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ReEND. SEM. MaT1. Un1v. PADOVA, Vol. 71 (1984)

Gabriel Dimension of Graded Rings.

CONSTANTIN NASTASESCU - SERBAN RAIANU (*)

One of the main problems in studying graded rings is to see whether
a graded ring having a certain property has a similar property when
regarded without grading. This problem has been attacked in [5],
where the relation between the Krull dimension and the graded Krull
dimension of a graded module is studied, among other properties.

The main goal of this paper is to give a relation between the
Gabriel dimension and the graded Gabriel dimension of a graded
module. We solve this problem completely in the commutative case
and then apply the results to polynomial rings. We also add some
remarks about the non-commutative case,in which the problem remains
open.

1. Notation and preliminaries.

All rings considered in this paper will be commutative and uni-
tary, unless explicitely mentioned otherwise. R will always denote
such a ring and Mod-R will denote the category of all R-modules.
When E will be supposed to be graded, this will mean that R is a
graded ring of type Z, and R-gr will denote the category of all graded
R-modules.

We begin by recalling the notion of Gabriel dimension, introduced
in [1] and then developped in [2]. One can define the following filtra-
tion on Mod-R, using transfinite recursion: denote by (Mod-R), the

(*) Indirizzo degli AA.: Facultatea de Matematicd, Str. Academiei 14,
R 70109 Bucharest 1, Romania.
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smallest localizing subecategory of Mod-E containing all simple R-
modules.

If « is not a limit ordinal, (Mod-R), will denote the localizing
subcategory of Mod-E such that the quotient category (Mod-R)s/
/(Mod-R),_, is the smallest localizing subcategory of Mod-E/(Mod-R),_,
containing all simple objects.

If a is a limit ordinal, (Mod-E), will denote the smallest localizing
subcategory of Mod-R contfaining all subcategories (Mod-R)s, with
B < a. In this way, we obtain a transfinite sequence of localizing
subcategories:

(Mod-R), € (Mod-R), C...C (Mod-R),C (Mod-R), ., C....

If M eMod-R is a module such that there exists an ordinal a,
with M € (Mod-R),, we will say that the Gabriel dimension of M is
defined. If this is the case, the least ordinal o for which M € (Mod-R)a
will be called the Gabriel dimension of M and will be denoted by
G.dim (M).

From the definition of G.dim, it follows at once that if (M,);;
is a family of modules having Gabriel dimension, then M = P M,
has Gabriel dimension too, and we have: ier

G.dim (M) = sup G.dim (M) .

i€l

In particular, the above relation holds for M = |J M,.

i€l

It is obvious that one can repeat the above construction in the
graded case, obtaining thus the notion of graded Gabriel dimension,
denoted in the sequel by gr-G.dim.

The set of all prime ideals of R (resp. graded prime ideals if R is
graded) is denoted by Spec R (resp. Spec, R).

In [3] the following filtration on Spec R is considered: (Spec R),
consists of all maximal ideals; if « is not a limit ordinal

(Spec R)s = {P eSpec R| VQ €Spec R, P ¢ Q = Qe (Spec R),_4} -
If « is a limit ordinal

(Spec R)s = ] (Spec R)s .

B<a
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It is clear that there exists an ordinal » such that
(Spec R), = (Spec R), ;= ....

If there exists an ordinal o« such that (Spec R), = Spec R we say
that the classical Krull dimension of R is defined. If this is the case,
the least such ordinal is called the classical Krull dimension of R and
is denoted by cl.K.dim (R).

If R is a graded ring, we say that an ideal of R is gr-maximal if
it is a maximal element in the set of all proper graded ideals of R.
The following well-known lemma tells us more about gr-maximal
ideals.

LemMA 1.1. If P is a gr-maximal ideal, then P is prime and R/P
is a graded field, i.e. R/P ~ K[X, X-'] where K is a field and X is
an indeterminate. In particular, /P is a Noetherian principal ring,
and hence of Krull dimension 1 (see [5] for a proof).

Now we can define as above a filtration on Spec, R starting with
(Spec, R), = {P|P is gr-maximal}, obtaining thus the notion of graded
classical Krull dimension, denoted in the sequel by gr-cl.K.dim.

If M € Mod-R, we will denote by Ass (M) the set

Ass (M) = {PeSpecR| Ixe M, x+# 0, P = Ann (2)} .

It is well-known that if R is a graded ring and M € R-gr Ass (M)
consists only of graded prime ideals [5].
In [3] it is proved the following

THEOREM 1.2. Let « be an ordinal and M € Mod-E. The following
assertions are equivalent:

1) M e(Mod-R),,
2) 0+ Ass (M/N)C (Spec R)x for any N;M.

A mere transcription for the graded case of the proof given in [3]
enables us to state.

THEOREM 1.2'. If R is graded and « is an ordinal, the following
assertions on M € R-gr are equivalent:

1) Me(R-gr)a,
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2) 0= Ass (M/N)C (Spec, B), for any proper graded submodule
N of M.

COoROLLARY 1.3 [4]. Let R be graded and M € (R-gr),,. There
exists an ordinal y, and a filtration (M,).., with the following prop-
erties:

1) M= Y Rr= Y Rux.
3

xeM z€
Ann(z) prime  Ann(x)€(Spec, R)y,

2) If « is not a limit ordinal, then

MM, ,= 3 Re— 3 Ra.
TEM/Ma-—, cEM/Ma-y
Ann(z) prime  Ann(z)&(Specg R)s,

If o is a limit ordinal, then

Mo= ] M,.

B<x

3) M=\ Ma.

<y

CororLARY 1.4. 1) If G.dim (R) exists, then cl.K.dim(R) also
exists and G.dim (R) = cl.K.dim (R).

2) If R is graded and gr-G.dim (R) exists then gr-cl.K.dim (R)
also exists and gr-G.dim (RB) = gr-cl.K.dim (R).

Proor. 1) Let « = G.dim (R). Then, for any P € Spec R, we have
by Theorem 1.2 that {P} = Ass (R/P)C (Spec R)x. Hence (Spec R)s =
= Spec B. If there existed an ordinal §, f < «, with (Spec B)s =
= Spec R, then it would follow from Theorem 1.2 that R € (Mod-R)s,
a contradiction. Thus G.dim (R) = cl.K.dim (R).

2) Like 1), using Theorem 1.2’ instead of Theorem 1.2.
If R is graded and I is an ideal of R we denote by I, the greatest
graded ideal (w.r.t. inclusion) contained in I.

LEMMA 1.5. If P is prime, then P, is graded prime and there is
no prime between P, and P (see [5] for a proof).
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2. Gabriel dimension of graded modules.

Throughout this section R will denote a graded ring.

PrROPOSITION 2.1. Let a be an ordinal. Then
(Spee, R)s C (Spee R)x
if « is a limit ordinal, and
(Spec, R)a C (Spec R)p ania

if «c=f +n, where neN and =0 or § is a limit ordinal and
n = 0.

Proor. Using transfinite recursion, we show first that (Spec, R),C
C(Spec R);. To see this, let P be a maximal graded ideal and let @,
Q'eSpec R such that Pc@QCQ'. Then Q. =P and so @ = Q' by
Lemma 1.5, proving that @ is maximal.

Suppose now that the statement is true for all ordinals g, f < «.
If « is a limit ordinal, let P € (Spec, R)x = | (Spec, R)s and let 8, be

B<a

the least ordinal such that P e (Spec, R)s,. Then f, <« is not a
limit ordinal and so 8,=f, -+ k, where f,=0 or f, is a limit or-
dinal and k= 0. Hence

P e (Spec, R)s, C (Spec R);, ... C (Spec R)x .

Now, if « = f + #n, f and n being as in the statement, we need to
prove that (Spec, R)z,, C (Spec R)s_ 5, ., For this, let Pe (Spec, R)g,,
and let @, @’ €Spec R such that P ¢ Q gQ’. (We supposed that
neither P nor ¢ are maximal.) We will show that @ € (Spec R);,,,.
by proving that @'e (Spec R)s. 5,_,. Indeed, by Lemma 1.5 P;céQ; cQ'.
Hence @, € (Spec, R)g, 1 C (Spec R)s 5,1, and so Q'€ (Spec R)s 5, 1-
Thus @ € (Spec R)s,,,, i.e. we proved that P e (Spec R)z,,,,,, and
this completes the proof.

ProPoOSITION 2.2. If R has limited grading and o« is an ordinal,
then

(Spec, R)« C (Spec R)a
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if o is a limit ordinal or « = 0, and
(Spec, R)a C (Spec B)p 9,1

if « =p + n, where neN, n 0 and f = 0 or § is a limit ordinal.

Proor. The same as the proof of Proposition 2.1. One uses for
the proof of the case o« = 0 that if R has limited grading, then a
gr-maximal ideal is maximal [5].

Now we are going to give a relation between the classical Krull
dimension of R and the graded classical Krull dimension of R. We
will use the following

LeMMmA 2.3. If a is an ordinal, then
(Spec R)»N Spec, R C (Spec, R)a .

PrOOF. By transfinite recursion on «.
ProposITION 2.4, The following assertions hold:

1) If one of cl.K.dim (R) and gr-cl.K.dim (R) exists, then the
other one also exists. Putting gr-cl.K.dim (R) = f + n, where n € N
and f =0 or f is a limit ordinal, one has

B +n<clK.dim (R)<f +2n +1.

2) If one of cl.K.dim (R) and gr-cl.K.dim () exists and is a
limit ordinal, then

gr-cl.K.dim (R) = c¢l.K.dim (R) .

PrOOF. 1) We suppose first that cl.K.dim (R) exists and show
that gr-cl.K.dim (R) also exists and gr-cl.K.dim (R)<ecl.K.dim (R). To
see this, it is enough to prove that if (Spec R)x = Spec E for an
ordinal o, then (Spec, R), = Spec, B. Indeed, we have Spec, B =
= (Spec R), N Spec, R C (Spec, B)» by Lemma 2.3.

Suppose now that « = gr-cLK.dim (R) exists and «=p + n,
p and n as in the statement. We will show that (Spec R)s, 0,11 =
= Spec R. To see this, let P € Spec R. Then P, € (Spec, R)» and so
P, e (Spec R)s, 0,1 by Proposition 2.1. Hence P e (Spec R)s.z,41
and we are done.
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2) Suppose first that « = cl.K.dim (R) is a limit ordinal. Sup-
pose further that gr-cl.K.dim (R)< cl.K.dim (R), i.e. (Spec, R)s =
= Spec, R for an ordinal 8, f <a. We put § =0 + n, neN, and
6 = 0 or ¢ is a limit ordinal, and let P € Spec B. Now P, € (Spec, R);s
and so P,e (Spec R)s..5,.; by Proposition 2.1. Hence P (SpecR)s 0n11
and so we proved that (Spec R)s ,,,; = SpecE. But since 6 + 2n +
+1=p+n+1, f<a and « is a limit ordinal, it follows that
0 + 2n +1 < «, a contradiction. Thus gr-cl.K.dim (R) = c¢l.K.dim (R),
as required.

Suppose now that e = gr-cl.K.dim (R) is a limit ordinal. By 1) it
is enough to show that cl.K.dim (R)<gr-cl.K.dim (R). To see this, we
prove that (Spec R)y = Spec E. Let P e Spec R, then P, € (Spec, R),
and so P, € (Spec R)x by Proposition 2.1. Hence P € (Spec R), and
this completes the proof.

We are now in a position to state the main result of this paper.

THEOREM 2.5. Let « be an ordinal and M a graded R-module
such that M € (R-gr)a. Then

M € (Mod-R)»

if o is a limit ordinal, and

M e (Mod-R)s ., 5514

if «=pf +n, where neN and f =0 or f is a limit ordinal and
n# 0.

Proor. By transfinite recursion on «. The case « = 0 may
be achieved in an obvious manner by transfinite recursion on the
gr-Loewy length of M. (Lemma 1.1 is used for the case M gr-semi-
simple.)

We suppose now that the statement is true for all ordinals f,
f < a, and prove it for . By Corollary 1.3 we may suppose M = R/P,
P e (Spec, B)x. Using Theorem 1.2, we must prove that for each ideal I,
PQI;R. Ass (R[I)%~ 0 and Ass (R/I)C (Spec R)4 if o is a limit ordi-
nal, or Ass (R[I)C (Spec R)s ,,., if «=f +n, f and n as in the
statement. By Proposition 2.1, it is sufficient to prove only that
Ass (R[I)# 0. Let I be a proper ideal of R. (We supposed that E
is a graded domain having graded Gabriel dimension «.) If I con-
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tains a homogeneous element h, h+ 0, then
Assy (R[I)= 0

(Assgsg(R/I)# 0 by the induction hypothesis, since gr-G.dim (R/hR) <
< gr-G.dim (R)). Hence we may suppose that I NS = @, where

8 = {a € R|a homogeneous and a0} .
Let

ts(R/I) = {x € R/I| Ann () contains a non-zero homogeneous element}

be the torsion submodule of R/I w.r.t. 8. If t3(R[I)<0,let v €ty(R/I),
20 and he Ann (), h 5= 0 a homogeneous element. Then Assg(Rx) 7= @
(Assgp, (Rz) = @ by the induction hypothesis, since gr-G.dim (R/hR) <
< gr-G.dim (R)). If tg(R/I) = 0, then R/I is a submodule of S-1(R/I).
Since S-R is a graded field, hence Noetherian (see Lemma 1.1)
Assgg (S-1(R[I)) = @, and it is straightforward to check that
Assg (B/I) = 0.

COROLLARY 2.6. The following assertions on a graded module M
hold:

1) If one of G.dim (M) and gr-G.dim (M) exists, then the other
one also exists. Putting gr-G.dim (M) = + n, where ne N and
f = 0 or B is a limit ordinal, one has

g +n<G.dim(M)<f +2n+1.

2) If one of G.dim (M) and gr-G.dim (M) exists and is a limit
ordinal, then

gr-G.dim (M) = G.dim (M) .

Proor. 1) Suppose that M € (Mod-R)» where « is an ordinal.
Let N be a graded proper submodule of M. Then

0~ Ass (M/M)C (Spec R)s N Spec, R C (Spec, R)«

by Theorem 1.2 and Lemma 2.3 and hence M = (R-gr)a. by Theo-
rem 1.2’. The rest follows at once from Theorem 2.5.
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2) Suppose « = gr-G.dim (M) is a limit ordinal. Then M€
€ (Mod-R), by Theorem 2.5 and so gr-G.dim (M) > G.dim (M). Hence
gr-G.dim (M) = G.dim (M) by 1). Now if 6 = G.dim (M) is a limit
ordinal, suppose that gr-G.dim (M) <4, i.e. M e(R-gr)s,, (B=0o0r f
is a limit ordinal) with g 4+ n <. By Theorem 2.5 M e(Mod-R)g,5,41-
Since f + 2n + 1< § we have a contradiction, and so gr-G.dim (M) =
= G.dim (M).

3. Application to polynomial rings.

Throughout this section R will denote a ring and R[X] the ring
of polynomials in one indeterminate over R. If p € Spec R, we will
write p* for pR[X]. It is well known that if P e Spec, R[X], then
either P = p* or P = p* + (X), where p = RN P (see [5]).

PrOPOSITION 3.1. Let a be an ordinal and p € Spec R. The fol-
lowing assertions are equivalent:

1) p*e (Spee,, R[X])a+17
2) p € (Spec R),.

Proor. 1) =2). By transfinite recursion on «. Suppose a = 0
and let p*e (Spec, R[X]),. If p is not maximal, let qe& Spec R,
pg q. Then we have the sequence p*cC g* ¢ g* + (X), contradicting
the fact that q* must be a gr-maximal ideal of R[X].

We suppose now that the assertion is true for all ordinals f,
f < a, and prove it for «. Let p* € (Spec, R[X]),., and g€ Spec R
such that p ¢ q. If o is a limit ordinal, then g*€ (Spec, R[X))s =
= | (Spec, R[X])s. Let f, be the least orinal f, p < «, such that

f<a

o* € (Spec, R[X])s. Then f, is not a limit ordinal and f,# 0, hence
q € (Spec R)s,_, by the induction hypothesis. Since f,—1<«, this
proves that p € (Spec R)a.

If «=p 41, then q*e (Spec, R[X])s,; and so q € (Spec R)s.
Hence p € (Spec R), again and this finishes the proof.

2) =1). Again by transfinite recursion on «. Suppose first that
«=0 and let p be a maximal ideal of R. Then R[X]/p* ~ (R/p)[X]
has Krull dimension 1, so that p* e (Spec, R[X]),.

We suppose now that the assertion is true for all ordinals f, f < «,
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and prove it for «. If « is a limit ordinal, then p & (Spec R), =
= |J (Spec R)s. Ler f < a be such that p € (Spec B)s. Then

B<a
p* & (Spec, B[X])., C (Spee, R[X]),; -
If «a =041, let @ €Spec, B[X] such that p*gQ. Two cases
arise:

a) If Q@ = g* then p ca and so g € (Spec R)s. Hence = q* €
€ (Spec, R[X])a.

b) If @ = g* + (X), and p ca then q* € (Spec, R[X])« like in
case a) and since @q* gQ, it follows that @ € (Spec, R[X])s too. If
Q = p* 4 (X), let Q'eSpec, R[X] such that @ g:éQ'. We must prove
that Q'€ (Spec, R[X1)s. Now Q'= t* + (X), where t.=R N Q' and
P crt. Hence t € (Spec R)s and so r*e (Spec, R[X])s,,. Then, since
Q’;)r*, it follows that @'e(Spec, R[X])s and we are done.

CoroLLARY 3.2. The following assertions on an ordinal « are equi-
valent:

1) (Spec B)x = Spec R.
2) (Spec, R[X]),., = Spec, R[X].
ProoF. 1) =2). Put q=@Q N R. Then qe€(SpecR)» and so
q*€ (Spec, R[X]),., by Proposition 3.1. But g*C @ and so
Q € (Spec, R[X]) .4 too .

2) = 1) follows directly from Proposition 3.1.

PropoSITION 3.3. 1) gr-cl.K.dim (R[X]) = cl.K.dim (R) 4 1, if one
of the two ordinals exists and neither of them is a limit ordinal.

2) gr-cl.K.dim (R[X]) = cl.K.dim (R), if one of the two ordinals
exists and is a limit ordinal.

ProoF. 1) Directly from Corollary 3.2.

2) Suppose first that « = gr-cl.K.dim (R[X]) is a limit ordinal.
Let p eSpec R. Then p* e (Spec, R[X])s = (J (Spec, R[X])s. Let fo
f<a
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be the least ordinal f, f < «, such that p*e (Spec, R[X])s. Then
B, is not a limit ordinal and f,# 0. Thus, it follows from Proposi-
tion 3.1 that p e (Spec R)s,_, C (Spec R),, and so we proved that
(Spec R)x = Spec R. Hence cl.K.dim (B)<e. If el.K.dim (R) =< a,
then a<f +1 by Corollary 3.2, a contradiction.

Conversely, let « = cl.K.dim (R) be a limit ordinal. If gr-cl.K.
dim (R[X]) was not a limit ordinal, then it would be equal to « + 1.
We will show that (Spec, R[X])s = Spec, R[X] and this will provide
the desired contradiction. For this, let @ € Spec, R[X]. Put =@ N R.
Then ¢ € (Spec R)x = |J (Spec R)s. We choose f < a such that qe

B<a
€ (Spec R)s. Then go*e (Spec, R[X])s,, C (Spec, [RX])s by Proposi-
tion 3.1, and since ¢q*C@Q it follows that @ € (Spec, R[X])x too.
We are now in a position to give another proof for a result pre-
viously proved in [2] for the general case, and in [4] for the com-
mutative case:

PrOPOSITION 3.4. 1) If one of G.dim (R) and G.dim (R[X]) exists,
then the other one also exists. If G.dim (R)=f + », ne N and
p =0 or B is a limit ordinal and n = 0, then:

B +n+1<G.dim (R[X])<p +2n +1.
2) If one G.dim (R) and G.dim (R[X]) is a limit ordinal,
G.dim (R) = G.dim (R[X]) .

PrOOF. 1) Assume first that G.dim (R) exists. Then G.dim (R)=
= cl.K.dim (R) by Corollary 1.4, and hence gr-cLK.dim (R[X]) ex-
ists by Proposition 3.3. Thus, in order to prove the existence of
G.dim (R[X]), it is sufficient to show, by Corollary 2.6 and Theo-
rem 1.2, that Ass (R[X]/I)+ ¢ for any graded proper ideal I of
R[X]. Now I =1, ,LX®..®I,X"D..., where the I, are ideals

of R and I,cI,C...CI,C1I,,,C...: Two cases arise:
a) Iy=1,=..=1,=1,,,... Then let
p € Ass (R[1,), p = (L,:a)z, aeR.

It is easy to se that p* = (I.a)px;.
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b) There exists k€N such that I, gIHv We pick then
p € Ass (Lep/Iy) , p=(Iiia)g, a€lyy,.

It is straightforward to check that p* + (X) = (I:a)gx;-

Now if G.dim (R[X]) exists, it is obvious that G.dim (R) also
exists.

To prove the last part of the statement, let « = G.dim (R),
a=pf=mn, f and n as in the statement. Then o« = cl.K.dim (R),
and « +1=p 4+ n + 1 = gr-c.K.dim (R[X]) = gr-G.dim (R[X]) by
Proposition 3.3. Using now a result similar to Proposition 2.4, ob-
tained for rings with limited grading by means of Proposition 2.2 we
have

B+n+1<Gdim(RBX)<f+2(n+1)—1=F+2n+1..

This completes the proof.

2) If G.dim (R) is a limit ordinal, then

G.dim (R) = cl.K.dim (R) = gr-cl.K.dim (R[X]) =

— gr-G.dim (R[X]) = G.dim (B[X])

by Corollary 1.4, Proposition 3.3 and Corollary 2.6, and the same
(reversed) argument may be used when G.dim (R[X]) is a limit
ordinal.

REMARKS. 1) All evaluations obtained in Proposition 2.4, Corol-
lary 2.6 and Proposition 3.4 are good, in the sense that each side can
be effectively reached, as it is easy to see using in all cases the well-
known examples of Seidenberg [6].

2) In the proof of Proposition 3.4 we showed the following
general fact: if R has the property that Ass (M) 0 for all R-mod-
ules M, M+ 0, then Ass(N)s=@ for all graded R[X]-modules N,
N #o0.

The following remarks might be useful to the study of the non-
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commutative case. From now on, R will be no longer supposed to
be commutative.

3) Let MeR-gr such that gr-G.dim (M) = 0. Then
G.dim (M)<1.

Indeed, using the Loewy series, we may suppose that M is gr-simple.
Now from the structure of gr-simple modules it follows that M is
simple or 1-critical (see Theorem 7.5 p. 61 of [5]). Hence K.dim (M)<1
and so G.dim (M)<1.

4) Let R be a graded ring and M eR-gr,

R=@®R; and M=3PNM,.
i€Z i€Z

Assume that « = gr-G.dimg (M) exists. Then G.dimp (M;)<o for all
1€Z.

This can be proved by transfinite recursion on o. If & = 0, then
using the Loewy series we may suppose that M is gr-simple. But
in this case, either M ;= 0 or M, is a simple R,-module for all .

We suppose now that the assertion is true for all graded R-mod-
ules N with gr-G.dimg(N) < a. It is easy to see that we may sup-
pose that M is a-simple (see [2] for the definition). Let N,C M,,
N;5# 0. Then N;,= M,N RN,. Now M being «-simple implies that
gr-G.dimg (M/RN,) < «, and so G.dimp ((M/RN,);) <« by the induc-
tion hypothesis. But (M/RN,); = M,/N, and so G.dimp (M;/N,) < a.
Hence G.dimg (M;)<a.

5) Let R and M be as in 4). Put Mt =P M, M~ =P M,.
i>0 i<0

M~* is a graded R*-module and M~ is a graded B -module. Assume
that gr-G.dimg (M) = «. Then

gr-G.dimp (M) <a +1 and gr-G.dimg- (M)<e + 1.

To see this, one uses transfinite recursion to reduce the problem to
the case when M is gr-a-simple. The rest follows as in Lemma 4.11
p. 50 of [5].
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