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Gabriel Dimension of Graded Rings.

CONSTANTIN N0103ST0103SESCU - SFRBAN RAIANU (*)

One of the main problems in studying graded rings is to see whether
a graded ring having a certain property has a similar property when
regarded without grading. This problem has been attacked in [5],
where the relation between the Krull dimension and the graded Krull
dimension of a graded module is studied, among other properties.

The main goal of this paper is to give a relation between the
Gabriel dimension and the graded Gabriel dimension of a graded
module. We solve this problem completely in the commutative case
and then apply the results to polynomial rings. We also add some
remarks about the non-commutative case, in which the problem remains
open.

1. Notation and preliminaries.

All rings considered in this paper will be commutative and uni-
tary, unless explicitely mentioned otherwise. R will always denote
such a ring and Mod-R will denote the category of all R-modules.
When R will be supposed to be graded, this will mean that R is a
graded ring of type Z, and B-gr will denote the category of all graded
R-modules.

We begin by recalling the notion of Gabriel dimension, introduced
in [1] and then developped in [2]. One can define the following filtra-
tion on Mod-R, using transfinite recursion: denote by (Mod-R)o the

(*) Indirizzo degli AA.: Facultatea de Matematica, Str. Academiei 14,
R 70109 Bucharest 1, Romania.
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smallest localizing subcategory of Mod-R containing all simple R-
modules.

If a is not a limit ordinal, (Mod-.R)a will denote the localizing
subcategory of Mod-R such that the quotient category 

is the smallest localizing subcategory of 
containing all simple objects.

If a is a limit ordinal, (Mod-R)a will denote the smallest localizing
subcategory of Mod-R containing all subcategories (Mod-.R)a, with
P  a. In this way, we obtain a transfinite sequence of localizing
subcategories:

If is a module such that there exists an ordinal a,
with ME (Mod-R)a, we will say that the Gabriel dimension of M is
defined. If this is the case, the least ordinal a for which .M E 

will be called the Gabriel dimension of M and will be denoted by
G.dim (M).

From the definition of G.dim, it follows at once that if 

is a family of modules having Gabriel dimension, then
has Gabriel dimension too, and we have:

In particular, the above relation holds for

It is obvious that one can repeat the above construction in the
graded case, obtaining thus the notion of graded Gabriel dimension,
denoted in the sequel by gr-G.dim.

The set of all prime ideals of .R (resp. graded prime ideals if R is
graded) is denoted by Spec .R (resp. 

In [3] the following filtration on Spec R is considered: (Spec R)o
consists of all maximal ideals; if a is not a limit ordinal

If a is a limit ordinal
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It is clear that there exists an ordinal q such that

If there exists an ordinal a such that (Spec R)a = Spec R we say
that the classical Krull dimension of R is defined. If this is the case
the least such ordinal is called the classical Krull dimension of Rand
is denoted by cl.K.dim (1~).

If R is a graded ring, we say that an ideal of R is gr-maximal if
it is a maximal element in the set of all proper graded ideals of R.
The following well-known lemma tells us more about gr-maximal
ideals.

LEMMA 1.1. If P is a gr-maximal ideal, then P is prime and 
is a graded field, i.e. RIP -- K[X, X-1] where K is a field and X is
an indeterminate. In particular, is a Noetherian principal ring,
and hence of Krull dimension 1 (see [5] for a proof).

Now we can define as above a filtration on Spec, R starting with
(Specg R)o = is gr-maximal}, obtaining thus the notion of graded
classical Krull dimension, denoted in the sequel by gr-cl.K.dim.

If M E Mod-.R, we will denote by Ass (M) the set

It is well-known that if R is a graded ring and R-gr Ass (M)
consists only of graded prime ideals [5].

In [3] it is proved the following

THEOREM 1.2. Let a be an ordinal and M E Mod-R. The following
assertions are equivalent:

A mere transcription for the graded case of the proof given in [3]
enables us to state.

THEOREM 1.2’. If .R is graded and a is an ordinal, the following
assertions on M E ~R-gr are equivalent :
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2) for any proper graded submodule
N of M.

COROLLARY 1.3 [4]. Let R be graded and ME (R-gr)cxo. There

exists an ordinal y, and a filtration with the following prop-
erties :

2) If a is not a limit ordinal, y then

If a is a limit ordinal, then

COROLLARY 1.4. 1) If G.dim (R) exists, then el.K.dim (R) also

exists and G.dim (R) = cl.K.dim (.R).

2) If R is graded and gr-G.dim (R) exists then gr-cl.K.dim (R)
also exists and gr-G.dim (R) = (R).

PROOF. 1) Let a = G.dim (R). Then, for any P E Spec R, we have
by Theorem 1.2 that {P} = Ass (Spec R)a. Hence (Spec =

- Spec .R. If there existed an ordinal B, B  a, with (Spec _

- Spec R, then it would follow from Theorem 1.2 that I~ E (Mod-R)p,
a contradiction. Thus G.dim (I~) == cl.K.dim (R).

2) Like 1 ), using Theorem 1.2’ instead of Theorem 1.2.
If R is graded and I is an ideal of R we denote by I, the greatest

graded ideal (w.r.t. inclusion) contained in I.

LEMMA 1.5. If P is prime, then Pg is graded prime and there is
no prime between Pe and P (see [5] for a proof).
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2. Gabriel dimension of graded modules.

Throughout this section R will denote a graded ring.

PROPOSITION 2.1. Let a be an ordinal. Then

( Specg (Spec R) a

if a is a limit ordinal, and

(Spec, (Spec R)P+2n+l

if a = fl + n, where n E N and B = 0 or # is a limit ordinal and
n- ~ 0.

PROOF. Using transfinite recursion, we show first that (Spec, R)oc
ç (Spec R)l. To see this, let P be a maximal graded ideal and let Q,
Q’ E Spec R such that P c Q C Q’. Then Q’ 9 = P and so Q = Q’ by

=F

Lemma 1.5, proving that Q is maximal.
Suppose now that the statement is true for all ordinals @, ~8  a.

If oc is a limit ordinal, let P E (Specg R)a = lJ (Spec, and let be
~a

the least ordinal such that P E (Specg B),6.. Then a is not a

limit ordinal and so ~o = -~- k, where fl’ 0 = 0 or 0 is a limit or-

dinal and k # 0. Hence

Now, if a + ~2, ~ and n being as in the statement, we need to
prove that (Specg R)B + n C (Spec R)B + 2n + 1 For this, let P E (Spec, R)f3+n
and let Q, Q’ E Spec R such that (We supposed that

=1= #

neither P nor Q are maximal.) we will show that Q E (Spec 
by proving that Q’E (Spec R)B + 2n - 1. Indeed, by Lemma 1.5 P S Q; ç Q’.

, 
# 9

Hence (Specg R)B + n - 1 C (Spec 7 and so 

Thus Q E (Spec R)f3+2n, i.e. we proved that and
this completes the proof.

PROPOSITION 2.2. If R has limited grading and a is an ordinal,
then
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if a is a limit ordinal or a = 0, and

if a = f3 + n, where n E 0 and = 0 or # is a limit ordinal.

PROOF. The same as the proof of Proposition 2.1. One uses for
the proof of the case a = 0 that if R has limited grading, then a
gr-maximal ideal is maximal [5].

Now we are going to give a relation between the classical Krull
dimension of R and the graded classical Krull dimension of We

will use the following

LEMMA 2.3. If a is an ordinal, then

PROOF. By transfinite recursion on a.

PROPOSITION 2.4. The following assertions hold:

1) If one of and exists, then the
other one also exists. Putting gr-c1.K.dim (R) _ ~ + n, where n c N
and @ = 0 or B is a limit ordinal, one has

2) If one of cl.K.dim (R) and gr-cl.K.dim (R) exists and is a

limit ordinal, then

PROOF. 1) We suppose first that cl.K.dim (R) exists and show
that gr-cl.K.dim (1~) also exists and gr-cl.K.dim (.R)  cl.K.dim (.R). To
see this, it is enough to prove that if (Spec Spec R for an
ordinal a, then (Specg R),, = Specg R. Indeed, we have Spec, R =
- ( Spec r1 Spec, R C ( Specg R),, by Lemma 2.3.

Suppose now that a = gr-cl.K.dim (.R) exists and cx = 

~ and n as in the statement. We will show that (Spec =

- Spec R. To see this, let P E Spec .R. Then Pg E (Specg R)« and so
P9 E by Proposition 2.1. Hence P E 
and we are done.
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2) Suppose first that a = cl.K.dim (R) is a limit ordinal. Sup-
pose further that gr-cl.K.dim (R)  c1.K.dim (R), i.e. (Specg =

- Specg R for an ordinal ~3, ~3  a. We put # = 6 + n, n E N, and
3 = 0 or 6 is a limit ordinal, and let P E Spec .R. Now P9 E (Spec, .R)a
and so Pg E (Spec R)8 + 2n + 1 by Proposition 2.1. Hence PE (SpecR)ð+2n+l
and so we proved that (Spec 1-~)a+2n+1 = Spec R. But since 6 + 2n +
-)-1=~+~+1~ ~x and a is a limit ordinal, it follows that
6 + 2n + 1 C a, a contradiction. Thus gr-cl.K.dim (R) = el.K.dim (.R),
as required.

Suppose now that cx = gr-cl.K.dim (R) is a limit ordinal. By 1) it
is enough to show that cl.K.dim (1~)  gr-cl.K.dim (1~). To see this, we
prove that (Spec R)a = Spec R. Let P E Spec R, then Pg E (Specg R),,
and so Pg E (Spec _R)a by Proposition 2.1. Hence P E (Spec and

this completes the proof.
We are now in a position to state the main result of this paper.

THEOREM 2.5. Let a be an ordinal and M a graded R-module
such that ME Then

if a is a limit ordinal, and

if a == f3 + n, where 71 E N and B = 0 or B is a limit ordinal and

n # 0.

PROOF. By transfinite recursion on a. The case a = 0 may
be achieved in an obvious manner by transfinite recursion on the
gr-Loewy length of M. (Lemma 1.1 is used for the case 1Vl gr-semi-
simple. )

We suppose now that the statement is true for all ordinals #,
a, and prove it for a. By Corollary 1.3 we may suppose M = 

P E Using Theorem 1.2, we must prove that for each ideal I,
P S I c .R. Ass # 0 and Ass (RjI) ç (Spec if a is a limit ordi-

0

nal, or Ass (Spec if a = B + n, fl and n as in the
statement. By Proposition 2.1, it is sufficient to prove only that
Ass ~ 0. Let I be a proper ideal of R. (We supposed that R
is a graded domain having graded Gabriel dimension a. ) If I con-
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tains a homogeneous 0, then

by the induction hypothesis, since gr-G.dim 
 gr-G.dim (.R)) . Hence we may suppose that InS = ø, where

homogeneous and 

Let

contains a non-zero homogeneous element}

be the torsion submodule of .R/I w.r.t. ~’. If ts(.R/1’)  0, let x E 
X =1= 0 and hEAnn (x), h =1= 0 a homogeneous element. Then AssR(Rx) ~ ~

. (Rx) =1= 0 by the induction hypothesis, since gr-G.dim 
 gr-G.dim ())). If ts(R/I ) = 0, then Rjl is a submodule of 
Since is a graded field, hence Noetherian (see Lemma 1.1)
Asss-iR (8-1(R/1)) ~ 0, and it is straightforward to check that

AssR 0.

COROLLARY 2.6. The following assertions on a graded module M
hold:

1) If one of G.dim (M) and gr-G.dim (M) exists, then the other
one also exists. Putting gr-G.dim (M) _ ~8 -~- n, where and

B = 0 or B is a limit ordinal, one has

2) If one of G.dim (M) and gr-G.dim (M) exists and is a limit
ordinal, then

PROOF. 1) Suppose that (Mod-R)« where a is an ordinal.
Let N be a graded proper submodule of .lll. Then

by Theorem 1.2 and Lemma 2.3 and hence M E (R-gr)a by Theo-
rem 1.2’. The rest follows at once from Theorem 2.5.



203

2) Suppose a == gr-G.dim (if) is a limit ordinal. Then M E

by Theorem 2.5 and so gr-G.dim (lVl) &#x3E; G.dim (M). Hence
gr-G.dim (M) = G.dim (M) by 1). Now if 6 = G.dim ( .M) is a limit

ordinal, suppose that gr-G.dim (lVl) C 6, i.e. M E (R-gr)P+n (~8 = 0 or fl
is a limit ordinal) with B + n 6. By Theorem 2.5 
Since B + 2n + 1  6 we have a contradiction, and so gr-G.dim =

= G.dim (M).

3. Application to polynomial rings.

Throughout this section R will denote a ring and .R[X] the ring
of polynomials in one indeterminate over 1~. If p E Spec R, we will
write ~* for It is well known that if then

either .P = p* or P = p* + (.X), where p = R n P (see [5]).
PROPOSITION 3.1. Let a be an ordinal and p E Spec R. The fol-

lowing assertions are equivalent:

1) ~* E (Specg R[X])a+1,
2) p E (Spec R)a.

PROOF. 1) =&#x3E; 2). By transfinite recursion on a. Suppose a = 0
and let p* E (Spec, If p is not maximal, let q E Spec R,
p c q. Then we have the sequence p* c q* c q* + (X), contradicting
0 0 #

the fact that q* must be a gr-maximal ideal of R[X] .
We suppose now that the assertion is true for all ordinals

and prove it for a. Let p* E (Specg R[X])Ø;+l and q c Spec R
such that p c q. If a is a limit ordinal, then q* E (Specg R[X]) a =

#

(Spec, Let fJo be the least orinal p, a, such that
~Ga

c (Spec, R[X])p. Then flo is not a limit ordinal and 0, hence
q E (Spec by the induction hypothesis. Since  a, this

proves that p E (Spec R)a.
If then q* E (Specg R[X]) p + 1 and so q E (Spec 

Hence p E (Spec R)/X again and this finishes the proof.

2) =&#x3E; 1). Again by transfinite recursion on a. Suppose first that
a = 0 and let p be a maximal ideal of Then 
has Krull dimension 1, so that 

We suppose now that the assertion is true for all ordinals B, B  (X,
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and prove it for a. If a is a limit ordinal, then p E (Spec R)tX =

U (Spec Ler B  a be such that p E (Spec Then
~a

~* E (Specg (Specg 

If a = ~8 -E- 1, let Q E Specg such that p* c Q. Two cases

arise : 

a) If Q = q* then p C q, and so q e (Spec Hence Q = q* E
.E (Specg a . 

0

b) If Q = q* + (X), and p c q, then q* G like in
0

case a) and since q* c Q, it follows that Q E (Spec, R[X]),, too. If
0

Q = p* + (X), let such that We must prove
0

that Q’ e Now Q’= r* + ( X ) , where r B n Q’ and
Hence r E (Spec R)B and so t* E (Specg R[X])B+1. Then, since

#

I it follows that and we are done.
0

COROLLARY 3.2. The following assertions on an ordinal a are equi-
valent :

1) (Spec B) 

2) (Specg = Specg R[.X] .

PROOF. 1) =&#x3E; 2). Put q = Q n R. Then q E (Spec R)a and so

q*e (Spec, by Proposition 3.1. But q* -C Q and so

Q E (Specg too .

2) ~ 1) follows directly from Proposition 3.1.

PROPOSITION 3.3. 1) gr-cl.K.dim = cl.K.dim + 1, if one
of the two ordinals exists and neither of them is a limit ordinal.

2) gr-cl.K.dim = cl.K.dim (.R), if one of the two ordinals
exists and is a limit ordinal.

PROOF. 1) Directly from Corollary 3.2.

2) Suppose first that a = gr-cl.K.dim (R[X]) is a limit ordinal.

Let p E Spec R. Then
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be the least ordinal  a, such that ~* E (Specg Then
is not a limit ordinal and 0. Thus, it follows from Proposi-

tion 3.1 that P E (Spec (Spec B),,, and so we proved that
(Spec R)a = Spec ~R. Hence cl.K.dim (.I~)  a. If cl.K.dim  a,
then +1 by Corollary 3.2, a contradiction.

Conversely, let a = cl.K.dim (R) be a limit ordinal. If gr-cl.K.
dim (R[X]) was not a limit ordinal, then it would be equal to « + 1.
We will show that (Spec, R[X])lX = Specg .R[X] and this will provide
the desired contradiction. For this, let Q E Specg .R[~]. Put q = Q n R.
Then q E (Spec = U (Spec R)p. We choose {3  a such that q E

~a
E (Spec R)p. Then q* E (Specg (Specg [RX])fX by Proposi-
tion 3.1, and since it follows that Q E (Specg R[X])« too.

We are now in a position to give another proof for a result pre-
viously proved in [2] for the general case, and in [4] for the com-
mutative case:

PROPOSITION 3.4. 1) If one of G.dim (1~) and G.dim (I-~[~]) exists,
then the other one also exists. If G.dim (1~) + n, n E N and

fl == 0 or B is a limit ordinal 0, then:

2) If one G.dim (R) and G.dim (R[.X]) is a limit ordinal,

G.dim == G.dim (~R[X]) .

PROOF. 1) Assume first that G.dim (1~) exists. Then G.dim (R) _
== cl.K.dim (.R) by Corollary 1.4, and hence gr-cl.K.dim (R[X]) ex-

ists by Proposition 3.3. Thus, in order to prove the existence of
it is sufficient to show, by Corollary 2.6 and Theo-

rem 1.2’, that Ass for any graded proper ideal I of

R[X ] . Now I == where the I m are ideals
of .R and 10 ç 11 9 ... c 1m c ç ...: Two cases arise:

It is easy to se that
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b) There exists k E N such that Ik c Ik+I. We pick then

It is straightforward to check that p* + (~) _ (1: a).R[x].
Now if G.dim exists, it is obvious that G.dim (R) also

exists.
To prove the last part of the statement, let a = G.dim (R),

« = n, fl and n as in the statement. Then a = cl.K.dim (R),
and a -~- 1 = /3 -f- n -~- 1 = gr-cl.K,dim (R[X]) - gr-G.dim by
Proposition 3.3. Using now a result similar to Proposition 2.4, ob-
tained for rings with limited grading by means of Proposition 2.2 we
have

This completes the proof.

2) If G.dim (1~) is a limit ordinal, then

G.dim (R) = el.K.dim (.1~) = gr-cl.K,dim (.[X]) =

by Corollary 1.4, Proposition 3.3 and Corollary 2.6, and the same
(reversed) argument may be used when G.dim is a limit

ordinal.

REMARKS. 1) All evaluations obtained in Proposition 2.4, Corol-
lary 2.6 and Proposition 3.4 are good, in the sense that each side can
be effectively reached, as it is easy to see using in all cases the well-
known examples of Seidenberg [6].

2) In the proof of Proposition 3.4 we showed the following
general fact: if R has the property that Ass (~) ~ ~ for all R-mod-
ules ~, .M ~ 0, then Ass (N) # 0 for all graded .[X]-modules N,
N # 0.

The following remarks might be useful to the study of the non-
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commutative case. From now on, R will be no longer supposed to
be commutative.

3) Let M E R-gr such that gr-G.dim (M) = 0. Then

Indeed, using the Loewy series, we may suppose that M is gr-simple.
Now from the structure of gr-simple modules it follows that .~ is

simple or 1-critical (see Theorem 7.5 p. 61 of [5]). Hence 
and so G.dim (M)  1.

4) Let R be a graded ring and 3feJR-gr,

Assume that a = gr-G.dimn (M) exists. Then G.dimi?. (M¡) a for all
i E Z.

This can be proved by transfinite recursion on a. If a = 0, then
using the Loewy series we may suppose that .~ is gr-simple. But
in this case, either Mi= 0 or Mi is a simple Ro-module for all i.

We suppose now that the assertion is true for all graded R-mod-
ules N with gr-G.dimR (N)  a. It is easy to see that we may sup-
pose that .M~ is a-simple (see [2] for the definition). Let N¡ ç Mi,

0. Then N, = Mi r) .RNi . Now if being a-simple implies that
gr-G.dimn (MIRNI)  a, and so G.dimRo ((MIRNi)i)  a by the induc-
tion hypothesis. But = M¡IN¡ and so G.dimRo (MilNi)  a.

Hence 

5) Let R and ~1 be as in 4). Put

is a graded R+-module and if is a graded .R--module. Assume
that gr-G.dimn = a. Then

To see this, one uses transfinite recursion to reduce the problem to
the case when .M~ is gr-a-simple. The rest follows as in Lemma 4.11

p. 50 of [5].
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