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An Algorithm for the One-Phase Stefan Problem

E. DI BENEDETTO - R. SPIGLER (*)

1. Introduction.

Consider the following one-phase one-dimensional Stefan problem

where z - h (x ~ , ( ~, t ) - g ( ~, t ) are given functions on (0, b] and X ( 0, T]
respectively.

Under suitable assumptions on h( ~ ) and g, (85) admits a unique
classical solution. For such results we refer to the survey article [13]
and other papers given in the extensive bibliography.

The aim of this paper is to propose an algorithm to construct the
solution, which consists in solving the heat equation in progressively
increasing rectangles, whose size is controlled by the Stefan condi-
tion Ux(8(tl ’ t) _ - s(t).

Such an algorithm arises as a natural modification of Hfber’s

(*) Indirizzo degli AA.: E. DIBENEDETTO: Indiana University, Bloo-

mington, IN 47405; R. SPIGLER : Istituto di Matematica Applicata, Univer-
sita di Padova, Italy.
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method [15, 10, 1] and can be described in a simple fashion as follows.
First the interval [0, T] is divided in n intervals of length 8 = Tln,

then for t E [0, 0] we set so(t) = b and solve the problem

We compute the number = b, 8) and determine the rectangle

setting 8o(t) = X2 for t E (0, 2e]. In I~2 we solve a problem similar to (~1)’
,and proceed in this fashion.

The convergence of schemes where at each time step the free bound-
ary is approximated by a vertical segment was conjectured by Dat-
zeff [5, 6].

A proof of convergence has been given by Fasano-Primicerio-
Fontanella [11]. Their scheme however is somewhat more complicated
than the one we propose here, both in the construction of the sequence
of rectangles and in the boundary conditions on z;, ( j -1 ) 6 C t c j8
which are not homogeneous, y being given as a relationship linking the
distance t - ( j -1 ) 6 with the values ~’~,_i~(~2013l)8).

Thus the scheme we have described has a two-fold simplicity: the
rectangular geometry and the homogeneity of the boundary data on
the approximating free boundary.

We treat the problem for boundary data on x = 0 of variational
type since such a condition is the « natural » one, as pointed out and
discussed in [7]. The method could handle the Dirichlet boundary
data as well.

We give an estimate of the speed of convergence which turns out
to be of the order of ~/0.

As a related work we mention the methods of [14] based on enthalpy
considerations, y which yield a rate of convergence of the order of

[0 In 0-I]f.
The methods of proof are simple in that we exploit both the rectan-

gular geometry and the homogeneity of the data to represent the ap-
proximating solutions by means of elementary heat potentials.
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Section 2 contains the precise description of the algorithm, assump-
tions and statement of results. In Section 3 and 4 we produce basic
estimates and prove the convergence of the approximating solution,
to the solution of 

The error estimate is given in Section 5. We conclude the paper
by discussing some variants of the scheme.

2. Assumptions and statement of results.

Throughout the paper we will make the following assumptions on
the data.

[A1] 0153 --+ h(x) is a positive Lipschitz continuous function on [0, b],
with Lipschitz constant g, h(O)’&#x3E; 0 and h(b) = 0.

[A~] (~, t) -~ g(~, t) is non-positive on .R X (o, T], continuous with

respect to e(0y T], Lipschitz continuous in ~, uniformly in t,
with Lipschitz constant Gi and g(h(O), 0) = h’(0). Moreover

there exists a non-negative constant G2 such that

For n = 1, 2, ... , set 0 = and consider the sequence of problems S; ,.,
j = 1, 2, ... , n, defined by

where the sequence is recursively defined by

and
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By virtue of [A1]-[A2] each admits recursively a unique clas-
sical solution u’ whose derivative u§ exists up to the lateral boundaries
of Consequently the sequence is well defined.

Setting

we obtain a left-continuous, piecewise constant function defined in
[0, T]. By elementary considerations and the maximum principle [7, 8]
~(.ry)&#x3E;0 and the numbers are non-positive so that 
and se( ~ ) is non-decreasing.

On the domain

we define the function (x, t) - uo(x, t), (x, t) E ÐS8’ by setting

We will think of u( ~, ~ ) the solution of ( 8 5 ) and uo as defined in the whole
half strip 8 = (0, oo) x (0, T], by setting them to be equal to zero out-
side DT and respectively. We will use this device for the various
functions appearing in what follows without specific mention.

For bounded functions (x, t) - w(x, t), t - f (t) defined in S and

(0, t] respectively we set

We can now state our main result.

THEOREM. As 0 --~ 0, no(x7 t) - u(x, t) uniformly in s and so(t) - s(t)
uniformly in [0, T]. Moreover there exists a constant C depending
upon H, b, Gi, 7 G2 , T such that
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REMARK, (i) In view of the stability of (85’) (see [2, 3]) the Lipschitz
condition in can be replaced by

(ii) The signum condition on 9 in [A2] can be dropped, provided
we assume g(o, t) = 0, t E (0, T]. In this case we set G2 = 0 in the
growth condition for g.

~3. Some basic estimates.

Let

be the fundamental solution of the heat equation and let G(x, t; ~, r)y
N(x, t; ~, -r) be the Green and Neumann’s functions respectively,
defined by

In the j-th rectangle the solution Ui of can be implicitly repre-
sented as

for Taking the derivative with respect to x in (3.1) and
we obtain
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The calculations leading to (3.1)-(3.2) are routine and we refer
to [4, 9, 12] for details.

Let us fix 1  j  n and (x, t) E .R~ and integrate the Green identity

over Rk, 1 ~ 7~  ~. Since in Rk we are away from the singularity we
obtain

By virtue of our definition of (5j), the second integral on the left
hand side of (3.3) can be rewritten as

Consequently adding the identities (3.3) for
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with (3.1) and recalling the definition of ue(x, t) we obtain

LEMMA 3.1. For each 8 the following estimates are valid

PROOF. By virtue of the maximum principle in :080 and
t)  0, t E ( ( j -1 ) 9, therefore dropping the non-positive terms

on the right hand side of (3.4) and letting r - 0 we obtain

Statement is now a consequence of standard calculations and
Gronwall’s inequality.

Statement ( b ) follows from the maximum principle applied recur-
sively to 

LEMMA 3.2. For each j = 1, 2, ... , n

where
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PROOF. We employ an induction argument by making use of for-
mulae (3.2). First we prove that if for some j = 1, 2, ... , (n -1 ) we
have

for some positive constant P, then

where

Consider (3.2) written for the integer j +1

and estimate the integrals = 1, 2, 3 separately as follows.

by definition of ( ~’ f)

To estimate I2 , I3 we recall the following elementary estimates on Nx
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Therefore

Putting together these estimates as parts of (3.6) we have

for all +1)0].
Consequently by Gronwall’s inequality (3.5) follows at once.
Consider now the problem = 1. Since x -~ h(x) is Lipschitz

continuous in [0, b], h’(x) exists for a.e. and

Therefore by the previous argument

where for simplicity of notation we have set (X = The function

( x, t ) ---~ ux ( x, t ) - v (x, t ) , will satisfy the Dirichlet problem

Consequently by the maximum principle
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and by (3.5)

Proceeding in this fashion we obtain

Now jot = and therefore the lemma is proved. Next
we introduce the function t -~ 8o(t) defined by

For t = j0, 80(t) = Xi+l, 80(0) = b, so that the graph of 80(.) is obtained
by connecting the points

and by the graph of (3.7) for t E [(n -1 )6, T]. The points (j -1)0),
j = 1, 2, ... , n, are the lower vertices at the right side of the Bjls.

By Lemma 3.2

therefore the sequence is equibounded and equilipschitz, so

that by Ascoh-Arzelh theorem a subsequence, relabeled with 0, con-
verges uniformly to some nondecreasing, Lipschitz continuous curve
t - s*(t), with Lipschitz constant bounded by C1. Since 11 so - 
 C10, also so(t) converges uniformly to s*(t).

Let Ds. be the domain defined by

and let u* be the unique solution of
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We will show that t) - u*(x, t) uniformly in 8 and that the pair
(U*,8*) so obtained is actually the unique solution of (8T) in the intro-
duction.

We remark that as a consequence, in view of the uniqueness for (8T),
the selection of subsequences is superfluous.

The following lemma will be needed.

LEMMA 3.3. Let (x, t) - v(x, t) be the unique solution of

Then

PROOF. The lemma is proved by standard barrier techniques and
the maximum principle [10].

4. Convergence of the scheme.

LEMMA 4.1. uo(x7 t ) - u* (x, t ) uniformly in S, as 6 --~ 0.

PROOF. By the triangle inequality

where t) = t) - v(x, t) and
is defined in Lemma 3.3.

Set

We already know that b(t) - 0 uniformly in [0, T], as 0 - 0.
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Consider the rectangle 1 C ~ C n. We claim that if

then

If for then wi solves the problem

Hence By Lem-
ma 3.3 we obtain

If for then WI solves the problem

By Lemma 3.2 we have 0 t)  - x), (x, t) E Rj and therefore

If ~e((~20131)0~0) such that Xi = s*(t*), then we repeat analogous
arguments in the domains so determined.

Now since f or t = 0, 0) = 0, x c- (0, cxJ), an inductive argu-
ment gives
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As for ~,v2, since it solves the problem

it can be dominated [2, 3] by the function

the unique solution of

Hence

We deduce that

And by Gronwall’s inequality

for all t E [0, ~’]. The lemma is proved.
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LEMMA 4.2. The pair (u*, s*) coincides with the unique solution
.of (8~).

PROOF. The only thing that remains to be proved is the Stefan
conditions ux(s(t), t) = - 8(t), t E (0, T]. Such a condition has been
.shown to be equivalent to the integral identity [2, page 85]

and hence it will be sufficient to prove that s*, u*, satisfy (4.2).
Integrating the equation Lu3 = 0 over R~ we obtain

Also for (x, t) ERIn 1 c p n, integrate = 0 over the rectangle
{0  x  .rj x ((? 2013 1) 0~ t]. It gives

~ By the definition of we have

.therefore adding the identities (4.3) and (4.4)
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we obtain

We rewrite the left hand side of (4.5) as follows:

where

We observe that the are the slopes of the A

Lipschitz continuous polygonal t - 8o(t) for (j -1 ) 0  con-

sequently

Carrying this in (4.5) gives
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By virtue of Lemma 4.1 and the uniform convergence 8ø(t) - s*(t),
letting 0 - 0 in (4.6) gives

Therefore the lemma will be proved if we show that the limit in (4.7)
is zero.

In order to estimate the ee ( ~ ) we will need a representation for
ujx(xj, t), t E ((j - 1)0, j0].

Consider identity (3.3). By taking the derivative with respect to x
and integrating by parts the first two integrals (the identity Nx = - G~
is used) we obtain

Now by the construction of uk, the second integral in (4.8) can be
rewritten as

-therefore adding the identities in (4.8) for k = 1, 2, ... , (j - 1), chang-



125

ing the sign and evaluating the sum at x == Xj, gives

Consider now the representation (3.2). By the way u’ has been
constructed, the first integral on the right hand side of (3.2) reads

Finally adding (3.2) and (4.9) gives

The error terms = 2, 3, ... , (p -1 ), can now be written as
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By the mean value theorem and standard estimates on the exponential
function we have

Here and in what follows Ka denote constants independent of j. Con-

sequently

As for J2 analogous arguments yield the estimate

where we have used the fact that x ~ &#x3E; b &#x3E; 0. Therefore J2 can be
estimated by

Let us now turn to First we note that f or k = 1, 2, ... , ( j - 2 ),
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Now since (xk, k8), (x" belong to the maximal extension of
the graph (t, so(t)), we have
( j - 2 ) , and hence

In order to estimate the last integral recall that

Substituting this in the estimate of J, we obtain after some algebra

Analogous considerations yield Therefore
the error terms ee(t) can be estimated by

For the error Ee in (4.6) we have
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Now trivially Therefore

Since and the series converges, we obtain

This proves the lemma.

5. The error estimate.

The purpose of this section is to give an estimate of the speed of
convergence of the approximate interface to the true interface

s(t). In view of Lemma 4.1 and (4.1) this will also complete the proof
of the theorem.

LEMMA 5.1. There exists a constant C depending upon H, b, Gi,
G2 , T such that

PROOF. Subtract (4.6) from (4.2) and use (4.11) to obtain
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where ~e is the unique solution of the problem

On the basis of the maximum principle and standard barriers esti-

mates [10,7], as in Lemma 3.3, we have

PROPOSITION 5.1. There exist constants Bl and B2 depending upon
H, b, Gi, G2 , T, such that

PROOF OF PROPOSITION 5.1. Set

Obviously x(’)y ~3( ~ ) are non-decreasing Lipschitz continuous functions
with Lipschitz constant bounded by Cl. Then

where
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We dominate the integrand in 11 by the sum I v + lu -- w j + v,2
where v is defined in Lemma 3.3 and v, are the solutions of the

problems

and

As for v2, it can be represented explicitly [9], by

Therefore by virtue of the Lipschitz continuity of g( ~ , t) and (4.1)
we obtain

By an argument of [2] page 87, v., can be dominated by z(x, t) +
+ z(- x, t) where z solves

Then there exists a constant .Kl depending only upon the data such



131

that

Therefore

The estimate of 1, is done by exploiting again the methods of [2] page 87
and dominating the integrand by z(x, t), the solution of

It gives

PROPOSITION 5.2. There exist a constant B depending upon H, b,
G2 , T such that

PROOF OF PROPOSITION 5.2. For t &#x3E; 0 fixed we have 8o(t»Xv. Then
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Standard barrier arguments [7, 8, 9] give

On the other hand by the construction of se( ~ ), the distance - x9
is at most Ci9. Hence

To estimate the integrand in Jl we proceed as in Lemma 4.1. In fact,
in the present situation the estimates are simpler since uo - U0 has
zero flux at the fixed face x = 0. We obtain the estimate analogous
to (4.1)

As remarked above for all t E [0, T] we have

and hence the proposition is proved.
We now conclude the proof of Lemma 5.1. Notice that by virtue of

the Lipschitz continuity of g( ~, t) and (4.1) we have

Putting together the various estimates so obtained we see that for all
0 we have

Now


