Luciano Stramaccia

Reflective subcategories and dense subcategories

Rendiconti del Seminario Matematico della Università di Padova, tome 67 (1982), p. 191-198

<http://www.numdam.org/item?id=RSMUP_1982__67__191_0>
Reflective Subcategories and Dense Subcategories.

LUCIANO STRAMACCIA (*)

Introduction.

In [M], S. Mardešić defined the notion of a dense subcategory $\mathcal{K} \subset C$, generalizing the situation one has in the Shape Theory of topological spaces, where $\mathcal{K} = \text{HCW}$ (the homotopy category of CW-complexes) and $C = \text{HTOP}$ (the homotopy category of topological spaces). In [G], E. Giuli observed that « dense subcategories » are a generalization of « reflective subcategories » and characterized (epi-) dense subcategories of TOP.

In this paper we prove that the concepts of density and reflectivity are symmetric with respect to the passage to pro-categories; this means that, if $\mathcal{K} \subset C$, then \mathcal{K} is dense in C if and only if pro-\mathcal{K} is reflective in pro-C.

In order to do this we establish two necessary and sufficient conditions for \mathcal{K} being dense in C. In the last section we discuss relations between epi-density and epi-reflectivity.

1. Pro-categories and pro-representable functors.

Let C be a category; an inverse system $X = (X_i, p_{ij}, I)$ in C, is a family of C-objects $\{X_i : i \in I\}$, indexed on a directed set I and equipped with C-morphisms (bonding morphisms) $p_{ij} : X_j \to X_i, \forall i < j$.

(*) Indirizzo dell'A.: Istituto di Geometria, Università di Perugia, Via Vanvitelli n. 1, 06100 Perugia.
in I, such that $p_{ii} = 1_{X_i}$ and $p_{ij} \cdot p_{jt} = p_{it}$, for any $i < j < t$ in I.

The inverse systems in C are the objects of the category pro-C, whose morphisms, from X to $Y = (Y_a, q_{ab}, A)$, are given by the formula (see [AM; App.] and [Gr; § 2]):

$$[X, Y] = \lim_{\leftarrow i} \lim_{\rightarrow a} [X_i, Y_a].$$

The above definition of (pro-C)-morphisms may be explicitated as follows (see [M; § 1] or [MS; Ch. I, § 1]).

A map of system $(f, f_a): X \to Y$ consists of a function $f: A \to I$ and of a collection of C-morphisms $f_a: X_{f(a)} \to Y_a$, $a \in A$, such that for $a < a'$ there is an $i > f(a), f(a')$ such that $f_a \cdot p_{f(a)i} = q_{aa'} \cdot f_{a'} \cdot p_{f(a')i}$. Two maps of systems $(f, f_a), (f', f'_a): X \to Y$ are considered equivalent, provided for each $a \in A$ there is an $i > f(a), f'(a)$ such that $f_a \cdot p_{f(a)i} = f'_a \cdot p_{f'(a)i}$.

A (pro-C)-morphism $f: X \to Y$ is an equivalence class of maps of systems.

Let us note that C is (equivalent to) the full subcategory of pro-C, whose objects are rudimentary inverse systems $X = (X)$, indexed on a one-point set.

Every inverse system $X = (X_i, p_{ii}, I)$ in C induces a direct system $([X_i, -], p_{ij}^*, I)$ of covariant functors from C to the category SET of sets, (cfr. [MS; Ch. I, Remark 5]). Then we can form the colimit of this direct system in the functor category SET^C:

$$h^X = \lim_{\rightarrow i} ([X_i, -], p_{ij}^*, I).$$

Definition 1.3. A covariant functor $F: C \to \text{SET}$ is said to be pro-representable on C, by means of an $X \in \text{pro-}C$, if there exists a natural isomorphism $F \cong h^X$.

It is clear that any representable functor $[X, -]$ is pro-representable by means of the rudimentary system $X = (X)$.

It is also clear that if h^X and h^Y are two pro-representations of F, then X and Y are isomorphic (pro-C)-objects (cfr. [Gr; § 2]).

Proposition 1.4. The correspondence $X \mapsto h^X$ establishes a contravariant isomorphism between pro-C and the full subcategory of SET^C of all pro-representable functors.
PROOF. It must to be proved that, if \(X = (X_i, p_{ii}, I) \) and \(Y = (Y_a, q_{ab}, A) \) are inverse systems in \(C \), then there is a bijection
\[\text{NAT}(h^X, h^Y) \cong [Y, X]. \]
One has:

\[
\text{NAT}(h^X, h^Y) = \quad \text{(by (1.2))}
\]
\[
= \text{NAT} \left(\lim_{\longrightarrow} [X_i, -], \lim_{\longrightarrow} [Y_a, -] \right) \cong \quad \text{(by [P; Th. 2, p. 90])}
\]
\[
\cong \lim_{\longleftarrow} \text{NAT}([X_i, -], \lim_{\longrightarrow} [Y_a, -]) \cong \quad \text{(by Yoneda lemma)}
\]
\[
\cong \lim_{\longleftarrow} \lim_{\longrightarrow} [Y_a, X_i] = \quad \text{(by (1.1))}
\]
\[
= [Y, X].
\]

Corollary 1.5. Let \((X^i)_{i \in A} \) be an inverse system in \(\text{pro}-C \). Then one has \(X = \lim_{\longleftarrow} X^i \) in \(\text{pro}-C \) if and only if \(h^X = \lim_{\longleftarrow} h^X^i \) in the category of all \(\text{pro-representable functors} \).

Proof. Recall from [AM; Prop. 4.4, App.] that, for any category \(C \), \(\text{pro}-C \) is closed under the formation of limits of inverse systems.

2. Dense subcategories and reflective subcategories.

All subcategories are assumed to be full.

Recall from [M; § 2, Def. 1] the following definition.

Definition 2.1. Let \(\mathcal{K} \subseteq C \) and let \(X \) be a \(C \)-object. A \(\mathcal{K} \)-expansion of \(X \) is an inverse system \(K = (K_i, p_{ii}, I) \) in \(\mathcal{K} \), together with a (\(\text{pro}-C \))-morphism \(p = (p_i): X \to K \), such that:

\begin{itemize}
 \item [(a)] \(\forall H \in \mathcal{K}, \forall f: X \to H \) in \(C \), there is a \(\mathcal{K} \)-morphism \(f_i: K_i \to H \) such that \(f_i \cdot p_i = f \).
 \item [(b)] If \(f_i, g_i: K_i \to H \) are \(\mathcal{K} \)-morphisms with \(f_i \cdot p_i = g_i \cdot p_i \), then there is a \(j \geq i \) in \(I \), such that \(f_i \cdot p_{jj} = g_i \cdot p_{jj} \).
\end{itemize}

\(\mathcal{K} \) is dense in \(C \) provided every \(C \)-object \(X \) admits a \(\mathcal{K} \)-expansion.

Proposition 2.2. Let \(\mathcal{K} \) be a subcategory of \(C \) and \(J: \mathcal{K} \hookrightarrow C \) be the inclusion functor. \(\mathcal{K} \) is dense in \(C \) if and only if, for every
C-object X, the covariant functor $[X, J(\cdot)]: \mathcal{K} \to \text{SET}$ is pro-representable on \mathcal{K}.

Proof. Let $p = (p_i): X \to K = (K_i, p_{ii}, I)$ be a \mathcal{K}-expansion of $X \in \mathcal{C}$. Each \mathcal{C}-morphism $p_i: X \to K_i$, $i \in I$, induces a natural transformation $p_i^*: [K_i, -] \to [X, J(\cdot)]$ such that, if $i < j$ in I, then $p_j^* \circ p_i^* = p_i^*$. Therefore we obtain a natural transformation $p^*: h^K = \lim_{\rightarrow} [K_i, -] \to [X, J(\cdot)]$.

It has been pointed out in [MS; Ch. I, Remark 5] that conditions (a) and (b) above are equivalent to the requirement that p^* be a natural isomorphism.

Conversely, let $\psi: \lim_{\rightarrow} [K_i, -] \to [X, J(\cdot)]$ be given and, for each $i \in I$, let $\psi(1_{K_i}) = p_i: X \to K_i$. Then the morphisms $\{p_i: X \to K_i: i \in I\}$ so determined constitute a (pro-\mathcal{C})-morphism $p: X \to K$, and it turns out that $\psi = p^*$; hence p is a \mathcal{K}-expansion for $X \in \mathcal{C}$.

(2.3) Recall now ([HS]) that, if $\mathcal{K} \subset \mathcal{C}$, then, in order that \mathcal{K} be reflective in \mathcal{C}, the following conditions are equivalent:

$(r_1) \forall X \in \mathcal{C}, [X, J(\cdot)]: \mathcal{K} \to \text{SET}$ is representable on \mathcal{K}.

(r_2) the inclusion functor $J: \mathcal{K} \hookrightarrow \mathcal{C}$ has a left adjoint.

Now, it is clear, from Proposition 2.2 and condition (r_1) above, that the concept of pro-representability is the right generalization of that of representability, when passing from reflective subcategories to dense subcategories.

In the next theorem we state a condition, similar to (r_2), in order that a subcategory \mathcal{K} of \mathcal{C} be dense in \mathcal{C}.

If $J: \mathcal{K} \hookrightarrow \mathcal{C}$ is an inclusion functor, let us denote by $J^*: \text{pro-}\mathcal{K} \to \text{pro-}\mathcal{C}$ the corresponding inclusion of the pro-categories.

Since $\mathcal{K} \subset \text{pro-}\mathcal{C}$, then $J^*_\mathcal{K} = J$.

Theorem 2.4. Let $J: \mathcal{K} \hookrightarrow \mathcal{C}$. \mathcal{K} is dense in \mathcal{C} if and only if $J^*: \text{pro-}\mathcal{K} \to \text{pro-}\mathcal{C}$ has a left adjoint.

Proof. Let $A': \text{pro-}\mathcal{C} \to \text{pro-}\mathcal{K}$ be left adjoint to J^*. If $X \in \mathcal{C}$ and $A'(X) = K = (K_i, p_{ii}, I)$, then, for each $H \in \mathcal{K}$, there is a bijection

$$[X, J(H)] \cong [K, H] = \lim_{\rightarrow} [K_i, H] = h^K(H),$$

therefore a natural isomorphism $[X, J(\cdot)] \cong h^K$. In view of Proposition 2.2, K is a \mathcal{K}-expansion of X.
Conversely, suppose \(\mathcal{K} \) is dense in \(\mathcal{C} \). Any \(\mathcal{C} \)-object \(X \) admits a \(\mathcal{K} \)-expansion \(p : X \to K \). This gives a correspondence \(X \mapsto A'(X) = K \), from \(\mathcal{C} \) to \(\text{pro-}\mathcal{K} \), which is functorial since, if \(q : Y \to H \) is a \(\mathcal{K} \)-expansion of \(Y \in \mathcal{C} \), and if \(f : X \to Y \) is a \(\mathcal{C} \)-morphism, then there is a unique (pro-\(\mathcal{K} \))-morphism \(A'(f) : K \to H \), which makes the following diagram commutative (cfr. [MS; Ch. I, § 3]):

\[
\begin{array}{ccc}
X & \xrightarrow{p} & K \\
\downarrow{f} & & \downarrow{A'(f)} \\
Y & \xrightarrow{q} & H
\end{array}
\]

Now, let \(X = (X_i, p_{ii}, I) \in \text{pro-}\mathcal{C} \); applying \(A' \) to each \(X_i \), we obtain an inverse system in \(\text{pro-}\mathcal{K} \), \((A'(X_i), A'(p_{ii}), I) \). By [AM; Prop. 4.4, App.], there exists in \(\text{pro-}\mathcal{K} \) the limit

\[
A(X) = \lim_{\leftarrow i} (A'(X_i), A'(p_{ii}), I).
\]

This formula extends the functor \(A' : \mathcal{C} \to \text{pro-}\mathcal{K} \) to a functor \(A : \text{pro-}\mathcal{C} \to \text{pro-}\mathcal{K} \). It remains to show that \(A \) is left adjoint to \(J^* \). Since for each \(i \in I \) there is natural isomorphism

\[
[X_i, J(_)] \cong [A'(X_i), _] = \mathbb{h}^{A'(X_i)},
\]

then, taking the colimit on \(I \) and applying (1.1) and Cor. 1.5, it follows that

\[
[X, J(_)] \cong [A(X), _] = \mathbb{h}^{A(X)}.
\]

Given now an \(L = (L_a, q_{ab}, A) \in \text{pro-}\mathcal{K} \), from above we get bijections

\[
[X, J(L_a)] \cong [A(X), L_a], \quad \forall a \in A.
\]

This time, taking the limit on \(A \), it follows at once from (1.1)

\[
[X, J^*(L)] \cong [A(X), L],
\]

and we have finished.
COROLLARY 2.5. Let $\mathcal{K} \subset C$. \mathcal{K} is dense in C if and only if pro-\mathcal{K} is reflective in pro-C.

This follows immediately from the equivalence of conditions (r_1) and (r_2) in (2.3).

(2.6) Now we want to explicitate the construction of the reflection

$$\lambda_X: X \to \Lambda(X),$$

for a given $X = (X_i, p_{ij}, J) \in \text{pro-}C$.

For each $j \in J$, let $\lambda^j: X_j \to K_j = (K_j, q_{ij}, I_j)$ be a \mathcal{K}-expansion of X_j. Since for any $p_{ij}: X_j \to X_i$, there is a unique $q^{ij}: K_i \to K_j$ such that $q^{ij} \cdot \lambda^j = \lambda^j \cdot p_{ij}$ ([MS; Ch. I, § 3]), then we obtain an inverse system in pro-\mathcal{K}, (K_i, q^{ij}, J), whose limit $\Lambda(X)$, according to [AM; Prop. 4.4, App.], is obtained in the following way:

let $F = \{(j, i): j \in J, i \in I_j\}$, and put on it the relation

$$(j, i) < (j', i') \iff [j < j' \text{ in } J \text{ and } q^{ij'}: K_i \to K'_i \text{ is a } \mathcal{K}\text{-morphism consti-}$$

$$tuting the bonding morphism } q^{ij'}].$$

Then F becomes a directed set and one easily verifies that

$$\Lambda(X) = (K'_i, q^{ij'}, F).$$

Finally, $\lambda_X: X \to \Lambda(X)$ is such that $(\lambda_X)_{(j, i)} = \lambda^j_i: X_j \to K'_i$.

REMARK 2.7. Suppose \mathcal{K} is reflective in C, then (cfr. [G; Prop. 1.1]) it is trivially dense in C; so pro-\mathcal{K} is reflective in pro-C. If $X \in C$ has a reflection $r: X \to rX$, $rX \in \mathcal{K}$, then the rudimentary system $X = (X)$ admits the reflection $r = (r): X \to rX = (rX)$. Moreover, given $X = (X_i, p_{ij}, I)$ in pro-C, then one has $\Lambda(X) = (rX_i, rp_{ij}, I)$, while the reflection morphism $r: X \to \Lambda(X)$ is the level morphism given by $r = \{r_i: X_i \to rX_i, \forall i \in I\}$.

3. EPI-reflections and EPI-densities.

DEFINITION 3.1. Let $f = (f_a): X \to Y = (Y_a, q_{ab}, A)$ be a (pro-C)-morphism. We call f a strong (pro-C)-epimorphism if for each $a \in A$, there is a $b > a$ such that $f_b: X \to Y_b$ is a C-epimorphism.

According to [M; § 1, Lemma 1], if f is a strong (pro-C)-epimorphism, then there exists a $Y' \cong Y$ in pro-C and a (pro-C)-morphism $f' = (f'_a): X \to Y'$, such that each f'_a is a C-epimorphism, and $f' = f$.
The definition of strong (pro-C)-epimorphism extends easily to a (pro-C)-morphism \(f: X \to Y \).

It is clear that a strong (pro-C)-epimorphism is a (pro-C)-epimorphism.

Proposition 3.2. Let \(f = (f_j): X \to Y = (Y_j, q_{i,j'}, J) \) be a (pro-C)-epimorphism. If all bonding morphisms \(q_{i,j'}: Y_{i'} \to Y_j \) of \(Y \) are C-epimorphisms, then \(f \) is a strong (pro-C)-epimorphism.

Proof. Let \(j \in J \) and let \(h, g: Y_j \to Z, Z \in C \), be C-morphisms such that \(h \cdot f = g \cdot f_j \). Then, since \(h = (h) \) and \(g = (g) \) are (pro-C)-morphisms from \(Y \) to \(Z \) such that \(h \cdot f = g \cdot f \), it follows that \(h = g \) in pro-C. This last equality means ([M; § 1]) that there is a \(j' > j \) such that \(h \cdot q_{i,j'} = g \cdot q_{i,j'} \), so, by the assumption that \(q_{i,j'} \) is an epimorphism, it follows \(h = g \).

Definition 3.3. Let \(K \) be dense in \(C \). \(K \) is epi-dense in \(C \) if every C-object \(X \) admits a \(K \)-expansion \(p: X \to K \), which is a strong (pro-C)-epimorphism.

Proposition 3.4. If \(K \) is epi-dense in \(C \), then pro-\(K \) is epi-reflective in pro-C. Every reflection morphism is a strong (pro-C)-epimorphism. If pro-\(K \) is (strong epi)-reflective in pro-C, then \(K \) is epi-dense in \(C \).

Proof. Let \(Y = (Y_j, q_{i,j'}, J) \in \text{pro-} C \) and let \(\lambda_Y: Y \to A(Y) \) be its reflection, as in (2.6). Recall that \(\lambda_Y = (\lambda^j_i)_{i,j \in J} \); since we may assume, without any restriction, that each \(\lambda^j_i \) is a C-epimorphism, it follows that \(\lambda_Y: Y \to A(Y) \) is a strong (pro-C)-epimorphism. The proof of the second part is immediate.

References

Manoscritto pervenuto in redazione il 15 luglio 1981.