&#x3E;, then h E Reg (G).

PROOF. Let 0’: G - G be a normed affinity., a the amorphy of 0’
and let x E G. We have to show that a(h, x) = 1; then h E Regr (G) =
= Reg (G). By 1.7 and 3.2, it sufhces to do this for all x E G of prime
power order. So let x E G of prime power order and assume that
a(h, x) ~ 1. Then n 1 and hence by our assumption, g) r1
r1 (z) = 1 and ~gh~ r1 ~x~ = 1. Therefore, in the associativity
identity

we have a(g, h) = 1 and a(gh, x) = 1 by 1.7, and hence

a contradiction.

3.4. COROLLARY. Let p be a prime. If g and h are p-elements of a
group G with g ~ Reg (G) and h ~ Reg (G), then (g) r~ h~ ~ 1.

PROOF. If g&#x3E; n h&#x3E; = 1, then by 3.3, we would have gh) r1
n h~ ~ 1. But then (gh) n g~ = 1, hence (hg&#x3E; n g) = 1, and

by 3.3, g E Reg (G), a contradiction.

3.5. LEMMA. Let 0’: G -+ H and í: G -+ K be normed affinities
with amorphies a and b resp. and let x, y, u, v be p-elements of G, p a
prime. T hen either

PROOF. Assume that this is false. Then N = ~a(x, y)a-1~ r1
r1 ~(u, is a proper subgroup of these two cyclic p-groups. By
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2.8, N c Z(G) and hence by 1.9, u and r induce normed affinities 6
and i in G/N with amorphies a resp, b given in 1.9. Since x and u
are p-elements, the subgroup lattices of x~ and ~c~ are chains and
hence x~ n u~ = N, i.e. n (uN) = 1. By 3.4, xN E Reg (G/N)
or uN E Reg (G/N). But xN E Reg (G/N) implies 1 = a(xN, yN) _
= a(x, y) Na, i.e. a(x, y)a-1E N, and uN E Reg (G/N), similarly, im-

a contradiction.

3.6. THEOREM. I f G is a group, then Am (G) = fl Am (G)~ where
pEP

Am (G) p ^~ with n e N U fo, oo}. Hence Am (G) is locally cyclic.

PROOF. By 1.7 and 2.8, Am (G) is a periodic abelian subgroup of G.
Hence Am (G) Am where Am is the p-component of

pEP

Am (G). By 3.2, Am is generated by the a(x, y)a with x, y E G
p-elements, u a normed affinity with amorphy a from G to some
group H. By 3.5, Am with n EN u {0, (see for ex-

ample [7], p. 98).

3.7. LEMMA. is a set of primes, g and h are n-elements of the
group G and x is the n’-component of gh, then x E Reg (G).

PROOF. If gh has infinite order, then x = 1 E Reg (G). So assume
that o(gh) is finite and let gh = xy = yx where y is a n-element. As in
the proof of 3.3 we have to show that a(x, z) = 1 for every q-element
z E G, q a prime, a the amorphy of a normed affinity a from G to some
group G. If qeyy, this follows from 1.7. So let Then in

a(g, h), a(h, z) and a(g, hz) are n-elements whereas a(gh, z) is a

n’-element in Z(G). Hence a(gh, z) = 1 and by 3.1,

since y is an-element.

3.8. THEOREM. 1 f G is a group, then (C~) is n-closed for every
set a of primes. In particular, if (G) is f inite, it is nilpotent.
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PROOF. If g Reg (G) and h Reg (G) are nontrivial a-elements in

G/R~eg (G), then o(g) and o(h) are finite by 1.7 and so we may assume
that g and h are n-elements. By 3.7, then gh Reg (G) is a n-element
in G/Reg (G).

4. Construction of normed affinities.

Most of our results so far show that normed affinities are near to

being isomorphisms and that for many groups every normed affinity
is in fact an isomorphism. In this section we want to show that on
the other hand there do exist normed affinities which are not isomor-

phisms if the group has certain structural peculiarities suggested by 3.4.
These results will be used in § 6 to give a characterization of Am (G)
and Reg (G) in arbitrary groups G. Furthermore we present examples
of normed afhnities between non-isomorphic groups. Basic for all
these examples is the following construction.

4.1. LEMMA. Let G be a group and let N and M be subgroups of G
such that

(a) and

T hen tor every 1 =1= d E N the map Or _ (/d: G - G with xl1 = x for
all x E M and x6 = xd-1 for all x E GB.M is a normed affinity. For

x, y E GB1Vl and the amorphy a of a we have

So Reg (,or) _ M except when = 2 and d2 = 1 in which case 6
is an automorp hism.

PROOF. Obviously, c is bijective. Furthermore, if UG, then
Ua = U if U c M and TJN = TJ if Hence Ua= U for
all subgroups U of G. Since G is generated by the elements g E 
N c Z(G). Hence a(x, y) = 1 if one of x and y is contained in M,
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and if x, y E then

So always, a(x, y) E N  ~x~ n y&#x3E; _ r1 (y)a if x, y E By 1.7,
cr is a normed affinity. The last assertion of the lemma follows im-

mediately from the formula for y).

It is easy to construct groups with subgroups N, .~C having the
properties of 4.1.

4.2. EXAMPLE. Let p be a prime and let G = be a p-group
with o(a) = pn &#x3E; pm = exp (B), Then N = = 

and M = = Qm(G) satisfy (a) and (b) of 4.1. If 1 =l=dEN,
then crd is a normed affinity of G which is an automorphism only for
p = 2 

If G is a cyclic p-group, (b) of 4.1 is automatically satisfied if (a)
holds, and so 4.1 produces normed affinities of G. We shall, however,
also need normed afhnities of G of a different kind.

4.3. LEMMA. Let p &#x3E; 2 be a prime, G = g&#x3E; a cyclic group of order pn,
and let .g = g~~. Then de f ined by 

alt y E u g2H) is a
normed a f f inity o f G with H’  Reg (c) and a(g, g) = g-8 if a is the

amorphy of a.

PROOF. Since a only permutes the cosets gH and g2H and fixes
every other element of G, it is bijective and induces a projectivity.
Let u7 v E G. If one of these elements, u say, is contained in .H, then v
and uv are in the same coset of Hand a(u, v) = 1. If n, v E GBH’,
then a(u, v) E t1 (w)° = G. By 1.7, o~ is a normed affinity, H’ c
 Beg and a(g, g) = = 9-3~

If H « G with cyclic of order n and H has the same prop-
erties in G, then it is quite clear how to extend a map from H to H
to a map from G to G. We describe how to construct normed affinities
in this way.

4.4. and G =
an isomorphism and

for i E ~0, ... , n -1~, Then
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(a) Q is an isomorphism if and only if (xT)ii = tor all x E H

and (gn)T = 

(b) (1 is a normed a f f inity with H = Reg (c~) i f and only if

(1 ) for all x E H,

(3) o(g) and o(g) are finite.

PROOF. We only prove (b) since the proof of (a) is quite similar
and rather obvious. So let or be a normed affinity with amorphy a
and H = Reg (or). Then f or x E H

and since this proves (1). Furthermore, for i E ~1, ... , n -1 ~
we have

Since a is a normed affinity, a(gn-i, E Z(G) and hence

and for all i E ~1, ... , n -1 ~ , Since a is not

an isomorphism, t *1 by (a). Hence (2) holds and (3) follows from 1.7
and H = Reg (a).

Conversely, let z satisfy (1)-(3). Then c is a bijective map, and
an easy computation shows that for u, v E = = (i, j E
c- {0, ..., n - 1}; we have

This shows that ,H = Reg (1) and that a(u, v) E (ua) r1 for all

u, v E G, by (2). By 1.7, it remains to show that J induces a projec-
tivity. So let U c G. If then If then

ta-i E U and so for u, v E U we have uava = (uv)a E Ua or 
= Ua. Hence also (ua)-1 E Ua if o(ua) is finite, but if ua
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has infinite order, then by (2) and (3), uc E H and so (ua)-l = (U-1)aE Ua.
Hence and similarly, y V  G if This proves the lemma.

We saw in 4.1 that (Jd is an automorphism if INI = 2 = 
there. 4.4 shows how to construct then and also in more general
situations a normed affinity from G to a new group G which is not an
isomorphism.

4.5. LEMMA. Let G be a group and let N and M be subgroups o f G
such that

.Let g E Ggm and N = ~t~. Take _G = with g2 = g2 t-1 and
xg = xg tor all x E .M. T hen a: G -~ G de f ined by gix for

1} and x E M is a normed affinity with amorphy a(g, g) = t.

PROOF. By (b) and (c), there are 2-elements in and N is a

2-group. Since t E N c Z(G), the extension G exists, and if 7:: M -+ M

is the identity, (1) and (3) of 4.4, (b) are satisfied. Furthermore,
tEn y~. But if w E then w = gx for some x E M and so

1IEG"’-M

If u is the 2-component of gx, then by (d), o(u»4INj and hence

Thus ~ 1 and by 4.4, 6 is a normed affinity,. Clearly, a(g, g) _

We remark that it is in general not possible to have such an af-
finity if there are elements of order in 

4.6. LEMMA..Let G be a group and let N and M be subgroups o f G
such that
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(e) for every normal subgroup Mo of G properly contained in M
with a 2-group there is xo E GBMo with 

Then every 2-element of G is contained in Reg (G).

PROOF. Assume that there are 2-elements in G%Beg (G). By 3.8,
G/Reg (G) _ (S/Reg (G)) X (T/Rreg (G)) where SIReg (G) is a non-

trivial 2-group and T/Reg (G) is a 2’-group. Since M and T are proper
subgroups of G, there is g E G such that g 0 M and g 0 T, and since
GIM and GIT are 2-groups, also h 0 M and T if h is the 2-component
of g. By (b), N c h~. If x E G%(M n T), then either x 0 ~ and then
N ~ x~ or x 0 T and then also T if x2 is the 2-component of x.
By 3.4, x2~ n h~ ~ 1 and so N  x~. By (e), M n T = M. This

implies that M = T and BS:Reg (G) ~ = 2. Hence y 0 Reg (G) and so
by 3.2, there exists a group G, a normed affinity a: G - G with amorphy
a and a 2-element with 
z = yw with w E Reg (G) and by 2.6,

But c induces a normed affinity on y&#x3E; which is an isomorphism since
= 4. This contradiction proves the lemma.

Note that the assumptions in 4.5 and 4.6 are satisfied in abelian
groups of type (2~, 2, ... , 2) with n ~ 3 resp. n . = 2 if one takes N =

- C5,,-,(G) and M = Hence both cases arise and lead to
different situations in the characterizations of Am (G) and Beg (G) in § 6.

We now use 4.4 to give an example of a normed affinity between
two non-isomorphic groups.

4.7. EXAMPLE. Let p &#x3E; 2 be a prime,

the non-abelian group of order p3 and exponent p and a the auto-
morphism of order p of .H given by x" = y" = y. Finally, let s
be a quadratic non-residue modulo p and G = .H~g~, G = with

g-9 = zs, and hg = h" = hg for all h E H. Then G and G are two
non-isomorphic groups of order p4 (see [4], p. 347), but since _

- = Hand _ _ z&#x3E;, the identity r on H satisfies
(1)-(3) of 4.4, (b). Hence there exists a normed affinity from G to G.
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It is easy to see that if G = H x K is a torsion group with (o(x),
o(y)) 1 for all x E H, y E K (so that ~(G) ^~ ~(.bC) X ~(.8)) and if

’J1: H j7 and p : K - k are normed affinities, then a: 
with xlym (x E H, y E K) is a normed affinity. We shall need
a similar result in the case that the product is not direct.

4.8. LEMMA. Let G = HK be a torsion group, a p-group,
p a prime, and assume that every element in r1.g has order prime
to p. Let v be an automorphism of H, p: .g -~ K a normed affinity with
amorphy b and let

(1) xv = xu tor all x E H r1 K and

For g = hk E G (h E H, k E K) we de f ine ga = hy ku. Then a : G -~ G
is a normed affinity, and i f ct is the amorphy o f a, we have a(g, g’ ) _ ~ (k, k’ )
for g’ = h’ k’ ( h’ E H, k’ E K).

PROOF. Let T: G - G be defined in the following way. For

g = xy E G with p’-component x and p-component y let gT = xvyu.
Clearly, since x E H, y E .g c Z(G), this is well-defined and bijective.
If g = hk (h E .g, k E K) and h = uv with p’-component ~c and

p-component v, then v E H n .K and u is the p’-component and vk
the p-component of g. Hence by (2) and (1),

i.e. a = 7: is a well-defined and bijective map. Now

and hence a(g, g’) = b(k, k’). If U is a subgroup of G, then

U = by our assumptions, and hence 
. ( U n .K)~ is a subgroup of G; similarly, G if V  G. So or induces
a projectivity of G. If g = hk = uvk as above and similarly g’ =
= h’ k’ = u’v’ k’, then and (vk)u is the p-component
of g6. Hence and Since v, v’ E Reg (,u),
6(vk, v’ 1~’) _ b(k, k’) and so finally, a(g, g’) == k’) e n (g’)°.
By 1.7, ar is a normed affinity.

We use 4.1 to describe all groups having Am (G)p ^, for some



181

prime p. For the definition of a central product with amalgamated
subgroup see [4], p. 49.

4.9. THEOREM..Let G be a group, p a prime.

If Am (G)~ ^-~ then there exist .H~  G and r E ~T U fOl such that

(1) H is a torsion group,

(2) o(x) c pr for every p-element 

(3) Z(H) contains an element of order pr, and

(4) G is the central product of Am (G)~ and H where the subgroup
of order pr of Am (G) p is amalgamated with a central subgroup o f
order pr of H.

Conversely, if H is a group and r E N U {0} with properties (1)-(3)
and i f G is the central product of Z and H where Z ^~ Z!poo and the sub-
group of order pt of Z is amalgamated with a central subgroup of order pr
of H, then Am (G) 9 = Z.

PROOF. Let Am (G)~ --~ We show that

For this observe that since z E Z(G), A = ~x, z) is abelian of exponent
o(x) = o(z) and hence there exists a subgroup B of A with A = ~) X

and B ~ Reg (G)
-by 1.7. Thus ~x~ Beg (G) _ ~z~ Reg (G) as asserted.

Since there exist p-elements in GBReg (G) and
hence by (~), there exists with Let

be the p’-component of G/Reg (G). By 3.8, H is a subgroup of G,
Reg (G) (~) since is a chain.

Put Am (G),l = pr. We show that Hand r satisfy (1)-(4).
If g E G would be of infinite order, then g, z) = g~ X z&#x3E; would

be generated by elements of infinite order and therefore would be
contained in Reg {G) by 1.7. But z 0 Reg (G). Hence G is a torsion

,group and (1) holds. If y E .g would be of order then we would
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take with o(w) = o(y). By (*), w E (y) Reg (G)  H, a,

contradiction since r1 Am = pr. Hence (2) holds, and since
Am (G) c Z(G), also (3) is satisfied. Finally, (*) shows that every
p-element of G lies in Am Hence G = Am by definition
of .g, and since Am G is a central product of Am (G), and H
and (4) holds.

Conversely, assume that G is the central product of Z and .Z~ as
in the theorem, let N be the subgroup of order pn in Z (n and let
if = .g,S where S is the subgroup of order p"+r of Z. If x E Ggm,
then x = zh with z E Z, h E Hand o(z) &#x3E; pn+r. Then xpr = and

p) = 1. Thus N  x~, and N Am (G) by 4.1. This
holds for every proper subgroup of Z and therefore 

Conversely, if 9 E Am (G)fJ take with o(z) = o(g). By 3.6, g, z)
is cyclic and hence g E z~ ~ Z. Thus Z = Am and the theorem
is proved.

5. p-collecting subgroups and p-collectors.

To determine Am (G) and Reg (G) for a group G we have to con-
sider every afhnity from G to any group G. We shall use 3.4 to give
a characterization of Am (G) and Reg (G) within the group G. For

this we define further characteristic subgroups of G.

5.1. DEFINITION. Let p be a prime, G a group. Put

A subgroup S of G is a p-collecting subgroup of G if

We call .K the p-collector of S, .K = JB,(S). We also call G a p-collec-
ting subgroup of G and 1 its p-collector.

5.2. REMARK. (a) If .~ is a p-collector, then the intersection of
all p-collecting subgroups of (~ with p-collector .g is a p-collecting sub-



183

group of G. Hence there is a unique minimal p-collecting subgroup 
with given p-collector K.

(b) Certainly, K is centralized by every x E GBS, and since these
elements generate G, we have that if I~ is the p-collector
of some p-collecting subgroup S of G.

(c) If then

But if x E GB~S, then o(x) is finite, let x = uv with p-component u
and p’-component v. Then v E O1’(G)  S, hence u E and L  (u) 
c x~. Thus and so, finally, L = K. Therefore, in order to
find out whether S is a p-collecting subgroup and to determine X(S)
we only have to look at p-elements in GBS. Furthermore, is a

p-group, if S is a p-collecting subgroup of G.
We show that there is a minimal p-collecting subgroup in G.

5.3. THEOREM. Zet p be a prim, G a group and let T1’(G) be the

-interseetion o f all p-collecting subgroups of G. Then T 1’( G) is a p-collecting
subgroup of G, and the p-collecting subgroups of G are precisely the sub-
groups of G containing T1’(G).

PROOF. There is nothing to show if G is the only p-collecting sub-
group of G. So assume T1’(G)  G. Then since Ov(G)
is contained in every p-collecting subgroup. Let x and y be p-elements
in Then there exist p-collecting subgroups S and T of G
with x 0 S, y 0 T. Since G is not the set theoretical union of two

proper subgroups, there exists g E G T. Then

~g? n ~~~ ~ 1 ~ (g) n y~ since S and T are p-collecting subgroups
of G, and hence ,~(~x~) - S~(y~) is the subgroup of order p of (g).
Thus

and Tp(G) is a p-collecting subgroup of G by 5.2, (c). Clearly, all sub-
groups of G containing are also p-collecting subgroups of G.

5.4. THEOREM. Let p be a prime, G a group and let L,(G) be the
subgroup of G generated by all p-collectors of G. Then L~(G) ~ Z(G)
,and Zpn for some n E 1~T u {0, 
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PROOF. By 5.2, If G is the only p-colIecting sub-
group of G, then Lp(G) = So assume there are proper p-col-
lecting subgroups 82 of G, let K2 be their p-colIectors and take
g E G with g ~ 8l and g ~ ~’2. Then Ki and .g2 are p-subgroups of g&#x3E;
and hence or As in the proof of 3.6, 
with n E ~TU 

We shall need the following result.

5.5. LEMMA. Let p be a prime, S a p-collecting subgroup o f G and
K = JB,(S) its p-collector. If .g ~S, then IK: K r1 81 = p and every
element in SIK r’1 S has f inite order prime to p.

PROOF. K is a p-group, and for every x E ~8 we have .K = x&#x3E;
by the definition of a p-collector. Hence IK: .g r1 ~’~ = p. If G would.
contain an element 9 of infinite order, then .K X g~ since

But would be generated by elements of infinite
order and so K   S, a contradiction. Hence G is a torsion group.
If SIK r1 S would contain a subgroup UjK r1 ~S of order p, then

D’K/.K r1 ~S would be elementary abelian of order p2 and U.g would
contain an element g with g ~ K and g ~ U = UK r1 S. But then also

.K ~ g~, a contradiction since .K = ~(~’). This proves the lemma.

6. A characterization of Am ( G) and Reg ( G) .

Theorems 3.6 and 5.4 look very similar and there is a good reason
for this. We show in fact that LfJ(G) and Am are nearly the same
subgroup of G.

6.1. THEOREM. I f p is a prime and G a group, then Am (G) p = L1J(G)
except in the following cases :

(a) p = 3, L : = L3(G):;61 is finite, and G = LT where T = 
is the minimal 3-collecting subgroup of G with 3-collector L; here Am (G)3
is the maximal subgroup of L3(G).

(b) p = 2, L := L2(G):;61 is finite, let T = 8(L) be the minimal
2-collecting subgroup o f G with 2-collector L, and
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Here Am (G)2 is the subgroup of .L2(G) of index 4 in case (b1 ) resp.
index 2 in the other cases.

PROOF. We first show that always

For this we take a generator of Am (G)f)’ i.e. by 3.2, we take a
normed affinity c from G to some group G, a the amorphy of u,

p-elements x, y E G and let K = a(x, We have to show that
If K = 1, this is clear, so assume We define

and show that

For this take z E (~ with a(x, z)~ = Kd. Since x is a p-element,
the subgroup lattice of ~x~ is a chain and hence ~x~ n g~ since

K6 (g) but The associativity identities 2.6 for x, z, g
together with 2.4 and 1.7 give

and therefore with a(x, z) also a(x, zg) generates Kt1. Thus g E S.
Now (1) shows that S contains all elements of infinite order and

all g E G with (o(g), p) = 1, since 1 ~ .g c x~ is a p-group. So if we
can show that S is a subgroup of G, then certainly

But I e S, and if g, h E S, then for all z E G, a(x, z)) = Kd implies
a(x, = this implies that a(x, zgh)~ _ Kd, and hence gh E S.
Since S contains all elements of infinite order, S is a subgroup of G.

Since a(x, y)~ _ .ga and a(x, yy-1)~ _ a(x,1)&#x3E; = 1 =A Ko,7 we
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have that Hence S  G and by (1), (~ (g). Thus S is
gEGBS

a p-collecting subgroup of G and This proves (I).

(II) I f Am =: L, then p = 3 or 2, is finite,
and G = LT or 10: LTI = 2, where T = S(L) is the minimal p-col-
lecting subgroup of G with p-collector L.

To show this we take a p-collector K # 1 in G and a p-collecting
subgroup S of G with p-collector K.

(3) 
then the maximal subgroup o f K is contained in Am (G)2 .

For this let and given by 4.1 with
1 = d e N. If there are x, y E with .lVl. Then

If then for
d2 = a(x, Am (G)p, and so the maximal subgroup

of .g is contained in Am ( G) 2 .

(4) Let g~S = G. If p ~ 2 and 3, then (O)p. I f p = 3,
then Am (G)3 is the maximal subgroup o f K. If p = 2, then Am (G)2
is the subgroup of index 4 in K i f and Am (G)2 =1 it IKI = 2.

To prove this observe that K6S By 5.5,
[.K : SI [ = p and every element in has finite order prime
to p. Let K = (g), v be the identity on S and p: K - K for p &#x3E; 2

be the normed affinity given by = g2x, = gx for all
x E K = y for all other y E K. By 4.3 and 4.8, (1: G - G
with syku (s E S, k E K) is a normed affinity of G and g-3 E
E Am (G) p . This shows that if p &#x3E; 3 and that 
Am ( G) ~ if p = 3. But in this case by 1.9, every normed affinity
of G induces a normed affinity in the cyclic group G/S of order 3 which
of course is an isomorphism. Hence Am (G)~ c ~S and so Am (G)3 =

If p = 2 and ~~ &#x3E;4y we take p = (1d with à = g2 E N =
- ~C’ _ .K in the notation of 4.1 and construct (1 as above. Then
d2 = g4 E Am (G)2 . B~ 1.9, every normed affinity of G induces a normed
afhnity in which again is an isomorphism. Together with 3.2
this shows that Am (G)E = g4~ and, similarly, Am (G)2 =1 if [g[ = 2.

Now (II) follows immediately from (3) and (4). For if .g is any
generator of then (3) and (4) show that the second maximal
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subgroup of .K is contained in Am By 5.4, is finite if

Am (G)~ ~ L1)(G). Then we may take K = Lp(G) = E and S = T
in (3) and (4) and get that p = 2 or 3 and G - LT or IG: = 2.

By (4), also Am is as stated in the theorem if G = LT. So it
remains to consider the case that p = 2 and = 2. If 
then by 5.5, T[ = 2 and hence IG:TI = 4. Again every
normed affinity of G induces a normed affinity in G/T which is an
isomorphism and so By (3), is the

maximal subgroup of L. Finally, let Z  T and hence = 2 .

If (b4) does not hold, then L Am (G) by 4.5. If (b4) holds and Lo
is the maximal subgroup of L, then (a)-(d) of 4.6 are satisfied in 
with M = T/Zo and N = L/Lo . And if = is as in (e) of 4.6,
then there exists x e GBS with L 6 (z) since T = 8(L) is the minimal
2-collecting subgroup with 2-collector .L. Then n L c Lo and so
also (e) of 4.6 holds. Hence every 2-element in is regular and
therefore Am by 1.9 and 3.2. By (3), Am (G)2 = Lo what
we had to show.
We now characterize Beg (G) in terms of the minimal p-collecting

subgroups T,(G) defined in 5.3.

6.2. DEFINITION. If p is a prime and G a group, let Reg be
the subgroup of G with Reg (G) = Ov(G/Reg (G)).

By 3.8, Reg (G) _ n Reg (Gyp. So as in 6.1 the following theorem
pEP

not only characterizes Beg (G)fJ but also Reg (G).

6.3. THEOREM. I f p is a prime and G a group, then Beg (G)9 = T p(G)
except in the following cases :

(a) p = 3, G = torsion group, IKI = 3, and (o(x), 3) =1
for all xeH; here Reg (G)$ = G and H.

(b) p = 2, let T : = T2(G) and L = the 2-collector of T,

and

and there exists an element
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Here Reg (G)2 = LT in case (bl) and Reg (G)2 = G in the other

three cases.

PROOF. By 2.3, every element of G of infinite order is contained
in Reg (G)21, and so By 3.4,

and remark 5.2, (c) shows that Reg is a p-collecting subgroup
of G. Hence

Let T = Tp(G) and L = K(T) be its p-collector and assume first
Then T # G and 4.1 shows that for

x E GBT and therefore T = Reg except possibly when IL r1 Tj =
= 2 = IG:TI. But in this case if then ILl = 4, LT = G and L
contains every 2-element of G by 5.5. On L every normed affinity of
G is an isomorphism and therefore L  Reg (G) by 3.2. So Reg (G)2 =
= G # T by (1). If L  T, then ILI = 2 = and 4.5 and 4.6 show
that Reg (G) 6 T if and only if there exists an element of order 4 in
GBT. By (1), Reg (G)2 = G in this case and Reg (G)2 = T if there
is no element of order 4 in GBT.

Now assume that L n T = 1. If T = G, then Reg = T by (1).
So let T -:/:= G and therefore Then and 5.5 shows that

ILl = p, LT = LXT, and T is a p’-group. We show

(2) If v : L -~ L is any bijective map with 1 y = 1, then ~r : G --~ G

defined by xa = x for x E GB(L X T ) and (tt)a = Iv t for l E L, t E T is
a normed affinity.

Clearly, a is bijective and since every subgroup of L X T not
contained in T contains L, a fixes every subgroup of L X T and hence
also of G. Thus a induces the trivial autoprojectivity on G and if a
is the amorphy of (J, a(x, y) E L for all x, y E G. This is contained in

~x~ _ if But if x or y is a p’-element, it is contained in T
and then a(x, y) = 1. By 1.7, a is a normed affinity.

Now (2) shows that every normed affinity v : L - L can be extended
to a normed affinity of G. Thus (G) if ILl = p &#x3E; 5 and since
L = ~(T), Reg (G)  T in this case. By (1), T = Reg (G)v. For p = 3,
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we take the automorphism v of order 2 of L and define c as in (2).
If G contains an element x of order 9, then .L = (x3) and

Again, (G) and T = Reg (G)3. But if G does not contain an
element of order 9, then G = L X T and (a) holds. In this case

L  Reg (G) by 3.2 and hence Reg (G)3 = G. Finally, let p = 2_. If
then and every normed affinity c~ : G -~ G in-

duces an isomorphism in For x, y E G and the amorphy a of or

therefore a(x, y) x~d =1 if x is a 2-element. So every 2-element
of G is contained in Reg (G) and Reg (G)2 = G. If then
4.1 with shows that Reg (G) LT. Hence

Reg (G)~ ~ZT, but .L ~ Reg (G) by 1.3 and so Reg (G)2 = LT in this
case.

We remark that 6.1 and 6.3 nearly give lattice theoretic char-
acterizations of Am (G) and Reg (G). At least an index-preserving
projectivity from G to a group ,H maps to hence 
to and to for every prime p and preserves the
other conditions in 6.1 and 6.3.

6.4. COROLLARY. is an index-preserving projectivity f rom the
group G to the group H, then Am (G)d = Am (H) and Reg (G)a= Reg (.H).

So, finally, Am (G) is not only a characteristic subgroup of G but
also satisfies Am (G)a = Am (Ga) for every normed affinity 0’ of G.
For the corresponding statement was proved in 2.3.
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