Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Jinděich Bečváǩ

A generalization of a theorem of F. Richman and C.P. Walker

Rendiconti del Seminario Matematico della Università di Padova, tome 66 (1982), p. 43-55
http://www.numdam.org/item?id=RSMUP_1982_66_43_0
© Rendiconti del Seminario Matematico della Università di Padova, 1982, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

A generalization of a Theorem of F. Richman and C. P. Walker.

Jindǐich Beơvẫ̌ (*)

All groups in this paper are abelian, concerning the terminology and notation we refer to [1]. If G is a group then G_{t} and G_{p} are the torsion part of G and the p-component of G_{t} respectively. Let α be an ordinal. Since $\left(p^{\alpha} G\right)_{p}=p^{\alpha}\left(G_{p}\right)$, we shall write only $p^{\alpha} G_{p}$. Further, it is natural to use the symbol $p^{\alpha} G[p]$. The cardinality of α will be denoted by $|\alpha|$. Let G be a group and p a prime. A subgroup H of G is said to be p-isotype (isotype) in G if $p^{\alpha} H=H \cap p^{\alpha} G$ for each ordinal α (for each ordinal α and each prime p). If $K \subset N$ are subgroups of a group G then every subgroup A of G, which is maximal with respect to the property $A \cap N=K$, is said to be $N-K$-high in G (following F. V. Krivonos [3]).

Let G be a p-group. If A is a neat subgroup of G^{1} then there is a pure subgroup P of G such that $P \cap G^{1}=A$ (R. W. Mitchell[4], resp. A. R. Mitchell-R. W. Mitchell[5]). The question which subgroups of G^{1} are the intersections of G^{1} with a pure subgroup of G was settled by F. Richman and C. P. Walker [6]. Let G be an arbitrary group. If K is a subgroup of $p^{\beta} G$ and P a K-high subgroup of G then $p^{\alpha} P=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+1$; every $p^{\beta} G$-high subgroup of G is p-isotype in G (J. M. Irwin - E. A. Walker [2]).

Let G be a group and A a subgroup of $p^{\beta} G$. The purpose of this paper is to give the necessary and sufficient conditions to the following two statements:
(*) Indirizzo dell'A.: Matematicko-fyzikálnì fakulta, Sokolovská 83, 18600 Praha 8 (Czechoslovakia).
a) For each $p^{\beta} G-A$-high subgroup P of $G, p^{\beta} P=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+1$ (theorem 1).
b) There is a $p^{\beta} G-A$-high subgroup P of G such that $p^{\alpha} P=$ $=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta$ (theorem 2).

Note that theorem 1 generalizes the recalled results from [4] and [2], theorem 2 generalizes the main result from [6]. Moreover, theorems 1 and 2 together give an interesting look at these "purification " problems.

1. Theorem 1. Let G be a group, p a prime, β an ordinal and A a subgroup of $p^{\beta} G$. The following are equivalent:
(i) A is p-neat in $p^{\beta} G$.
(ii) If P is a $p^{\beta} G-A$-high subgroup of G then $p^{\alpha} P=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+1$.
(iii) There is a subgroup P of G such that $A=P \cap p^{\beta} G$ and $p^{\beta+1} P=P \cap p^{\beta+1} G$.

Proof. Suppose (i). Let P be a $p^{\beta} G-A$-high subgroup of G. We prove that $p^{\alpha} P=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+1$. It is sufficient to show that if this equality holds for $\alpha(\alpha \leqslant \beta)$ then it holds for $\alpha+1$. Let $x \in P \cap p^{\alpha+1} G$, i.e. $x=p g$, where $g \in p^{\alpha} G$; by assumption, $x \in P \cap p^{\alpha} G=p^{\alpha} P$. If $g \in P$ then $g \in P \cap p^{\alpha} G=p^{\alpha} P$ and $x=p g \in p^{\alpha+1} P$. If $g \notin P$ then there are an element $b \in P$ and an integer r such that $b+r g \in p^{\beta} G \backslash A$. Obviously $b \in P \cap p^{\alpha} G=p^{\alpha} P$ and $(p, r)=1$. Now, $p b+p r g \in p^{\beta} G \cap P=A$ and further $p b+p r g \in$ $\in p^{\beta+1} G \cap A=p A$. Hence there is an element $a \in A$ such that $p b+p r g=p a$; obviously $a \in P \cap p^{\alpha} G=p^{\alpha} P$. Since $(p, r)=1$, there are integers u, v such that $1=u p+v r$. Consequently $g=u p g+$ $+v r g=u x+v r g$ and $x=p g=u p x+v p r g=u p x+v p a-v p b=$ $=p(u x+v a-v b)$, where $u x+v a-v b \in p^{\alpha} P$. Hence $x \in p^{\alpha+1} P$.

Suppose (iii). Obviously $p^{\beta} P \subset P \cap p^{\beta} G=A$ and hence $p^{\beta+1} P \subset$ с $p A$. Now,

$$
p A \subset A \cap p^{\beta+1} G=P \cap p^{\beta} G \cap p^{\beta+1} G=p^{\beta+1} P \subset p A
$$

Corollary 1 (J. M. Irwin - E. A. Walker [2]). Let G be a group, p a prime, β an ordinal and K a subgroup of $p^{\beta} G$. If P is a K-high subgroup of G then $p^{\alpha} P=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+1$.

Proof. If P is a K-high subgroup of G then $A=P \cap p^{\beta} G$ is a K-high subgroup of $p^{\beta} G$ and hence A is neat in $p^{\beta} G$. Since P is $p^{\beta} G-A$-high in G, the desired result follows from theorem 1.

The following corollaries 2, 3, 4 and proposition 1 generalize some results from [2].

Corollary 2. Let G be a group, p a prime, $\beta, \gamma>0$ ordinals and A a subgroup of $p^{\beta} G$. Let P be a $p^{\beta} G-A$-high subgroup of G.
(i) If $p^{\alpha} A=A \cap p^{\alpha}\left(p^{\beta} G\right)$ for each ordinal $\alpha \leqslant \gamma$ then $p^{\alpha} P=$ $=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta+\gamma$.
(ii) If A is p-isotype in $p^{\beta} G$ then P is p-isotype in G.
(iii) If $A \cap p^{\beta+1} G=0$ then P is p-isotype in G.
(iv) If A is p-neat in $p^{\beta} G$ and $A \cap p^{\beta+2} G=0$ then P is p-isotype in G.

Proposition 1. Let G be a group, $A \subset N$ subgroups of G and q a prime. If A is q-neat in N and $N_{q}=0$ then each $N-A$-high subgroup of G is q-isotype in G.

Proof. Let P be a $N-A$-high subgroup of G. Suppose $g \in G \backslash P$ and $q g \in P$. There are an element $b \in P$ and an integer r such that $r g+b \in N \backslash A$; obviously $(r, q)=1$. Now, $q r g+q b \in P \cap N=A$, there is an element $a \in A$ such that $q r g+q b=q a$ and hence $r g=$ $=a-b$. There are integers u, v such that $u q+v r=1$ and consequently $g=u q g+v r g=u q g+v a-v b \in P$, a contradiction. Hence $(G / P)_{q}=0$ and P is q-isotype in G (see lemma $103.1[1]$).

Corollary 3. Let G be a group, p a prime, β an ordinal and A a subgroup of $p^{\beta} G$. If A is neat in $p^{\beta} G, A \cap p^{\beta+2} G=0$ and $\left(p^{\beta} G\right)_{q}=0$ for each prime $q \neq p$ then each $p^{\beta} G-A$-high subgroup of G is isotype in G.

Corollary 4. Let H be a subgroup of a group G, p be a prime and β an ordinal. Suppose that for each nonzero element $h \in H$, $h_{p}(h) \leqslant \beta+1$. Then
(i) H is contained in a p-isotype subgroup A of G such that for each $a \in A \backslash H, h_{p}(a) \leqslant \beta$.
(ii) If $H \cap p^{\beta} G$ is p-neat in $p^{\beta} G$ then H is contained in a p-isotype subgroup B of G such that for each $a \in B \backslash H, h_{p}(a)<\beta$.
(iii) If $H \cap p^{\beta} G$ is neat in $p^{\beta} G$ and $\left(p^{\beta} G\right)_{q}=0$ for each prime $q \neq p$ then H is contained in an isotype subgroup B of G such that for each $a \in B \backslash H, h_{p}(a)<\beta$.
2. Definition. Let G be a group, p a prime and β a nonzero ordinal. The minimum of cardinals

$$
r\left(p^{\alpha} G[p] / p^{\beta} G[p]\right), \quad \alpha<\beta,
$$

will be called the (p, β)-rank of G and denoted by $r_{(p, \beta)}(G)$.
Proposition 2. Let G be a group, p a prime and β a nonzero ordinal. If H is a $p^{\beta} G$-high subgroup of G then

$$
r_{(p, \beta)}(G)=\min _{\alpha<\beta} r\left(p^{\alpha} H_{p}\right)
$$

Proof. Let H be a $p^{\beta} G$-high subgroup of G and α an ordinal, $\alpha<\beta$. Since the subgroup $p^{\alpha} G \cap H$ is $p^{\beta} G$-high in $p^{\alpha} G$ and $p^{\alpha} G \cap H=p^{\alpha} H$ (see corollary 1), $p^{\alpha} G[p]=p^{\beta} G[p] \oplus p^{\alpha} H[p]$. Consequently

$$
r\left(p^{\alpha} \boldsymbol{H}_{p}\right)=r\left(p^{\alpha} H[p]\right)=r\left(p^{\alpha} G[p] / p^{\beta} G[p]\right)
$$

Remark 1. Let G be a group and H a $p^{\beta} G$-high subgroup of G. If $\beta=\delta+1$ then

$$
r_{(p, \beta)}(G)=r\left(p^{\delta} G[p] / p^{\beta} G[p]\right)=f_{\delta}(G)
$$

is the δ-th Ulm-Kaplansky invariant of G_{p} and

$$
r_{(p, \beta)}(G)=r\left(p^{\delta} H_{p}\right)=r\left(p^{\delta} H[p]\right)
$$

by proposition 2. If β is a limit ordinal and $r_{(p, \beta)}(G)>0$ then for each ordinal $\alpha<\beta$ there is a natural number k such that $p^{\alpha} H[p] \neq p^{\alpha+k} H[p]$. For, otherwise $p^{\alpha} H_{p}$ is divisible, $p^{\alpha} H_{p} \subset p^{\beta} G \cap H=0$ and proposition 2 implies a contradiction. Hence $r_{(p, \beta)}(G)$ is infinite. Let γ be an ordinal such that $r_{(p, \beta)}(G)=r\left(p^{\gamma} H[p]\right)$ and let ε be the least ordinal such that β is cofinal with ε (i.e. $\varepsilon=\operatorname{cof}(\beta)$); hence ε is a cardinal.

According to the precedent consideration,

$$
r_{(p, \beta)}(\boldsymbol{G})=r\left(p^{\nu} H[p]\right)=\left|p^{\nu} H[p]\right| \geqslant|\{\alpha ; \gamma \leqslant \alpha<\beta\}| \geqslant \varepsilon .
$$

Remark 2. If G is a p-group and H a G^{1}-high subgroup of G then by proposition 2,

$$
r_{(p, \omega)}(G)=\min _{n<\omega} r\left(p^{n} H\right)
$$

is the final rank of H.
Lemma 1. Let G be a group, p a prime, β a nonzero ordinal and A a subgroup of $p^{\beta} G$. If there is a subgroup P of G such that $P \cap p^{\beta} G=p^{\beta} P=A$ then

$$
r\left(p^{\beta+1} G \cap A / p A\right) \leqslant r_{(p, \beta)}(G) .
$$

Proof. Let $\left\{a_{i}+p A ; i \in I\right\}$ be a basis of $p^{\beta+1} G \cap A / p A$ and H be a $p^{\beta} G$-high subgroup of G. Suppose $|I|>r\left(p^{\alpha} H_{p}\right)$ for some $\alpha<\beta$. For each index $i \in I$ there are elements $g_{i} \in p^{\beta} G$ and $x_{i} \in p^{\alpha} P$ such that $a_{i}=p g_{i}=p x_{i}$. Since

$$
x_{i}-g_{i} \in G[p]=p^{\beta} G[p] \oplus H[p]
$$

$x_{i}-g_{i}=g_{i}^{\prime}+h_{i}, \quad$ where $g_{i}^{\prime} \in p^{\beta} G[p]$ and $h_{i} \in H[p]$ for each $i \in I$. Further

$$
h_{i}=x_{i}-g_{i}-g_{i}^{\prime} \in H_{v} \cap p^{\alpha} G=p^{\alpha} H_{p}
$$

by corollary 1. Since the set $\left\{h_{i} ; i \in I\right\}$ is linearly dependent, there are a finite subset J of I and integers $r_{i}, i \in J$, such that

$$
\sum_{i \in J} r_{i} h_{i}=0
$$

and $r_{i} h_{i} \neq 0$ for each $i \in J$. Hence

$$
\begin{aligned}
& \sum_{i \in J} r_{i} x_{i} \in p^{\beta} G \cap P=A \\
& \sum_{i \in J} r_{i} a_{i} \in p A
\end{aligned}
$$

and

$$
\sum_{i \in J} r_{i}\left(a_{i}+p A\right)=p A
$$

Since the set $\left\{a_{i}+p A ; i \in I\right\}$ is linearly independent, $r_{i} a_{i} \in p A$ and hence $p \mid r_{i}$ for each index $i \in J$, a contradiction. Hence $|I| \leqslant r\left(p^{\alpha} H_{p}\right)$ for every ordinal $\alpha<\beta$ and proposition 2 implies the desired result.

Lemma 2. Let G be a group, p a prime, β a nonzero ordinal and B a subgroup of $p^{\beta} G$. If B is a direct sum of cyclic groups and $r(B) \leqslant r_{(p, \beta)}(G)$ then there is a subgroup X of G such that
(i) $X \cap p^{\beta} G=B$,
(ii) $\forall b \in B, \forall \alpha<\beta, \exists x \in X \cap p^{\alpha} G, b=p x$.

Proof. Suppose $B \neq 0$, otherwise the assertion is trivial. Let H be a $p^{\beta} G$-high subgroup of G.

Case 1. $\beta=\delta+1$.
By remark 1, $r_{(p, \beta)}(G)=r\left(p^{\delta} H[p]\right)$. Write

$$
B=\bigoplus_{\gamma<\sigma}\left\langle a_{\gamma}\right\rangle \quad \text { and } \quad p^{\delta} H[p]=\bigoplus_{\gamma<\sigma^{\prime}}\left\langle\boldsymbol{h}_{\gamma}\right\rangle
$$

where σ and σ^{\prime} are ordinals such that $\sigma \leqslant \sigma^{\prime}$. For each ordinal $\gamma<\sigma$ let $H_{\gamma}=\bigoplus_{\gamma^{\prime}<\gamma}\left\langle h_{\gamma^{\prime}}\right\rangle$.

By transfinite induction we shall define an ascending chain of subgroups $\boldsymbol{Z}_{\gamma}, \gamma \leqslant \sigma$, with the following properties:

$$
Z_{\gamma} \cap p^{\beta} G=B
$$

$$
Z_{\gamma} \subset p^{\delta} G
$$

$$
\forall \gamma^{\prime}<\gamma, \quad \exists c \in Z_{\gamma}, \quad a_{\gamma^{\prime}}=p c
$$

$$
\left(p^{\beta} G+Z_{\gamma}\right) \cap H[p] \subset H_{\gamma} .
$$

a) Put $Z_{0}=B$; the subgroup Z_{0} has obviously all the properties $(1,0)-(4,0)$.
b) Suppose that Z_{γ} has been defined $(0 \leqslant \gamma<\sigma)$ and define $Z_{\gamma_{+1}}$. If there is no element $c \in\left(p^{\beta} G+Z_{\gamma}\right)$ with $a_{\gamma}=p c$ then let $c_{\gamma} \in p^{\delta} G$
be an arbitrary element such that $a_{\nu}=p c_{\gamma}$. If $c \in\left(p^{\beta} G+Z_{\nu}\right) \subset p^{\sigma} G$ is an element such that $a_{\gamma}=p c$ then let $c_{\gamma}=c+h_{\gamma} ; c_{\gamma} \notin p^{\beta} G+Z_{\gamma}$ by $(4, \gamma)$. Define $Z_{\gamma_{+1}}=\left\langle Z_{\gamma}, c_{\gamma}\right\rangle$ and verify the properties $(1, \gamma+1)$ $(4, \gamma+1)$. Let $z+r c_{\gamma} \in p^{\beta} G$, where $z \in Z_{\gamma}$ and r is an integer. If $p \mid r$ then $z+r c_{\gamma} \in Z_{\gamma} \cap p^{\beta} G=B$. If $(p, r)=1$ then it is easy to see that $c_{\gamma} \in p^{\beta} G+Z_{\gamma}$, which contradicts with the definition of the element c_{γ}. Hence $(1, \gamma+1)$ holds; $(2, \gamma+1)$ and $(3, \gamma+1)$ are trivial. Let $g+z+r c_{\gamma}=h \in H[p]$, where $g \in p^{\beta} G, z \in Z_{\gamma}$ and r is an integer. If $p \mid r$ then $h \in\left(p^{\beta} G+Z_{\gamma}\right) \cap H[p] \subset \boldsymbol{H}_{\nu} \subset \boldsymbol{H}_{\gamma_{+1}}$ by $(4, \gamma)$. If $(p, r)=1$ then there are integers u, v such that $1=p u+r v$. Since

$$
\begin{gathered}
r a_{\gamma}=p r c_{\gamma}=p(h-g-z)=p(-g-z) \\
a_{\gamma}=p u a_{\gamma}+r v a_{\gamma}=p\left(u a_{\gamma}-v g-v z\right)
\end{gathered}
$$

where $u a_{\nu}-v g-v z \in p^{\beta} G+Z_{\gamma}$, and according to the definition of c_{γ}, $c_{\gamma}=c+h_{\gamma}$, where $c \in p^{\beta} G+Z_{\gamma}$ and $a_{\gamma}=p c$. Hence

$$
\begin{gathered}
g+z+r c+r h_{\gamma}=h \\
h-r h_{\gamma}=g+z+r c \in\left(p^{\beta} G+Z_{\gamma}\right) \cap H[p] \subset H_{\gamma}
\end{gathered}
$$

and consequently $h \in H_{\gamma_{+1}}$, i.e. $(4, \gamma+1)$ holds.
c) Suppose that γ is a limit ordinal. If for each ordinal $\gamma^{\prime}<\gamma$ a subgroup $Z_{\gamma^{\prime}}$ with the properties $\left(1, \gamma^{\prime}\right)-\left(4, \gamma^{\prime}\right)$ has been defined then the subgroup $\boldsymbol{Z}_{\boldsymbol{\gamma}}=\bigcup_{\gamma^{\prime}<\gamma} Z_{\gamma^{\prime}}$ has obviously the properties $(1, \gamma)-(4, \gamma)$.

Finally put $X=Z_{\sigma}$; the properties (i), (ii) arise from ($1, \sigma$)-(3, σ). Case 2. β is a limit ordinal.

Let $\varepsilon=\operatorname{cof}(\beta)$. Suppose that β is a limit of an ascending sequence of ordinals $\alpha_{\boldsymbol{\delta}}, \delta<\varepsilon$. Let $B=\bigoplus_{\gamma<\sigma}\left\langle a_{\gamma}\right\rangle$, where $a_{\gamma} \neq 0$ for each $\gamma<\sigma$ and σ is a cardinal. By assumption, $r_{(p, \beta)}(G) \geqslant r(B)=\sigma$.
Case 2.1. $\sigma>\varepsilon$.
We use the transfinite induction to define an ascending chain of subgroups $Z_{\gamma}, \gamma \leqslant \sigma$, with the following properties:

$$
Z_{\gamma} \cap p^{\beta} G=B
$$

$(6, \gamma) \quad \forall \gamma^{\prime}<\gamma, \quad \forall \alpha<\beta, \quad \exists c \in Z_{\gamma} \cap p^{\alpha} G, \quad a_{\gamma^{\prime}}=p c$,

$$
r\left(\left(p^{\beta} G+Z_{\gamma}\right) \cap H[p]\right) \leqslant|\gamma| \cdot \varepsilon
$$

a) Put $Z_{0}=B$.
b) Suppose that Z_{γ} has been defined $(0 \leqslant \gamma<\sigma)$ and define $Z_{\gamma+1}$. By transfinite induction we shall construct an ascending chain of subgroups $Y_{\delta}, \delta \leqslant \varepsilon$, with the following properties:

$$
Y_{\delta} \cap p^{\beta} G=B
$$

$$
\begin{gather*}
\forall \delta^{\prime}<\delta, \quad \exists c \in Y_{\delta} \cap p^{\alpha_{\delta^{\prime}}} G, \quad a_{y}=p c \\
r\left(\left(p^{\beta} G+Y_{\delta}\right) \cap H[p]\right) \leqslant|\gamma| \cdot \varepsilon+|\delta|
\end{gather*}
$$

$\left.b_{1}\right)$ Put $\boldsymbol{Y}_{0}=Z_{\gamma}$.
b_{2}) Suppose that Y_{δ} has been defined $(0 \leqslant \delta<\varepsilon)$ and define $Y_{\delta+1}$. If there is no element $c \in\left(p^{\beta} G+Y_{\delta}\right) \cap p^{\alpha_{0}} G$ with $a_{\gamma}=p c$ then let $c_{\delta} \in p^{\alpha_{\delta}} G$ be an arbitrary element such that $a_{\gamma}=p c_{\delta}$. If $c \in\left(p^{\beta} G+Y_{\delta}\right) \cap p^{\alpha} G$ is an element such that $a_{\gamma}=p c$ then let $c_{\delta}=c+h$, where $h \in p^{\alpha_{0}} H[p] \backslash\left(p^{\beta} G+Y_{\delta}\right)$; such element h exists, since

$$
r\left(p^{\alpha_{0}} H[p]\right) \geqslant r_{(p, \beta)}(G) \geqslant \sigma>|\gamma| \cdot \varepsilon+|\delta| \geqslant r\left(\left(p^{\beta} G+Y_{\delta}\right) \cap H[p]\right)
$$

Define $Y_{\delta+1}=\left\langle Y_{\delta}, c_{\delta}\right\rangle$ and verify the properties $(8, \delta+1)-(10, \delta+1)$. Let $y+r c_{\delta} \in p^{\beta} G$, where $y \in Y_{\delta}$ and r is an integer. If $p \mid r$ then $y+r c_{\delta} \in Y_{\delta} \cap p^{\beta} G=B$. If $(p, r)=1$ then it is easy to see that $c_{\delta} \in p^{\beta} G+Y_{\delta}$ which contradicts with the choice of the element c_{δ}. Hence $(8, \delta+1)$ holds; $(9, \delta+1)$ is trivial. Further write

$$
\left(p^{\beta} G+Y_{\delta+1}\right) \cap H[p]=\left(p^{\beta} G+Y_{\delta}\right) \cap H[p] \oplus R
$$

and suppose $R=\left\langle h_{1}\right\rangle \oplus R^{\prime}, h_{1} \neq 0$ and $h_{2} \in R^{\prime}$. Write

$$
h_{1}=g_{1}+y_{1}+r_{1} c_{\delta}, \quad h_{2}=g_{2}+y_{2}+r_{2} c_{\delta}
$$

where $g_{1}, g_{2} \in p^{\beta} G, \quad y_{1}, y_{2} \in \bar{Y}_{\delta}$ and r_{1}, r_{2} are integers. Obviously (p, r_{1}) $=1$, there are integers u, v such that

$$
r_{2} c_{\delta}=u p r_{2} c_{\delta}+v r_{1} r_{2} c_{\delta}=u r_{2} a_{\gamma}+v r_{2}\left(h_{1}-g_{1}-y_{1}\right)
$$

and hence

$$
\begin{aligned}
& h_{2}=g_{2}+y_{2}+u r_{2} a_{\gamma}+v r_{2} h_{1}-v r_{2} g_{1}-v r_{2} y_{1} \in \\
& \qquad \quad \in\left(p^{\beta} G+\boldsymbol{Y}_{\delta}\right) \cap H[p] \oplus\left\langle h_{1}\right\rangle .
\end{aligned}
$$

Thus $r(R) \leqslant 1$ and $(10, \delta+1)$ holds.
b_{3}) Let δ be a limit ordinal. If for each ordinal $\delta^{\prime}<\delta$ a subgroup $Y_{\delta^{\prime}}$ with the properties $\left(8, \delta^{\prime}\right)-\left(10, \delta^{\prime}\right)$ has been defined then it is not difficult to see that the subgroup $Y_{\delta}=\bigcup_{\delta^{\prime}<\delta} Y_{\delta^{\prime}}$ has the pro-
perties $(8, \delta)-(10, \delta)$. perties $(8, \delta)-(10, \delta)$.

Now, the subgroup $Z_{\gamma+1}=Y_{\varepsilon}$ has the properties $(5, \gamma+1)-(7, \gamma+1)$.
c) Let γ be a limit ordinal. If for each ordinal $\gamma^{\prime}<\gamma$ a subgroup $\boldsymbol{Z}_{\gamma^{\prime}}$ with the properties $\left(5, \gamma^{\prime}\right)-\left(7, \gamma^{\prime}\right)$ has been defined then the subgroup $Z_{\gamma}=\bigcup_{\gamma^{\prime}<\gamma} Z_{\gamma^{\prime}}$ has the properties $(5, \gamma)-(7, \gamma)$.

Finally put $X=Z_{\sigma}$; the properties (i) and (ii) arise from ($5, \sigma$) and ($6, \sigma$).

Case 2.2. $\sigma \leqslant \varepsilon$.
By transfinite induction we shall construct an ascending chain of subgroups $\boldsymbol{Y}_{\boldsymbol{\delta}}, \delta \leqslant \varepsilon$, with the following properties:

$$
Y_{\delta} \cap p^{\beta} G=B,
$$

$(12, \delta) \quad \forall \gamma<\min (\delta, \sigma), \quad \forall \delta^{\prime}<\delta, \quad \exists c \in Y_{\delta} \cap p^{\alpha_{o^{\prime}}} G, \quad a_{\gamma}=p c$,

$$
r\left(\left(p^{\beta} G+Y_{\delta}\right) \cap H[p]\right) \leqslant \sum_{\delta^{\prime} \leqslant \delta}\left|\delta^{\prime}\right|
$$

a) Put $Y_{0}=B$.
b) Suppose that Y_{δ} has been defined $(0 \leqslant \delta<\varepsilon)$ and define $Y_{\delta+1}$. We use the transfinite induction to define an ascending chain of subgroups $Z_{\gamma}, \gamma \leqslant \min (\delta+1, \sigma)$, with the following properties:

$$
\begin{align*}
& Z_{\nu} \cap p^{\beta} G=B, \\
& r\left(\left(p^{\beta} G+Z_{\gamma}\right) \cap B[p]\right) \leqslant \sum_{\delta^{\prime} \leqslant \delta}\left|\delta^{\prime}\right|+|\gamma| .
\end{align*}
$$

$\left.b_{1}\right)$ Put $Z_{0}=Y_{o}$.
b_{2}) Suppose that Z_{γ} has been defined $(0 \leqslant \gamma<\min (\delta+1, \sigma))$ and define $Z_{\gamma+1}$. If there is no element $c \in\left(p^{\beta} G+Z_{\gamma}\right) \cap p^{\alpha_{\delta}} G$ with $a_{\gamma}=p c$ then let $c_{\gamma} \in p^{\alpha_{0}} G$ be an arbitrary element such that $a_{\gamma}=p c_{\gamma}$. If $c \in\left(p^{\beta} G+Z_{\gamma}\right) \cap p^{\alpha_{\delta}} G$ is an element such that $a_{\gamma}=p c$ then let $c_{\gamma}=c+h$, where $h \in p^{\alpha_{\theta}} H[p] \backslash\left(p^{\beta} G+Z_{\gamma}\right)$. Such element h exists, since by remark 1 ,

$$
r\left(p^{\alpha_{0}} H[p]\right) \geqslant r_{(p, \beta)}(G) \geqslant \varepsilon>\sum_{\delta^{\prime} \leqslant \delta}\left|\delta^{\prime}\right|+|\gamma| \geqslant r\left(\left(p^{\beta} G+Z_{\gamma}\right) \cap H[p]\right)
$$

Now, define $Z_{\gamma+1}=\left\langle Z_{\gamma}, c_{\gamma}\right\rangle$; as in the case 2.1, it is not difficult to verify the properties $(14, \gamma+1)-(16, \gamma+1)$.
b_{3}) Let γ be a limit ordinal. If for each ordinal $\boldsymbol{\gamma}^{\prime}<\gamma$ a subgroup Z_{γ}, with the properties $\left(14, \gamma^{\prime}\right)-\left(16, \gamma^{\prime}\right)$ has been defined then the subgroup $Z_{\gamma}=\bigcup_{\gamma^{\prime}<\gamma} Z_{\gamma^{\prime}}$ has the properties $(14, \gamma)-(16, \gamma)$.

The subgroup $Y_{\delta+1}=Z_{\min (\delta+1, \sigma)}$ has the properties $(11, \delta+1)$ $(13, \delta+1)$.
c) Let δ be a limit ordinal. If for each ordinal $\delta^{\prime}<\delta$ a subgroup $Y_{\delta^{\prime}}$ with the properties $\left(11, \delta^{\prime}\right)-\left(13, \delta^{\prime}\right)$ has been defined then the subgroup $Y_{\delta}=\bigcup_{\delta^{\prime}<\delta} \bar{Y}_{\delta^{\prime}}$ has the properties $(11, \delta)-(13, \delta)$.

Finally put $X=Y_{\varepsilon}$; the properties (i), (ii), arise from ($11, \varepsilon$) and $(12, \varepsilon)$.

Lemma 3. Let G be a group, p a prime, β a nonzero ordinal and B a subgroup of $p^{\beta} G$. If B is a direct sum of infinite and p-primary cyclic groups and

$$
r\left(p^{\beta+1} G \cap B / p B\right) \leqslant r_{(p, \beta)}(G)
$$

then there is a subgroup Y of G such that
(i) $Y \cap p^{\beta} G=B$,
(ii) $\forall b \in B, \forall \alpha<\beta, \exists y \in Y \cap p^{\alpha} G, b=p y$.

Proof. Write $B / p B=p^{\beta+1} G \cap B / p B \oplus B_{2} / p B$. Let $\left\{b_{i}+p B ; i \in I\right\}$ be a basis of the group $p^{\beta+1} G \cap B / p B$; put $B_{1}=\left\langle b_{i} ; i \in I\right\rangle$. Obviously $B_{1}+p B=p^{\beta+1} G \cap B$ and hence $B=B_{1}+B_{2}$. Since B is a direct
sum of infinite and p-primary cyclic groups,

$$
r\left(B_{1}\right) \leqslant|I| \leqslant r_{(v, \beta)}(G) ;
$$

by lemma 2 , there is a subgroup X of G such that

$$
\begin{align*}
& X \cap p^{\beta} G=B_{1} \tag{17}\\
& \forall b \in B_{1}, \quad \forall \alpha<\beta, \quad \exists x \in X \cap p^{\alpha} G, \quad b=p x . \tag{18}
\end{align*}
$$

Write $B_{2}=\bigoplus_{\gamma<\sigma}\left\langle a_{\gamma}\right\rangle$, where σ is an ordinal.
By transfinite induction we shall define an ascending chain of subgroups $\boldsymbol{Y}_{\alpha}, \alpha \leqslant \beta$, with the following properties:

$(19, \alpha)$	$X \subset Y_{\alpha}$,
$(20, \alpha)$	$Y_{\alpha} \cap p^{\beta} G=B$,
$(21, \alpha)$	$\forall \gamma<\sigma, \quad \forall \alpha^{\prime}<\alpha, \quad \exists c \in Y_{\alpha} \cap p^{\alpha^{\prime}} G, \quad a_{v}=p c$,

a) Put $Y_{0}=B_{2}+X$; the subgroup Y_{0} has the properties $(19,0)-(21,0)$.
b) Suppose that Y_{α} has been defined $(0 \leqslant \alpha<\beta)$ and define $Y_{\alpha+1}$. By transfinite induction we shall construct an ascending chain of subgroups $Z_{\nu}, \gamma \leqslant \sigma$, with the following properties:

$$
\begin{array}{lc}
(22, \gamma) & \boldsymbol{Y}_{\alpha} \subset Z_{\gamma} \\
(23, \gamma) & Z_{\gamma} \cap p^{\beta} G=B \\
(24, \gamma) & \forall \gamma^{\prime}<\gamma, \\
\exists c \in Z_{\gamma} \cap p^{\alpha} G, \quad a_{\gamma^{\prime}}=p c
\end{array}
$$

$\left.b_{1}\right)$ Put $Z_{0}=Y_{\alpha}$.
b_{2}) Suppose that Z_{γ} has been defined $(0 \leqslant \gamma<\sigma)$ and define
$Z_{\gamma+1}$. If there is an element $c \in Z_{\gamma} \cap p^{\alpha} G$ such that $a_{\gamma}=p c$ then define $c_{\gamma}=c$. If there is no element $c \in\left(p^{\beta} G+Z_{\gamma}\right) \cap p^{\alpha} G$ with $a_{\gamma}=p c$ then let $c_{\gamma} \in p^{\alpha} G$ be an arbitrary element such that $a_{\gamma}=p c_{\gamma}$. Finally, if there is an element $c \in\left(p^{\beta} G+Z_{\gamma}\right) \cap p^{\alpha} G$ with $a_{\gamma}=p c$ then there is an element $c^{\prime} \in Z_{\gamma} \cap p^{\alpha} G$ with $a_{\gamma}=p c^{\prime}$. For, write
$c=v+z$, where $v \in p^{\beta} G$ and $z \in Z_{\gamma}$; obviously $z \in p^{\alpha} G$. Hence $a_{\gamma}=p v+p z$, i.e. $p z \in p^{\beta} G \cap Z_{\gamma}=B$ by $(23, \gamma)$ and further $p v \in p^{\beta+1} G \cap$ $\cap B=B_{1}+p B$. There are elements $b_{1} \in B_{1}$ and $b \in B$ such that $p v=b_{1}+p b$. By (18), we can write $b_{1}=p x$, where $x \in X \cap p^{\alpha} G$, and hence $a_{\gamma}=p(x+b+z)$, where $c^{\prime}=x+b+z \in Z_{\gamma} \cap p^{\alpha} G$ (see $(19, \alpha)$ and $(22, \gamma))$. Define $Z_{\gamma+1}=\left\langle Z_{\gamma}, c_{\gamma}\right\rangle$ and verify the property $(23, \gamma+1)$ (the other two properties are trivial). Let $z+r c_{\gamma} \in p^{\beta} G$, where $z \in Z_{\gamma}$ and r is an integer. If $p \mid r$ then $z+r c_{\gamma} \in Z_{\nu} \cap p^{\beta} G=B$. If $(p, r)=1$ then $c_{\gamma} \in p^{\beta} G+Z_{\gamma}$ and according to the definition of c_{γ}, $c_{\gamma} \in Z_{\gamma}$. Hence $z+r c_{\gamma} \in Z_{\gamma} \cap p^{\beta} G=B$.
b_{3}) Suppose that γ is a limit ordinal. If for each ordinal $\gamma^{\prime}<\gamma$ a subgroup $Z_{\gamma^{\prime}}$ with the properties $\left(22, \gamma^{\prime}\right)-\left(24, \gamma^{\prime}\right)$ has been defined then the subgroup $Z_{\gamma}=\bigcup_{\gamma^{\prime}<\gamma} Z_{\gamma^{\prime}}$ has the propertires $(22, \gamma)-(24, \gamma)$.

Now, the subgroup $Y_{\alpha+1}=Z_{\sigma}$ has the properties $(19, \alpha+1)-(21, \alpha+1)$.
c) Let α be a limit ordinal. If for each ordinal $\alpha^{\prime}<\alpha$ a subgroup $\Psi_{\alpha^{\prime}}$ with the properties $\left(19, \alpha^{\prime}\right)-\left(21, \alpha^{\prime}\right)$ has been defined then the subgroup $Y_{\alpha}=\bigcup_{\alpha^{\prime}<\alpha} Y_{\alpha^{\prime}}$ has obviously the properties (19, α)-($21, \alpha$).

Finally put $\bar{Y}=Y_{\beta}$; the properties (i), (ii) arise from (19, β)-(21, β) and (18) with respect to the equality $B=B_{1}+B_{2}$.

Theorem 2. Let G be a group, p a prime, β a nonzero ordinal and A a subgroup of $p^{\beta} G$. The following are equivalent:
(i) $r\left(p^{\beta+1} G \cap A / p A\right) \leqslant r_{(p, \beta)}(G)$.
(ii) There is a $p^{\beta} G-A$-high subgroup P of G such that $p^{\alpha} P=$ $=P \cap p^{\alpha} G$ for each ordinal $\alpha \leqslant \beta$.
(iii) There is a subgroup P of G such that $A=p^{\beta} P=P \cap p^{\beta} G$.

Proof. Suppose (i). Let B be a p-basic subgroup of A. Since $A=B+p A$ and $A \subset p^{\beta} G$,

$$
p^{\beta+1} G \cap A / p A \cong p^{\beta+1} G \cap B / p B
$$

and hence

$$
r\left(p^{\beta+1} G \cap B / p B\right) \leqslant r_{(p, \beta)}(G)
$$

By lemma 3, there is a subgroup Y of G such that

$$
\begin{equation*}
\bar{Y} \cap p^{\beta} G=B \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
\forall b \in B, \quad \forall \alpha<\beta, \quad \exists y \in Y \cap p^{\alpha} G, \quad b=p y \tag{25}
\end{equation*}
$$

Obviously $(A+Y) \cap p^{\beta} G=A$. Let P be a $p^{\beta} G-A$-high subgroup of G containing $A+Y$. We prove that $p^{\alpha} P=P \cap p^{\alpha} G$ for every ordinal $\alpha \leqslant \beta$. It is sufficient to show that if this equality holds for α $(0 \leqslant \alpha<\beta)$ then it holds for $\alpha+1$. Let $x \in P \cap p^{\alpha+1} G$, i.e. $x=p g$, where $g \in p^{\alpha} G$; obviously $x \in P \cap p^{\alpha} G=p^{\alpha} P$. If $g \in P$ then $g \in P \cap$ $\cap p^{\alpha} G=p^{\alpha} P$ and $x=p g \in p^{\alpha+1} P$. If $g \notin P$ then there are an element $x^{\prime} \in P$ and an integer r such that $r g+x^{\prime} \in p^{\beta} G \backslash A$; obviously $x^{\prime} \in p^{\alpha} G$ and $(p, r)=1$. Further

$$
p r g+p x^{\prime}=r x+p x^{\prime} \in P \cap p^{\beta} G=A=B+p A
$$

there are elements $b \in B$ and $a \in A$ such that $r x+p x^{\prime}=b+p a$. By (25), there is an element $y \in Y \cap p^{\alpha} G$ such that $b=p y$. Hence $r x=p\left(y+a-x^{\prime}\right)$, where $y+a-x^{\prime} \in P \cap p^{\alpha} G=p^{\alpha} P$, and consequently $r x \in p^{\alpha+1} P$. Since $(p, r)=1, x \in p^{\alpha+1} P$ and assertion (ii) is proved.

Obviously, (ii) implies (iii) and (iii) implies (i) by lemma 1.

REFERENCES

[1] L. Fuchs, Infinite Abelian groups, I, II, Acad. Press, 1970, 1973.
[2] J. M. Irwin - E. A. Walker, On isotype subgroups of Abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460.
[3] F. V. Krivonos, Ob N-vysokich podgruppach abelevoj gruppy, Vest. Moskov. Univ. (1975), pp. 58-64.
[4] R. W. Mitchell, An extension of Ulm's theorem, Ph. D. Dissertation, New Mexico State University, May 1964.
[5] A. R. Mitchell - R. W. Mitchell, Some structure theorems for infinite Abelian p-groups, J. Algebra, 5 (1967), pp. 367-372.
[6] F. Richman - C. P. Walker, On a certain purification problem for primary Abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210.

Manoscritto pervenuto in redazione il 19 dicembre 1980.

