RENDICONTI del Seminario Matematico della Università di Padova

JINDŘICH BEČVÁŘ

A generalization of a theorem of F. Richman and C. P. Walker

Rendiconti del Seminario Matematico della Università di Padova, tome 66 (1982), p. 43-55

<a>http://www.numdam.org/item?id=RSMUP_1982__66__43_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1982, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 66 (1982)

A generalization of a Theorem of F. Richman and C. P. Walker.

JINDŘICH BEČVÁŘ (*)

All groups in this paper are abelian, concerning the terminology and notation we refer to [1]. If G is a group then G_t and G_p are the torsion part of G and the p-component of G_t respectively. Let α be an ordinal. Since $(p^{\alpha}G)_p = p^{\alpha}(G_p)$, we shall write only $p^{\alpha}G_p$. Further, it is natural to use the symbol $p^{\alpha}G[p]$. The cardinality of α will be denoted by $|\alpha|$. Let G be a group and p a prime. A subgroup H of G is said to be p-isotype (isotype) in G if $p^{\alpha}H = H \cap p^{\alpha}G$ for each ordinal α (for each ordinal α and each prime p). If $K \subset N$ are subgroups of a group G then every subgroup A of G, which is maximal with respect to the property $A \cap N = K$, is said to be N - K-high in G (following F. V. Krivonos [3]).

Let G be a p-group. If A is a neat subgroup of G^1 then there is a pure subgroup P of G such that $P \cap G^1 = A$ (R. W. Mitchell[4], resp. A. R. Mitchell-R. W. Mitchell[5]). The question which subgroups of G^1 are the intersections of G^1 with a pure subgroup of G was settled by F. Richman and C. P. Walker[6]. Let G be an arbitrary group. If K is a subgroup of $p^{\beta}G$ and P a K-high subgroup of G then $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta+1$; every $p^{\beta}G$ -high subgroup of G is p-isotype in G (J. M. Irwin - E. A. Walker[2]).

Let G be a group and A a subgroup of $p^{\beta}G$. The purpose of this paper is to give the necessary and sufficient conditions to the following two statements:

(*) Indirizzo dell'A.: Matematicko-fyzikálni fakulta, Sokolovská 83, 18600 Praha 8 (Czechoslovakia).

Jindřich Bečvář

a) For each $p^{\beta}G - A$ -high subgroup P of G, $p^{\beta}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta + 1$ (theorem 1).

b) There is a $p^{\beta}G - A$ -high subgroup P of G such that $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha < \beta$ (theorem 2).

Note that theorem 1 generalizes the recalled results from [4] and [2], theorem 2 generalizes the main result from [6]. Moreover, theorems 1 and 2 together give an interesting look at these « purification » problems.

1. THEOREM 1. Let G be a group, p a prime, β an ordinal and A a subgroup of $p^{\beta}G$. The following are equivalent:

(i) A is p-neat in $p^{\beta}G$.

(ii) If P is a $p^{\beta}G - A$ -high subgroup of G then $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta + 1$.

(iii) There is a subgroup P of G such that $A = P \cap p^{\beta}G$ and $p^{\beta+1}P = P \cap p^{\beta+1}G$.

PROOF. Suppose (i). Let P be a $p^{\beta}G - A$ -high subgroup of G. We prove that $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta + 1$. It is sufficient to show that if this equality holds for α ($\alpha \leq \beta$) then it holds for $\alpha + 1$. Let $x \in P \cap p^{\alpha+1}G$, i.e. x = pg, where $g \in p^{\alpha}G$; by assumption, $x \in P \cap p^{\alpha}G = p^{\alpha}P$. If $g \in P$ then $g \in P \cap p^{\alpha}G = p^{\alpha}P$ and $x = pg \in p^{\alpha+1}P$. If $g \notin P$ then there are an element $b \in P$ and an integer r such that $b + rg \in p^{\beta}G \setminus A$. Obviously $b \in P \cap p^{\alpha}G = p^{\alpha}P$ and (p, r) = 1. Now, $pb + prg \in p^{\beta}G \cap P = A$ and further $pb + prg \in p^{\beta+1}G \cap A = pA$. Hence there is an element $a \in A$ such that pb + prg = pa; obviously $a \in P \cap p^{\alpha}G = p^{\alpha}P$. Since (p, r) = 1, there are integers u, v such that 1 = up + vr. Consequently g = upg + vrg = ux + vrg and x = pg = upx + vprg = upx + vpa - vpb = p(ux + va - vb), where $ux + va - vb \in p^{\alpha}P$. Hence $x \in p^{\alpha+1}P$.

Suppose (iii). Obviously $p^{\beta}P \subset P \cap p^{\beta}G = A$ and hence $p^{\beta+1}P \subset p A$. Now,

$$pA \subset A \cap p^{\beta+1}G = P \cap p^{\beta}G \cap p^{\beta+1}G = p^{\beta+1}P \subset pA.$$

COROLLARY 1 (J. M. Irwin - E. A. Walker [2]). Let G be a group, p a prime, β an ordinal and K a subgroup of $p^{\beta}G$. If P is a K-high subgroup of G then $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta + 1$.

PROOF. If P is a K-high subgroup of G then $A = P \cap p^{\beta}G$ is a K-high subgroup of $p^{\beta}G$ and hence A is neat in $p^{\beta}G$. Since P is $p^{\beta}G$ — A-high in G, the desired result follows from theorem 1.

The following corollaries 2, 3, 4 and proposition 1 generalize some results from [2].

COROLLARY 2. Let G be a group, p a prime, β , $\gamma > 0$ ordinals and A a subgroup of $p^{\beta}G$. Let P be a $p^{\beta}G - A$ -high subgroup of G.

(i) If $p^{\alpha}A = A \cap p^{\alpha}(p^{\beta}G)$ for each ordinal $\alpha \leq \gamma$ then $p^{\alpha}P =$ $= P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta + \gamma$.

(ii) If A is p-isotype in $p^{\beta}G$ then P is p-isotype in G.

(iii) If $A \cap p^{\beta+1}G = 0$ then P is p-isotype in G.

(iv) If A is p-neat in $p^{\beta}G$ and $A \cap p^{\beta+2}G = 0$ then P is p-isotype in G.

PROPOSITION 1. Let G be a group, $A \subset N$ subgroups of G and q a prime. If A is q-neat in N and $N_q = 0$ then each N - A-high subgroup of G is q-isotype in G.

PROOF. Let P be a N - A-high subgroup of G. Suppose $q \in G \setminus P$ and $qq \in P$. There are an element $b \in P$ and an integer r such that $rg + b \in N \setminus A$; obviously (r, q) = 1. Now, $qrg + qb \in P \cap N = A$, there is an element $a \in A$ such that qrg + qb = qa and hence rg == a - b. There are integers u, v such that uq + vr = 1 and consequently $g = uqg + vrg = uqg + va - vb \in P$, a contradiction. Hence $(G/P)_q = 0$ and P is q-isotype in G (see lemma 103.1[1]).

COROLLARY 3. Let G be a group, p a prime, β an ordinal and A a subgroup of $p^{\beta}G$. If A is neat in $p^{\beta}G$, $A \cap p^{\beta+2}G = 0$ and $(p^{\beta}G)_{q} = 0$ for each prime $q \neq p$ then each $p^{\beta}G - A$ -high subgroup of G is isotype in G.

COROLLARY 4. Let H be a subgroup of a group G, p be a prime and β an ordinal. Suppose that for each nonzero element $h \in H$, $h_{n}(h) \leq \beta + 1$. Then

(i) H is contained in a p-isotype subgroup A of G such that for each $a \in A \setminus H$, $h_n(a) \leq \beta$.

(ii) If $H \cap p^{\beta}G$ is p-neat in $p^{\beta}G$ then H is contained in a *p*-isotype subgroup B of G such that for each $a \in B \setminus H$, $h_p(a) < \beta$.

Jindřich Bečvář

(iii) If $H \cap p^{\beta}G$ is neat in $p^{\beta}G$ and $(p^{\beta}G)_{q} = 0$ for each prime $q \neq p$ then H is contained in an isotype subgroup B of G such that for each $a \in B \setminus H$, $h_{p}(a) < \beta$.

2. DEFINITION. Let G be a group, p a prime and β a nonzero ordinal. The minimum of cardinals

$$r(p^{\alpha}G[p]/p^{\beta}G[p]), \quad \alpha < \beta,$$

will be called the (p, β) -rank of G and denoted by $r_{(p,\beta)}(G)$.

PROPOSITION 2. Let G be a group, p a prime and β a nonzero ordinal. If H is a $p^{\beta}G$ -high subgroup of G then

$$r_{(p,\beta)}(G) = \min_{\alpha < \beta} r(p^{\alpha}H_p) .$$

PROOF. Let H be a $p^{\beta}G$ -high subgroup of G and α an ordinal, $\alpha < \beta$. Since the subgroup $p^{\alpha}G \cap H$ is $p^{\beta}G$ -high in $p^{\alpha}G$ and $p^{\alpha}G \cap H = p^{\alpha}H$ (see corollary 1), $p^{\alpha}G[p] = p^{\beta}G[p] \oplus p^{\alpha}H[p]$. Consequently

$$r(p^{\alpha}H_{p}) = r(p^{\alpha}H[p]) = r(p^{\alpha}G[p]/p^{\beta}G[p]).$$

REMARK 1. Let G be a group and H a $p^{\beta}G$ -high subgroup of G. If $\beta = \delta + 1$ then

$$r_{(p,\beta)}(G) = r(p^{\delta}G[p]/p^{\beta}G[p]) = f_{\delta}(G)$$

is the δ -th Ulm-Kaplansky invariant of G_p and

$$r_{(p,\beta)}(G) = r(p^{\delta}H_p) = r(p^{\delta}H[p])$$

by proposition 2. If β is a limit ordinal and $r_{(p,\beta)}(G) > 0$ then for each ordinal $\alpha < \beta$ there is a natural number k such that $p^{\alpha}H[p] \neq p^{\alpha+k}H[p]$. For, otherwise $p^{\alpha}H_p$ is divisible, $p^{\alpha}H_p \subset p^{\beta}G \cap H = 0$ and proposition 2 implies a contradiction. Hence $r_{(p,\beta)}(G)$ is infinite. Let γ be an ordinal such that $r_{(p,\beta)}(G) = r(p^{\gamma}H[p])$ and let ε be the least ordinal such that β is cofinal with ε (i.e. $\varepsilon = \operatorname{cof}(\beta)$); hence ε is a cardinal.

According to the precedent consideration,

$$r_{(p,eta)}(G) = r(p\gamma H[p]) = |p\gamma H[p]| \ge |\{lpha; \ \gamma \leqslant lpha < eta\}| \ge \varepsilon \; .$$

REMARK 2. If G is a p-group and H a G^1 -high subgroup of G then by proposition 2,

$$r_{(p,\omega)}(G) = \min_{n < \omega} r(p^n H)$$

is the final rank of H.

LEMMA 1. Let G be a group, p a prime, β a nonzero ordinal and A a subgroup of $p^{\beta}G$. If there is a subgroup P of G such that $P \cap p^{\beta}G = p^{\beta}P = A$ then

$$r(p^{\beta+1}G \cap A/pA) \leq r_{(p,\beta)}(G)$$
.

PROOF. Let $\{a_i + pA; i \in I\}$ be a basis of $p^{\beta+1}G \cap A/pA$ and H be a $p^{\beta}G$ -high subgroup of G. Suppose $|I| > r(p^{\alpha}H_p)$ for some $\alpha < \beta$. For each index $i \in I$ there are elements $g_i \in p^{\beta}G$ and $x_i \in p^{\alpha}P$ such that $a_i = pg_i = px_i$. Since

$$x_i - g_i \in G[p] = p^{\beta}G[p] \oplus H[p],$$

 $x_i - g_i = g'_i + h_i$, where $g'_i \in p^{\beta}G[p]$ and $h_i \in H[p]$ for each $i \in I$. Further

$$\mathbf{h}_i = x_i - g_i - g_i' \in H_p \cap p^{\alpha} G = p^{\alpha} H_p$$

by corollary 1. Since the set $\{h_i; i \in I\}$ is linearly dependent, there are a finite subset J of I and integers $r_i, i \in J$, such that

$$\sum_{i\in J}r_ih_i=0$$

and $r_i h_i \neq 0$ for each $i \in J$. Hence

$$\sum\limits_{i\in J}r_ix_i\in p^{\,eta}G\cap P=A\;,\ \sum\limits_{i\in J}r_ia_i\in pA\;,$$

and

$$\sum_{i\in J}r_i(a_i+pA)=pA.$$

Since the set $\{a_i + pA; i \in I\}$ is linearly independent, $r_i a_i \in pA$ and hence $p|r_i$ for each index $i \in J$, a contradiction. Hence $|I| \leq r(p^{\alpha}H_p)$ for every ordinal $\alpha < \beta$ and proposition 2 implies the desired result.

LEMMA 2. Let G be a group, p a prime, β a nonzero ordinal and B a subgroup of $p^{\beta}G$. If B is a direct sum of cyclic groups and $r(B) \leq r_{(p,\beta)}(G)$ then there is a subgroup X of G such that

- (i) $X \cap p^{\beta}G = B$,
- (ii) $\forall b \in B, \forall \alpha < \beta, \exists x \in X \cap p^{\alpha}G, b = px.$

PROOF. Suppose $B \neq 0$, otherwise the assertion is trivial. Let H be a $p^{\beta}G$ -high subgroup of G.

Case 1. $\beta = \delta + 1$. By remark 1, $r_{(p,\beta)}(G) = r(p \circ H[p])$. Write

$$B= igoplus_{\gamma < \sigma} \langle a_{\gamma}
angle \qquad ext{and} \qquad p^{\delta} H[p]= igoplus_{\gamma < \sigma'} \langle h_{\gamma}
angle \, ,$$

where σ and σ' are ordinals such that $\sigma \leqslant \sigma'$. For each ordinal $\gamma < \sigma$ let $H_{\gamma} = \bigoplus_{\gamma' < \gamma} \langle h_{\gamma'} \rangle$.

By transfinite induction we shall define an ascending chain of subgroups $Z_{\gamma}, \gamma \leq \sigma$, with the following properties:

$$(1,\gamma) Z_{\gamma} \cap p^{\beta}G = B,$$

$$(2,\gamma) Z_{\gamma} \subset p^{\delta}G,$$

 $(3,\gamma) \qquad \forall \gamma' < \gamma , \qquad \exists c \in Z_{\gamma} , \qquad a_{\gamma'} = pc ,$

$$(4,\gamma) \qquad (p^{\beta}G+Z_{\gamma}) \cap H[p] \subset H_{\gamma}.$$

a) Put $Z_0 = B$; the subgroup Z_0 has obviously all the properties (1,0)-(4,0).

b) Suppose that Z_{γ} has been defined $(0 \leq \gamma < \sigma)$ and define $Z_{\gamma+1}$. If there is no element $c \in (p^{\beta}G + Z_{\gamma})$ with $a_{\gamma} = pc$ then let $c_{\gamma} \in p^{\delta}G$

be an arbitrary element such that $a_{\gamma} = pc_{\gamma}$. If $c \in (p^{\beta}G + Z_{\gamma}) \subset p^{\delta}G$ is an element such that $a_{\gamma} = pc$ then let $c_{\gamma} = c + h_{\gamma}$; $c_{\gamma} \notin p^{\beta}G + Z_{\gamma}$ by $(4,\gamma)$. Define $Z_{\gamma+1} = \langle Z_{\gamma}, c_{\gamma} \rangle$ and verify the properties $(1,\gamma+1)$ - $(4,\gamma+1)$. Let $z + rc_{\gamma} \in p^{\beta}G$, where $z \in Z_{\gamma}$ and r is an integer. If p|rthen $z + rc_{\gamma} \in Z_{\gamma} \cap p^{\beta}G = B$. If (p,r) = 1 then it is easy to see that $c_{\gamma} \in p^{\beta}G + Z_{\gamma}$, which contradicts with the definition of the element c_{γ} . Hence $(1,\gamma+1)$ holds; $(2,\gamma+1)$ and $(3,\gamma+1)$ are trivial. Let $g + z + rc_{\gamma} = h \in H[p]$, where $g \in p^{\beta}G$, $z \in Z_{\gamma}$ and r is an integer. If p|r then $h \in (p^{\beta}G + Z_{\gamma}) \cap H[p] \subset H_{\gamma} \subset H_{\gamma+1}$ by $(4,\gamma)$. If (p,r) = 1then there are integers u, v such that 1 = pu + rv. Since

$$egin{aligned} ra_{\mathbf{y}} &= prc_{\mathbf{y}} = p(\mathbf{h} - \mathbf{g} - \mathbf{z}) = p(-\mathbf{g} - \mathbf{z}) \;, \ a_{\mathbf{y}} &= pua_{\mathbf{y}} + rva_{\mathbf{y}} = p(ua_{\mathbf{y}} - v\mathbf{g} - v\mathbf{z}) \;, \end{aligned}$$

where $ua_{\nu} - vg - vz \in p^{\beta}G + Z_{\nu}$, and according to the definition of c_{ν} , $c_{\nu} = c + h_{\nu}$, where $c \in p^{\beta}G + Z_{\nu}$ and $a_{\nu} = pc$. Hence

$$g+z+rc+rh_{\gamma}=h$$
, $h-rh_{\gamma}=g+z+rc\in (p^{\mu}G+Z_{\gamma})\cap H[p]\subset H_{\gamma}$

and consequently $h \in H_{\gamma+1}$, i.e. $(4, \gamma+1)$ holds.

c) Suppose that γ is a limit ordinal. If for each ordinal $\gamma' < \gamma$ a subgroup $Z_{\gamma'}$ with the properties $(1,\gamma')$ - $(4,\gamma')$ has been defined then the subgroup $Z_{\gamma} = \bigcup_{\gamma' < \gamma} Z_{\gamma'}$ has obviously the properties $(1,\gamma)$ - $(4,\gamma)$.

Finally put $X = Z_{\sigma}$; the properties (i), (ii) arise from $(1,\sigma)$ - $(3,\sigma)$. Case 2. β is a limit ordinal.

Let $\varepsilon = \operatorname{cof}(\beta)$. Suppose that β is a limit of an ascending sequence of ordinals α_{δ} , $\delta < \varepsilon$. Let $B = \bigoplus_{\gamma < \sigma} \langle a_{\gamma} \rangle$, where $a_{\gamma} \neq 0$ for each $\gamma < \sigma$ and σ is a cardinal. By assumption, $r_{(p,\beta)}(G) \ge r(B) = \sigma$.

Case 2.1. $\sigma > \varepsilon$.

We use the transfinite induction to define an ascending chain of subgroups Z_{γ} , $\gamma \leq \sigma$, with the following properties:

- $(5,\gamma) Z_{\gamma} \cap p^{\beta}G = B,$
- $(6,\gamma) \quad \forall \gamma' < \gamma , \qquad \forall \alpha < \beta , \qquad \exists c \in Z_{\gamma} \cap p^{\alpha}G , \qquad a_{\gamma'} = pc ,$
- (7, γ) $r((p^{\beta}G + Z_{\gamma}) \cap H[p]) \leq |\gamma| \cdot \varepsilon.$

Jindřich Bečvář

a) Put $Z_0 = B$.

b) Suppose that Z_{γ} has been defined $(0 \leq \gamma < \sigma)$ and define $Z_{\gamma+1}$. By transfinite induction we shall construct an ascending chain of subgroups Y_{δ} , $\delta \leq \varepsilon$, with the following properties:

$$(8,\delta) Y_{\delta} \cap p^{\beta}G = B,$$

$$(9,\delta) \qquad \forall \delta' < \delta , \qquad \exists c \in Y_{\delta} \cap p^{\alpha_{\delta'}}G , \qquad a_{\gamma} = pc ,$$

(10,
$$\delta$$
) $r((p^{\beta}G + Y_{\delta}) \cap H[p]) \leq |\gamma| \cdot \varepsilon + |\delta|.$

 b_1) Put $Y_0 = Z_{\gamma}$.

 b_2) Suppose that Y_{δ} has been defined $(0 < \delta < \varepsilon)$ and define $Y_{\delta+1}$. If there is no element $c \in (p^{\beta}G + Y_{\delta}) \cap p^{\alpha_{\delta}}G$ with $a_{\gamma} = pc$ then let $c_{\delta} \in p^{\alpha_{\delta}}G$ be an arbitrary element such that $a_{\gamma} = pc_{\delta}$. If $c \in (p^{\beta}G + Y_{\delta}) \cap p^{\alpha_{\delta}}G$ is an element such that $a_{\gamma} = pc$ then let $c_{\delta} = c + h$, where $h \in p^{\alpha_{\delta}}H[p] \setminus (p^{\beta}G + Y_{\delta})$; such element h exists, since

$$r(p^{lpha_{m{\sigma}}}H[p]) \! \geqslant \! r_{(p,eta)}(G) \! \geqslant \! \sigma \! > |\gamma| \cdot \! \epsilon + |\delta| \! \geqslant \! r((p^{m{
ho}}G + Y_{m{\sigma}}) \cap H[p]) \; .$$

Define $Y_{\delta+1} = \langle Y_{\delta}, c_{\delta} \rangle$ and verify the properties $(8, \delta+1)$ - $(10, \delta+1)$. Let $y + rc_{\delta} \in p^{\beta}G$, where $y \in Y_{\delta}$ and r is an integer. If p|r then $y + rc_{\delta} \in Y_{\delta} \cap p^{\beta}G = B$. If (p, r) = 1 then it is easy to see that $c_{\delta} \in p^{\beta}G + Y_{\delta}$ which contradicts with the choice of the element c_{δ} . Hence $(8, \delta+1)$ holds; $(9, \delta+1)$ is trivial. Further write

$$(p^{\beta}G + Y_{\delta+1}) \cap H[p] = (p^{\beta}G + Y_{\delta}) \cap H[p] \oplus R$$

and suppose $R = \langle h_1 \rangle \oplus R', \ h_1 \neq 0$ and $h_2 \in R'$. Write

$$h_1 = g_1 + y_1 + r_1 c_\delta$$
, $h_2 = g_2 + y_2 + r_2 c_\delta$,

where $g_1, g_2 \in p^{\beta}G$, $y_1, y_2 \in Y_{\delta}$ and r_1, r_2 are integers. Obviously $(p, r_1) = 1$, there are integers u, v such that

$$r_2 c_0 = u p r_2 c_0 + v r_1 r_2 c_0 = u r_2 a_v + v r_2 (h_1 - g_1 - y_1)$$

and hence

$$\begin{aligned} h_2 &= g_2 + y_2 + ur_2 a_{\gamma} + vr_2 h_1 - vr_2 g_1 - vr_2 y_1 \in \\ &\in (p^{\beta}G + Y_{\delta}) \cap H[p] \oplus \langle h_1 \rangle. \end{aligned}$$

Thus $r(R) \leq 1$ and $(10, \delta+1)$ holds.

 b_{3}) Let δ be a limit ordinal. If for each ordinal $\delta' < \delta$ a subgroup $Y_{\delta'}$ with the properties $(8,\delta')$ - $(10,\delta')$ has been defined then it is not difficult to see that the subgroup $Y_{\delta} = \bigcup_{\delta' < \delta} Y_{\delta'}$ has the properties $(8,\delta)$ - $(10,\delta)$.

Now, the subgroup $Z_{\nu+1} = Y_{\epsilon}$ has the properties $(5, \gamma+1) \cdot (7, \gamma+1)$.

c) Let γ be a limit ordinal. If for each ordinal $\gamma' < \gamma$ a subgroup $Z_{\gamma'}$ with the properties $(5,\gamma')$ - $(7,\gamma')$ has been defined then the subgroup $Z_{\gamma} = \bigcup_{\gamma' < \gamma} Z_{\gamma'}$ has the properties $(5,\gamma)$ - $(7,\gamma)$.

Finally put $X = Z_{\sigma}$; the properties (i) and (ii) arise from $(5,\sigma)$ and $(6,\sigma)$.

Case 2.2. $\sigma \leqslant \varepsilon$.

By transfinite induction we shall construct an ascending chain of subgroups Y_{δ} , $\delta \leq \varepsilon$, with the following properties:

(11,
$$\delta$$
) $Y_{\delta} \cap p^{\beta}G = B$,

 $\begin{array}{ll} (12,\delta) & \forall \gamma < \min\left(\delta,\sigma\right), & \forall \delta' < \delta, & \exists c \in Y_{\delta} \cap p^{\alpha_{\delta'}}G, & a_{\gamma} = pc, \\ (13,\delta) & r\left((p^{\beta}G + Y_{\delta}) \cap H[p]\right) \leq \sum\limits_{\delta' \leq \delta} |\delta'|. \end{array}$

a) Put $Y_0 = B$.

b) Suppose that Y_{δ} has been defined $(0 \leq \delta < \varepsilon)$ and define $Y_{\delta+1}$. We use the transfinite induction to define an ascending chain of subgroups Z_{γ} , $\gamma \leq \min(\delta + 1, \sigma)$, with the following properties:

 $(14,\gamma) Z_{\gamma} \cap p^{\beta}G = B,$

$$(15,\gamma) \qquad \forall \gamma' < \gamma \;, \qquad \exists c \in Z_{\gamma} \cap p^{\alpha_{s}}G \;, \qquad a_{\gamma'} = pc \;,$$

$$(16,\gamma) r((p^{\beta}G+Z_{\gamma})\cap H[p]) \leq \sum_{\delta' \leq \delta} |\delta'| + |\gamma|.$$

 b_1) Put $Z_0 = Y_\delta$.

 b_2) Suppose that Z_{γ} has been defined $(0 \leq \gamma < \min(\delta+1, \sigma))$ and define $Z_{\gamma+1}$. If there is no element $c \in (p^{\beta}G + Z_{\gamma}) \cap p^{\alpha_{\beta}}G$ with $a_{\gamma} = pc$ then let $c_{\gamma} \in p^{\alpha_{\beta}}G$ be an arbitrary element such that $a_{\gamma} = pc_{\gamma}$. If $c \in (p^{\beta}G + Z_{\gamma}) \cap p^{\alpha_{\beta}}G$ is an element such that $a_{\gamma} = pc$ then let $c_{\gamma} = c + h$, where $h \in p^{\alpha_{\beta}}H[p] \setminus (p^{\beta}G + Z_{\gamma})$. Such element h exists, since by remark 1,

$$r(p^{lpha_{m{\sigma}}}H[p]) \! \ge \! r_{(m{v},m{eta})}(G) \! \ge \! \varepsilon \! > \! \sum_{\delta' \leqslant \delta} \! |\delta'| + |\gamma| \! \ge \! r((p^{m{
ho}}G + Z_{m{v}}) \cap H[p])$$

Now, define $Z_{\gamma+1} = \langle Z_{\gamma}, c_{\gamma} \rangle$; as in the case 2.1, it is not difficult to verify the properties $(14,\gamma+1)$ - $(16,\gamma+1)$.

 b_3) Let γ be a limit ordinal. If for each ordinal $\gamma' < \gamma$ a subgroup $Z_{\gamma'}$ with the properties $(14,\gamma')$ - $(16,\gamma')$ has been defined then the subgroup $Z_{\gamma} = \bigcup Z_{\gamma'}$ has the properties $(14,\gamma)$ - $(16,\gamma)$.

The subgroup $Y_{\delta+1} = Z_{\min(\delta+1,\sigma)}$ has the properties $(11,\delta+1)-(13,\delta+1)$.

c) Let δ be a limit ordinal. If for each ordinal $\delta' < \delta$ a subgroup $Y_{\delta'}$ with the properties $(11,\delta')$ - $(13,\delta')$ has been defined then the subgroup $Y_{\delta} = \bigcup_{i=1}^{N} Y_{\delta'}$ has the properties $(11,\delta)$ - $(13,\delta)$.

Finally put $X = Y_{\varepsilon}$; the properties (i), (ii), arise from (11, ε) and (12, ε).

LEMMA 3. Let G be a group, p a prime, β a nonzero ordinal and B a subgroup of $p^{\beta}G$. If B is a direct sum of infinite and p-primary cyclic groups and

$$r(p^{\beta+1}G \cap B/pB) \leq r_{(p,\beta)}(G)$$

then there is a subgroup Y of G such that

- (i) $Y \cap p^{\beta}G = B$,
- (ii) $\forall b \in B, \forall \alpha < \beta, \exists y \in Y \cap p^{\alpha}G, b = py.$

PROOF. Write $B/pB = p^{\beta+1}G \cap B/pB \oplus B_2/pB$. Let $\{b_i + pB; i \in I\}$ be a basis of the group $p^{\beta+1}G \cap B/pB$; put $B_1 = \langle b_i; i \in I \rangle$. Obviously $B_1 + pB = p^{\beta+1}G \cap B$ and hence $B = B_1 + B_2$. Since B is a direct

sum of infinite and *p*-primary cyclic groups.

$$r(B_1) \leqslant |I| \leqslant r_{(p,\beta)}(G);$$

by lemma 2, there is a subgroup X of G such that

$$(17) X \cap p^{\beta}G = B_1,$$

(18) $\forall b \in B_1$, $\forall \alpha < \beta$, $\exists x \in X \cap p^{\alpha}G$, b = px.

Write $B_2 = \bigoplus_{\gamma < \sigma} \langle a_{\gamma} \rangle$, where σ is an ordinal.

By transfinite induction we shall define an ascending chain of subgroups Y_{α} , $\alpha \leq \beta$, with the following properties:

$$(19,\alpha) X \subset Y_{\alpha},$$

$$(20,\alpha) Y_{\alpha} \cap p^{\beta}G = B$$

 $(21,\alpha) \quad \forall \gamma < \sigma , \qquad \forall \alpha' < \alpha , \qquad \exists c \in Y_{\alpha} \cap p^{\alpha'}G , \qquad a_{\gamma} = pc ,$

a) Put $Y_0 = B_2 + X$; the subgroup Y_0 has the properties (19,0)-(21,0).

b) Suppose that Y_{α} has been defined $(0 \leq \alpha < \beta)$ and define $Y_{\alpha+1}$. By transfinite induction we shall construct an ascending chain of subgroups $Z_{\gamma}, \gamma \leq \sigma$, with the following properties:

$$(22,\gamma) Y_{\alpha} \subset Z_{\gamma},$$

$$(23,\gamma) Z_{\gamma} \cap p^{\beta}G = B$$

 $\begin{array}{ll} (23,\gamma) & Z_{\gamma} \cap p^{\beta}G = B \ , \\ (24,\gamma) & \forall \gamma' < \gamma \ , \quad \exists c \in Z_{\gamma} \cap p^{\alpha}G \ , \quad a_{\gamma'} = pc \ . \end{array}$

 b_1) Put $Z_0 = Y_\alpha$.

 b_2) Suppose that Z_{γ} has been defined $(0 \leq \gamma < \sigma)$ and define $Z_{\nu+1}$. If there is an element $c \in Z_{\nu} \cap p^{\alpha}G$ such that $a_{\nu} = pc$ then define $c_{\gamma} = c$. If there is no element $c \in (p^{\beta}G + Z_{\gamma}) \cap p^{\alpha}G$ with $a_{\gamma} = pc$ then let $c_{\gamma} \in p^{\alpha}G$ be an arbitrary element such that $a_{\gamma} = pc_{\gamma}$. Finally, if there is an element $c \in (p^{\beta}G + Z_{\gamma}) \cap p^{\alpha}G$ with $a_{\gamma} = pc$ then there is an element $c' \in \mathbb{Z}_{\gamma} \cap p^{\alpha}G$ with $a_{\gamma} = pc'$. For, write

c = v + z, where $v \in p^{\beta}G$ and $z \in Z_{\gamma}$; obviously $z \in p^{\alpha}G$. Hence $a_{\gamma} = pv + pz$, i.e. $pz \in p^{\beta}G \cap Z_{\gamma} = B$ by $(23,\gamma)$ and further $pv \in p^{\beta+1}G \cap \cap B = B_1 + pB$. There are elements $b_1 \in B_1$ and $b \in B$ such that $pv = b_1 + pb$. By (18), we can write $b_1 = px$, where $x \in X \cap p^{\alpha}G$, and hence $a_{\gamma} = p(x + b + z)$, where $c' = x + b + z \in Z_{\gamma} \cap p^{\alpha}G$ (see (19, α) and (22, γ)). Define $Z_{\gamma+1} = \langle Z_{\gamma}, c_{\gamma} \rangle$ and verify the property (23, $\gamma+1$) (the other two properties are trivial). Let $z + rc_{\gamma} \in p^{\beta}G$, where $z \in Z_{\gamma}$ and r is an integer. If p|r then $z + rc_{\gamma} \in Z_{\gamma} \cap p^{\beta}G = B$. If (p, r) = 1 then $c_{\gamma} \in p^{\beta}G + Z_{\gamma}$ and according to the definition of c_{γ} , $c_{\gamma} \in Z_{\gamma}$. Hence $z + rc_{\gamma} \in Z_{\gamma} \cap p^{\beta}G = B$.

 b_3) Suppose that γ is a limit ordinal. If for each ordinal $\gamma' < \gamma$ a subgroup $Z_{\gamma'}$ with the properties $(22,\gamma')$ - $(24,\gamma')$ has been defined then the subgroup $Z_{\gamma} = \bigcup_{\gamma' < \gamma} Z_{\gamma'}$ has the properties $(22,\gamma)$ - $(24,\gamma)$.

Now, the subgroup $Y_{\alpha+1} = Z_{\sigma}$ has the properties $(19, \alpha+1) \cdot (21, \alpha+1)$.

c) Let α be a limit ordinal. If for each ordinal $\alpha' < \alpha$ a subgroup $Y_{\alpha'}$ with the properties $(19, \alpha')$ - $(21, \alpha')$ has been defined then the subgroup $Y_{\alpha} = \bigcup Y_{\alpha'}$ has obviously the properties $(19, \alpha)$ - $(21, \alpha)$.

Finally put $Y = Y_{\beta}$; the properties (i), (ii) arise from $(19,\beta)$ - $(21,\beta)$ and (18) with respect to the equality $B = B_1 + B_2$.

THEOREM 2. Let G be a group, p a prime, β a nonzero ordinal and A a subgroup of $p^{\beta}G$. The following are equivalent:

(i) $r(p^{\beta+1}G \cap A/pA) \leq r_{(p,\beta)}(G)$.

(ii) There is a $p^{\beta}G - A$ -high subgroup P of G such that $p^{\alpha}P = P \cap p^{\alpha}G$ for each ordinal $\alpha \leq \beta$.

(iii) There is a subgroup P of G such that $A = p^{\beta}P = P \cap p^{\beta}G$.

PROOF. Suppose (i). Let B be a p-basic subgroup of A. Since A = B + pA and $A \in p^{\beta}G$,

$$p^{\beta+1}G \cap A/pA \cong p^{\beta+1}G \cap B/pB$$

and hence

$$r(p^{\beta+1}G \cap B/pB) \leq r_{(p,\beta)}(G)$$
.

By lemma 3, there is a subgroup Y of G such that

- $(24) Y \cap p^{\beta}G = B,$
- (25) $\forall b \in B$, $\forall \alpha < \beta$, $\exists y \in Y \cap p^{\alpha}G$, b = py.

Obviously $(A+Y) \cap p^{\beta}G = A$. Let P be a $p^{\beta}G - A$ -high subgroup of G containing A+Y. We prove that $p^{\alpha}P = P \cap p^{\alpha}G$ for every ordinal $\alpha < \beta$. It is sufficient to show that if this equality holds for α $(0 < \alpha < \beta)$ then it holds for $\alpha + 1$. Let $x \in P \cap p^{\alpha+1}G$, i.e. x = pg, where $g \in p^{\alpha}G$; obviously $x \in P \cap p^{\alpha}G = p^{\alpha}P$. If $g \in P$ then $g \in P \cap$ $\cap p^{\alpha}G = p^{\alpha}P$ and $x = pg \in p^{\alpha+1}P$. If $g \notin P$ then there are an element $x' \in P$ and an integer r such that $rg + x' \in p^{\beta}G \setminus A$; obviously $x' \in p^{\alpha}G$ and (p, r) = 1. Further

$$prg + px' = rx + px' \in P \cap p^{\beta}G = A = B + pA;$$

there are elements $b \in B$ and $a \in A$ such that rx + px' = b + pa. By (25), there is an element $y \in Y \cap p^{\alpha}G$ such that b = py. Hence rx = p(y + a - x'), where $y + a - x' \in P \cap p^{\alpha}G = p^{\alpha}P$, and consequently $rx \in p^{\alpha+1}P$. Since (p, r) = 1, $x \in p^{\alpha+1}P$ and assertion (ii) is proved.

Obviously, (ii) implies (iii) and (iii) implies (i) by lemma 1.

REFERENCES

- [1] L. FUCHS, Infinite Abelian groups, I, II, Acad. Press, 1970, 1973.
- J. M. IRWIN E. A. WALKER, On isotype subgroups of Abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460.
- F. V. KRIVONOS, Ob N-vysokich podgruppach abelevoj gruppy, Vest. Moskov. Univ. (1975), pp. 58-64.
- [4] R. W. MITCHELL, An extension of Ulm's theorem, Ph. D. Dissertation, New Mexico State University, May 1964.
- [5] A. R. MITCHELL R. W. MITCHELL, Some structure theorems for infinite Abelian p-groups, J. Algebra, 5 (1967), pp. 367-372.
- [6] F. RICHMAN C. P. WALKER, On a certain purification problem for primary Abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210.

Manoscritto pervenuto in redazione il 19 dicembre 1980.