Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

JÜRGEN BIERBRAUER

Blocking sets of maximal type in finite projective planes

Rendiconti del Seminario Matematico della Università di Padova, tome 65 (1981), p. 85-101

http://www.numdam.org/item?id=RSMUP_1981__65__85_0
© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Blocking Sets of Maximal Type in Finite Projective Planes.

Jürgen Bierbrauer (*)

1. Introduction.

Let $(\mathscr{P}, \mathscr{Q})$ be a finite projective plane of order n and m the greatest natural number not exceeding \sqrt{n}. A «blocking set» is defined as a subset \mathbb{S} of \mathscr{P} such that every line $l \in \mathscr{R}$ contains at least one point of \mathfrak{S} and no line is completely contained in \mathfrak{S}. It has been shown in [4], that $|\subseteq| \geqslant n+\sqrt{n}+1$.

If $|\mathbb{S}|=n+k$, then no more than k points of \subseteq can be collinear. Let's call a blocking set \mathbb{S} «of maximal type» provided there is a line in \mathscr{L} which contains k elements of $\mathbb{S}(\mathbb{S}$ is called a blocking set «of type (n, k)» in the terminology of [5]).

Then obviously $|\mathbb{S}| \leqslant 2 n$. Assume n is not a square. Then $|\subseteq| \geqslant$ $\geqslant n+m+2$ for every blocking set \mathbb{S} and Bruen has shown in [4], that for $|\subseteq|=n+m+2$, the blocking set \mathbb{S} is of maximal type. The author showed in [2], that such blocking sets exist only in the projective planes of orders 3 and 5.

First some elementary results about the ocurrence of blocking sets of maximal type in finite projective planes. It is trivial to see, that for $n>2$ a projective plane of order n always contains a blocking set \mathfrak{S} of maximal type with $|\mathfrak{S}|=2 n$.

Lemma 1. Let (\mathscr{P}, \mathscr{L}) be a finite projective plane of order n. If $n \geqslant 4$, the plane (\mathscr{P}, \mathscr{L}) does contain a blocking set \mathfrak{S} of maximal type with $|\Upsilon|=2 n-1$.
(*) Indirizzo dell'A.: Mathematisches Institut der Universität Heidelberg, Im Neuenheimer Feld 288, 69 Heidelberg, Germania Occ.

More precisely: Let $1 \in \mathscr{L}, P_{1}, P_{2} \in l, P_{1} \neq P_{2}$. Then the number of blocking sets containing the point set $l \backslash\left\{P_{1}, P_{2}\right\}$ is exactly $n!$ -$-n^{2}+n$.

Proof. Give the lines different from l through P_{1} resp. P_{2} names h_{1}, \ldots, h_{n} resp. v_{1}, \ldots, v_{n}. Then every point $P \in \mathscr{P}-l$ has a unique representation $P=h_{i} \cap v_{j}$. So these «affine points» are ordered in a natural way in a $n \times n$-square with rows h_{1}, \ldots, h_{n} and columns v_{1}, \ldots, v_{n}. There are exactly n ! sets of n affine points from different rows and columns. Of these $n(n-1)$ correspond to lines in the plane. Let \mathbb{S}_{0} be one of the remaining $n!-n^{2}+n$ sets of n affine points from different rows and columns. Then $\mathfrak{S}=\mathbb{S}_{0} \cup\left\{X \mid X \in l, X \notin\left\{P_{1}, P_{2}\right\}\right\}$ is a blocking set (of maximal type) with $|\mathbb{S}|=2 n-1$.

Lemma 2. Let $(\mathscr{P}, \mathscr{L})$ be a finite project ve plane of order n, $l \in \mathscr{L}, P_{1}, P_{2}$ and P_{3} different points from l. Order the lines through P_{1} and P_{2} in the same way as in the proof of Lemma 1 and consider the latin square corresponding to the lines through P_{3}, which are different from l.

Exactly then is there no blocking set of $2 n-2$ elements containing the point set $l-\left\{P_{1}, P_{2}, P_{3}\right\}$ if the latin square determined by P_{3} has the following property
(T) Given two places in the latin square, which are in different rows, in different columns and have different entries, there is exactly one transversal containing these two places.

Proof. This is immediate as every transversal of the latin square determined by P_{3} either consists of collinear points or leads to a blocking set of maximal type of $2 n-2$ points. For the notion of «latin square» and «transversal» see [1].

The main object of this paper is the proof of the following
Theorem. Let $(\mathscr{P}, \mathscr{P})$ be a finite projective plane of order n, where n is not a square, $n=m^{2}+q, 1 \leqslant q \leqslant 2 m$. Assume \mathbb{S} is a blocking set of maximal type of (\mathscr{P}, \mathscr{L}), where $|\subseteq|=n+m+3$.

Further assume, that there are at least two lines containing $m+3$ elements of \mathfrak{S}. Then one of the following holds:
(i) $n \leqslant 7$.
(ii) $n=8,|\mathbb{S}|=13$. The points of \mathbb{S} are ordered like given in fig. 1. We have $(\mathscr{P}, \mathscr{L}) \cong P G(2,8)$ and $P G(2,8)$ does contain such a blocking set of maximal type with 13 elements.

Figure 1
(iii) $n=10,|\mathfrak{S}|=16$. The incidence structure of \mathfrak{S} as induced from \mathscr{L} is uniquely determined (see fig. 2).

Figure 2
Remarks. (1) The case $n \leqslant 7$ is not very interesting. It follows from Lemma 2, that $P G(2,7)$ does contain blocking sets of maximal type of 12 points.
(2) As for the case $n=8$, it suffices to invoke [6], where the uniqueness of the projective plane of order 8 has been shown.

It is easy to see, that $\operatorname{PG}(2,8)$ does contain a blocking set as in (ii), although this case is missing in the list of «Sylvester-Gallai»-designs embeddable in a desarguesian projective plane as given in [7].

In fact, the author constructed $P G(2,8)$ starting from the above blocking set, but this has not been included in the present paper.
(3) In case (iii) the methods of this paper don't lead to a contradiction. The author hopes to settle this case with the help of a computer program.
(4) If there is only one line containing $m+3$ points of \mathfrak{S}, somewhat different methods are needed. This case will be the subject of a subsequent paper.

2. Proof of the theorem.

Let $\mathscr{P}, \mathscr{P}, n, m, q, \mathbb{S}$ like in the statement of the theorem and assume $n \geqslant 8$. In the sequel set theoretic symbols like « \in » and «C» are used in the set theoretic sense as well as with respect to incidences in $(\mathscr{P}, \mathscr{L})$. Hopefully no confusion will occur. The join of points X and Y is denoted by $X Y$.

We introduce some further notation:
$\mathscr{L}_{i}=\left\{l|l \in \mathscr{L},|l \cap \mathbb{S}|=i\}, \quad a_{i}=\left|\mathscr{L}_{i}\right| \quad\right.$ for $i=1,2, \ldots, m+3$, so that $\mathscr{L}=\bigcup_{i=1} \mathscr{L}_{i}$ and by assumption of the theorem $a_{m+3} \geqslant 2$.

Elements of \mathscr{L}_{i} are called i-lines, elements of \mathscr{L}_{1} are tangents, elements of $\mathscr{L}-\mathscr{L}_{1}$ are «lines of \mathbb{S} ».

For $P \in \mathscr{P}$ set $\mathscr{L}_{i}(P)=\left\{l \mid P \in l \in \mathscr{L}_{i}\right\}, a_{i}(P)=\left|\mathscr{P}_{i}(P)\right|$.
For every $l \in \mathscr{L}$ set st $(l)=|l \cap \mathbb{S}|$, the «strength» of l and $l^{*}=\{P \mid P \in l, P \notin \mathbb{S}\}$, so that $\left|l^{*}\right|=n+1-$ st (l).

Like in [2] we speak of a « (P, l)-argument» whenever $P \in \mathbb{S}$, $P \notin l \in \mathscr{L}_{m+3}$ and when we count $|\mathbb{S}|$ by considering the $m+3$ lines of \mathfrak{S} joining P to the points of $\mathfrak{S} \cap l$.

Lemma 3. Let $l_{1}, l_{2} \in \mathscr{R}, l_{1} \neq l_{2}$, st $\left(l_{1}\right)+$ st $\left(l_{2}\right)>m+4$. Then $l_{1} \cap$ $\cap l_{2} \in \mathbb{S}$.

Proof. This follows from \mid S $\mid=n+m+3$.
Let $1<\mathrm{st}(l)<m+3$. Then we set

$$
\begin{gathered}
\mathscr{L}\left(l^{*}\right)=\left\{k \mid k \in \mathscr{P}-\mathscr{L}_{1}, k \neq l, k \cap l \notin \mathbb{S}\right\}, \quad \mathscr{L}_{i}\left(l^{*}\right)=\mathscr{L}\left(l^{*}\right) \cap \mathscr{L}_{i} \\
i=2,3, \ldots, m+2 \\
z\left(l^{*}\right)=\sum_{i=2}^{m+3}(i-1)\left|\mathscr{L}_{i}\left(l^{*}\right)\right|, \quad \mathscr{L}\left(l^{*}, X\right)=\left\{k \mid k \in \mathscr{L}\left(l^{*}\right), X \in k\right\}
\end{gathered}
$$ for $X \in \mathscr{P}$,

$z\left(l^{*}, X\right)=\sum_{i=2}^{m+2}(i-1)\left|\mathscr{L}_{i}\left(l^{*}, X\right)\right|$.
We have then
Lemma 4. (l^{*}-argument.)
Let $1<$ st $(l)<m+3, l_{1} \in \mathscr{L}_{m_{+3}}, P=l \cap l_{1}$.

Then $z\left(l^{*}\right)=(n+1-\mathrm{st}(l))(m+3-\mathrm{st}(l))$.
If $\mathscr{L}_{i}\left(l^{*}\right) \neq \emptyset$, then $i+s t(l) \leqslant m+4$.
(i) Assume in addition, there exists a triangle of $(m+3)$-lines. Then $\left|\mathscr{L}\left(l^{*}, X\right)\right|=m+3-$ st (l) for every $X \in\left(\mathbb{S} \cap l_{1}\right)$ -$-\{P\}$ and thus $\left|\mathscr{L}\left(l^{*}\right)\right|=(m+2)(m+3-$ st $(l))$.
(ii) Assume there is no triangle of ($m+3$)-lines, but $a_{m+3} \geqslant 2$ and thus all the $(m+3)$-lines meet in a common point $P_{0} \in \mathbb{S}$.

If $P=P_{0}$, then $\left|\mathscr{L}\left(l^{*}, X\right)\right|=m+3-$ st (l) for every $X \in(\mathbb{S} \cap$ $\left.\cap l_{1}\right)-\left\{P_{0}\right\}$ and thus $\left|\mathscr{L}\left(l^{*}\right)\right|=(m+2)(m+3-$ st $(l))$.

If $P \neq P_{0}$, then $\left|\mathscr{L}\left(l^{*}, X\right)\right|=m+3-$ st (l) for $X \in\left(\mathbb{S} \cap l_{1}\right)$ -$-\left\{P_{0}, P\right\}$ and $\left|\mathscr{L}\left(l^{*}\right)\right|=(m+1)(m+3-s t(l))+\left|\mathscr{L}\left(l^{*}, P_{0}\right)\right|$.

Corollary. For $1<\mathrm{st}(l)<m+3$ we have $\left|l^{*}\right| \leqslant\left|\mathscr{L}\left(l^{*}\right)\right|$.
Proof. As $|\mathbb{S}|=n+m+3$, we have for every $X \in l^{*}$ that $z\left(l^{*}\right.$, $X)=|ऽ|-(n+\mathrm{st}(l))=m+3-\mathrm{st}(l)$ and thus $z\left(l^{*}\right)$ is like given in the lemma. By lemma 3 we have $i+$ st $(l) \leqslant m+4$ whenever $\mathscr{L}_{i}\left(l^{*}\right) \neq \emptyset$. Observe that $l_{1} \cap k \in \mathbb{S}$ if st $(k)>1$.

Assume there is a triangle of $(m+3)$-lines. For every $X \in(\mathbb{S} \cap$ $\left.\cap l_{1}\right)-\left(l \cap l_{1}\right)$ we have exactly $m+3$ lines of \mathfrak{S} passing through X. Exactly st (l) of these don't belong to $\mathscr{L}\left(l^{*}\right)$. This proves (i). The proof of (ii) is analogous.

The proof of the theorem will consist of an examination of the incidence structure ($\subseteq, \mathscr{L}-\mathscr{L}_{1}$) and its embedding in ($\left.\mathscr{P}, \mathscr{L}\right)$. The interested reader is advised to illustrate most of our proofs with diagrams.

Lemma 5. $\mathscr{L} \neq \mathscr{L}_{1} \cup \mathscr{L}_{m+3}$.
Proof. Assume $\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{m+3}$. Then $\left(\mathbb{S}, \mathscr{L}_{m+3}\right)$ is a subplane of $(\mathscr{P}, \mathscr{L})$ of order $m+2$. Thus $|S|=(m+2)^{2}+m+3$ and $n=$ $=(m+2)^{2}$, a contradiction.

In the following, notation is chosen so that for example hypothesis (1.1) is meant to include hypothesis 1. Consider first

Hypothesis 1. There is a triangle of $(m+3)$-lines.
Let $\left\{l_{1}, l_{2}, l_{3}\right\}$ be a triangle of $(m+3)$-lines and set

$$
P_{i}=l_{j} \cap l_{k} \quad \text { for }\{i, j, k\}=\{1,2,3\}
$$

By lemma 5 there exists $l \in \mathscr{L}_{t}$ where $1<t<m+3$. From the corollary of lemma 4 we get $\left|l^{*}\right| \leqslant\left|\mathscr{L}\left(l^{*}\right)\right|$. Together with lemma 4 $m^{2}+2-t \leqslant n+1-t \leqslant(m+2)(m+3-t)=m^{2}+(5-t) m-2 t+6$. It follows $t-4 \leqslant(5-t) m$ and thus $t \leqslant 4$. So under Hyp. 1 we get

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{2} \cup \mathscr{L}_{3} \cup \mathscr{L}_{4} \cup \mathscr{L}_{m+3} . \tag{1}
\end{equation*}
$$

Let $l \in \mathscr{L}_{t}$ like before, so that $t \leqslant 4$. We can choose $P_{2} \notin l$.
Then a $\left(P_{2}, l_{2}\right)$-argument yields $m^{2}+m+4 \leqslant|\subseteq| \leqslant 3(m+2)+$ $+2(m+1)+(m-1) 2=7 m+6, m(m-6) \leqslant 2$ and thus

$$
\begin{equation*}
m \leqslant 6 \tag{2}
\end{equation*}
$$

Hypothests (1.1). There is a quadrangle of $(m+3)$-lines.
Choose $l_{4} \in \mathscr{L}_{m_{+3}}, l_{4} \notin\left\{l_{1}, l_{2}, l_{3}\right\}, l_{4} \cap\left\{P_{1}, P_{2}, P_{3}\right\}=\emptyset$.
Set $X_{i}=l_{4} \cap l_{i}, i=1,2,3$.
Obviously $m \geqslant 3$. Further $\mathscr{L}_{2} \subseteq\left\{P_{i} X_{i} \mid i=1,2,3\right\}$ and $a_{2} \leqslant 3$.
Assume $m=3$. First let $l \in \mathscr{L}_{4}$. By lemma 4 (i) we have $\left|\mathscr{L}\left(l^{*}\right)\right|=10$.
Further $\mathscr{L}\left(l^{*}\right)=\mathscr{L}_{2}\left(l^{*}\right) \cup \mathscr{L}_{3}\left(l^{*}\right)$ and

$$
\left|\mathscr{L}\left(l^{*}\right)\right|=\left\{\begin{array}{lll}
\left|l^{*}\right| & \text { if } & \mathscr{L}\left(l^{*}\right)=\mathscr{L}_{3}\left(l^{*}\right), \tag{*}\\
\left|l^{*}\right|+1 & \text { if } & \mathscr{L}\left(l^{*}\right) \neq \mathscr{L}_{3}\left(l^{*}\right) .
\end{array}\right.
$$

As $\left|\imath^{*}\right|=n-3$ we have $n \in\{13,12\},|\subseteq| \in\{19,18\}$.
Especially $a_{6}=4$ as otherwise $|ऽ| \geqslant 20$.
Assume first $n=13,|\mathbb{S}|=19$. There exists $M \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3} \cup l_{4}\right)$.
Let $\left(l_{4} \cap \subseteq\right)-\left(l_{1} \cup l_{2} \cup l_{3}\right)=\left\{M_{1}, M_{2}, M_{3}\right\}$. As $M M_{i} \notin \mathscr{L}_{6}, i=1,2,3$, we can choose notation so that $P_{i} \in M M_{i}=g_{i} \in \mathscr{L}_{4}$ for $i=1,2,3$.

It follows from (*) that $\mathscr{L}\left(g_{1}^{*}\right)=\mathscr{R}_{3}\left(g_{1}^{*}\right)$. Thus $a_{2}\left(P_{2}\right)=0$.
As $a_{4}\left(P_{2}\right) \neq 0$, a $\left(P_{2}, l_{2}\right)$-argument yields the contradiction $|S| \geqslant 20$.
Let $n=12,|\Upsilon|=18$. A $\left(P_{i}, l_{i}\right)$-argument gives $a_{2}\left(P_{i}\right) \neq 0$ for $i=1,2,3$ and thus $a_{4}\left(P_{i}\right)=0, a_{2}\left(P_{i}\right)=1, a_{2}=3$. Choose M_{1} like above. Then $a_{4}\left(M_{1}\right) \neq 0$. Let $M_{1} \in g \in \mathscr{L}_{4}$. Then $g \cap\left\{P_{1}, P_{2}, P_{3}\right.$, $\left.X_{1}, X_{2}, X_{3}\right\}=\emptyset$. Thus $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=3$, a contradiction.

We have shown $a_{4}=0$ in case $m=3$.
Assume next $m=3, a_{2} \neq 0$. We can choose $P_{1} X_{1} \in \mathscr{L}_{2}$. A (P_{2}, l_{2})-argument shows $|\subseteq| \leqslant 19$ and thus $a_{6}=4$. It is however immediate that $a_{4} \neq 0$, a contradiction. Thus by (1) we have $\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{3} \cup$
$\cup \mathscr{L}_{m+3}$ and $a_{3} \neq 0$ by lemma 5. Let $l \in \mathscr{L}_{3}$. A l^{*}-argument gives an immediate contradiction.

We have $4 \leqslant m \leqslant 6$ under Нyp. (1.1).
Assume $a_{2} \neq 0$. Choose $P_{1} X_{1} \in \mathscr{L}_{2}$. A $\left(P_{2}, l_{2}\right)$-argument shows $m^{2}+$ $+m+4 \leqslant|S| \leqslant 3(m+2)+(m+1) 2=5 m+8, m(m-4) \leqslant 4$. It follows $m \leqslant 4$ and thus $m=4$. Assume $a_{4}\left(P_{2}\right)=0$. The same $\left(P_{2}, l_{2}\right)$ argument gives then the contradiction $|\subseteq| \leqslant 18+5=23, n \leqslant 16$.

So let $P_{2} \in l \in \mathscr{L}_{4}$. By lemma $4\left|\mathscr{L}\left(l^{*}\right)\right|=(m+2)(m+3-4)=18$.
Further $\left|l^{*}\right|=n-3$. On the other hand $\left|\mathscr{L}_{2}\left(l^{*}\right)\right|=\left|\mathscr{L}_{3}\left(l^{*}\right)\right| \in\{1,2\}$, $\mathscr{L}\left(l^{*}\right)=\mathscr{L}_{2}\left(l^{*}\right) \cup \mathscr{L}_{3}\left(l^{*}\right) \cup \mathscr{L}_{4}\left(l^{*}\right)$.

Case 1: Let $\left|\mathscr{L}_{2}\left(l^{*}\right)\right|=1=\left|\mathscr{L}_{3}\left(l^{*}\right)\right|$. Then $\left|\mathscr{L}_{4}\left(l^{*}\right)\right|=16,18=$ $=\left|\mathscr{L}\left(l^{*}\right)\right|=\left|l^{*}\right|+1=n-2$. Thus $n=20,|\subseteq|=27$.

A $\left(P_{j}, l_{j}\right)$-argument for $j=2,3$ shows $a_{2}=1$. A (P_{1}, l_{1})-argument shows $a_{4}\left(P_{1}\right) \neq 0$. Let $P_{1} \in g \in \mathscr{L}_{4}$. Then $\mathscr{L}_{2}\left(g^{*}\right)=\emptyset$, thus $\mathscr{L}\left(g^{*}\right)=$ $=\mathscr{L}_{4}\left(g^{*}\right)$ and $17=\left|g^{*}\right|=\left|\mathscr{L}\left(g^{*}\right)\right|=18$, a contradiction.

Case 2: Let $\left|\mathscr{L}_{2}\left(l^{*}\right)\right|=2=\left|\mathscr{L}_{3}\left(l^{*}\right)\right|,\left|\mathscr{L}_{4}\left(l^{*}\right)\right|=14$. Then $18=$ $=\left|\mathscr{L}\left(l^{*}\right)\right|=\left|l^{*}\right|+2=n-1$ and $n=19,|S|=26$. For $j=2,3$ a $\left(P_{j}, l_{j}\right)$-argument gives $a_{4}\left(P_{j}\right)=4$ and $a_{3}\left(P_{j}\right)=0$. Clearly $a_{7}\left(X_{i}\right)=2$, $i=1,2,3$ and thus $a_{4}\left(X_{i}\right)=4, a_{3}\left(X_{i}\right)=0$. As every 3 -line has to pass through one of the points P_{i} or X_{i}, we have $\mathscr{L}_{3}=\mathscr{L}_{3}\left(P_{1}\right)$. Let $X=l \cap P_{1} X_{1}$. Then $a_{3}(X) \neq 0$, a contradiction.

We have shown $\mathscr{L}=\mathscr{L}_{1} \cup \mathscr{L}_{3} \cup \mathscr{L}_{4} \cup \mathscr{L}_{m+3}$ under Hyp. (1.1).
If $m=6$, lemma 4 shows $a_{3} \neq 0$ and for $l \in \mathscr{L}_{3}$ we get $48=$ $=\left|\mathscr{Z}\left(l^{*}\right)\right| \geqslant 2\left|l^{*}\right|=2(n-2)$ and $n \leqslant 26$, a contradiction.

If $m=5$, then $a_{4} \neq 0$ and for $l \in \mathscr{L}_{4}$ we have $28=\left|\mathscr{P}\left(l^{*}\right)\right|=$ $=2\left|l^{*}\right|=2(n-3)$ and $n=17$, a contradiction.

So $m=4$. Let $l \in \mathscr{L}_{4}$. Then $18=\left|\mathscr{L}\left(l^{*}\right)\right|=\left|l^{*}\right|=n-3$ and $n=21$. The Bruck-Ryser theorem [3] gives a contradiction.

We have $a_{4}=0$. By lemma 5 then $a_{3} \neq 0$. Let $l \in \mathscr{L}_{3}$: Then $24=$ $=\left|\mathscr{L}\left(l^{*}\right)\right|=2\left|l^{*}\right|=2(n-2)$ and $n=14$. Again we get a contradiction by [3]. We have proved.

Lemma 6. Under Hyp. 1 we have $\mathscr{L}_{m+3}=\mathscr{L}_{m+3}\left(P_{1}\right) \cup \mathscr{L}_{m+3}\left(P_{2}\right) \cup$ $\cup \mathscr{L}_{m+3}\left(P_{3}\right)$.

Assume $a_{m+3}>3$. We can choose $P_{1} \in l_{4} \in \mathscr{L}_{m+3}, l_{4} \notin\left\{l_{2}, l_{3}\right\}$.
Assume further $\mathbb{S} \subset l_{1} \cup l_{2} \cup l_{3} \cup l_{4}$. Then $m^{2}+m+4 \leqslant n+m+$ $+3=\mid$ S $\mid=3(m+2)+m+1=4 m+7$. It follows $m(m-3) \leqslant 3$, $m \leqslant 3$ and $n=3 m+4$. If $m=2$, then $n=10$, a contradiction.

Thus $m=3, n=13$. It follows $\mathscr{L}_{2}=\mathscr{L}_{2}\left(P_{1}\right), a_{2}=3$. Let $g \in \mathscr{L}_{2}$.

For every $X \in g^{*}$ we have $a_{2}(X)=1$ and thus $a_{3}(X)=2$. It follows $20=\left|\mathscr{L}\left(l^{*}\right)\right|=2\left|l^{*}\right|=24$, a contradiction.

Hence there exist $\mathrm{s} \quad M \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3} \cup l_{4}\right)$. Take $X \in l_{4} \cap \mathbb{S}$, $X \notin\left\{P_{1}, l_{4} \cap l_{1}\right\}$ such that $M X \cap\left\{P_{1}, P_{2}, P_{3}\right\}=\emptyset$. Then st $(M X) \geqslant 5$ and thus $M X \in \mathscr{L}_{m_{+3}}$. This contradicts lemma 6. We have proved

Lemma 7. $a_{m_{+3}}=3$ under Нур. 1.
A $\left(P_{1}, l_{1}\right)$-argument shows now $m^{2}+m+4 \leqslant|ऽ| \leqslant 3(m+2)+$ $+2(m+1)=5 m+8, m(m-4) \leqslant 4$ and thus

Lemma 8. $m \leqslant 4$ under Нур. 1.
Assume $n=8,|\mathfrak{S}|=13$. Let $l \in \mathscr{P}_{4}$. Then $4=\left|\mathscr{L}\left(l^{*}\right)\right|=\left|l^{*}\right|=5$, a contradiction.

Assume next $m=3$. First let $P_{1} \in l \in \mathscr{L}_{4}$ and assume there is a $M \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3} \cup l\right)$. Set $l \cap \mathbb{S}=\left\{P_{1}, P_{1} \cap l_{1}, X_{1}, X_{2}\right\}$.

As $a_{5}=0, a_{6}=3$ we can choose $P_{2} \in M X_{1}, P_{3} \in M X_{2}$. Thus there exists $g \in \mathscr{L}_{4}$ with $M \in g$ and $g \cap l \notin \mathbb{S}$, a contradiction to lemma 3. Thus $\mathfrak{S} \subset l_{1} \cup l_{2} \cup l_{3} \cup l,|\mathfrak{S}|=17, n=11$. Set $P_{3} X_{i} \cap l_{3}=Y_{i}, i=1,2$. Then $g=Y_{1} X_{2} \in \mathscr{L}_{4}, a_{2}\left(Y_{1}\right)=a_{2}\left(X_{2}\right)=0, a_{2}\left(g \cap l_{1}\right)=a_{2}\left(g \cap l_{2}\right)=1$.

Obviously $a_{2}=7$. It follows $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=7-2=5$. A g^{*}-argument yields a contradiction. We have $a_{4}\left(P_{i}\right)=0, i=1,2,3$.

Assume $n>10$. There are then two elements $X, Y \in \mathbb{S}-\left(l_{1} \cup\right.$ $\left.\cup l_{2} \cup l_{t}\right), X \neq Y$. As $a_{4}\left(P_{i}\right)=0$ we get $X Y \in \mathscr{L}_{6}$, a contradiction.

Thus $n=10,|\mathfrak{S}|=16$. Set $\{M\}=\mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3}\right), l=P_{1} M \in \mathscr{R}_{3}$.
Obviously $\mathscr{L}_{4}=\mathscr{L}_{4}(M)$. Thus $\mathscr{L}\left(l^{*}\right)=\mathscr{L}_{2}\left(l^{*}\right) \cup \mathscr{L}_{3}\left(l^{*}\right)$ and even $\left|\mathscr{L}_{2}\left(l^{*}\right)\right| \geqslant\left|l^{*}\right|=8$. On the other hand $\mathscr{L}_{2}\left(l^{*}\right)=\mathscr{L}_{2}\left(P_{2}\right) \cup ?_{2}\left(P_{3}\right)$ and $\left|\mathscr{L}_{2}\left(l^{*}\right)\right| \leqslant 6$, a contradiction.

Finally let $m=4$. Set $\mathscr{M}=\mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3}\right)$. For $X, Y \in \mathscr{M}$, $X \neq Y$ we have $X Y \ni P_{i}, i \in\{1,2,3\}$ as otherwise st $(X Y) \geqslant 5$, thus $X Y \in \mathscr{L}_{\text {, }}$ by (1), a contradiction to lemma 7. It follows $\binom{\mathscr{M} \mid}{\mathscr{Q}} \leqslant$ $\leqslant 3 \cdot 5=15$ and thus $|\mathscr{M}| \leqslant 6,|\subseteq| \leqslant 18+6=24, n \leqslant 17$. We have $n=17, a_{4}\left(P_{i}\right)=5$ for every $i \in\{1,2,3\}$. A $\left(P_{1}, l_{1}\right)$-argument shows $|\mathscr{M}|=10$, a contradiction.

We have shown
Lemma 9. $n \leqslant 7$ in case of Hyp. 1.
From now on consider
Hypothesis 2. $a_{m_{+3}}>1, \mathscr{L}_{m+3}=\mathscr{L}_{m_{+3}}\left(P_{0}\right)$, where $P_{0} \in \mathbb{S}$.
Set $l_{1}, l_{2} \in \mathscr{L}_{m_{+3}}, P_{0}=l_{1} \cap l_{2}, l_{1} \cap \mathbb{S}=\left\{P_{0}, P_{1}, \ldots, P_{m+2}\right\}, l_{2} \cap \mathbb{S}=$ $=\left\{P_{0}, Q_{1}, \ldots, Q_{m+2}\right\}$. Consider first

Hypothesis (2.1). $\mathscr{L}_{m+2} \neq \mathscr{L}_{m+2}\left(P_{0}\right)$.
Set $l_{3} \in \mathscr{L}_{m+2}-\mathscr{L}_{m+2}\left(P_{0}\right), P_{1}=l_{1} \cap l_{3}, Q_{1}=l_{2} \cap l_{3}$. Obviously $\mathscr{L}\left(l_{3}^{*}\right)=$ $=\mathscr{L}_{2}\left(l_{3}^{*}\right)$ and $\left|\mathscr{L}\left(l_{3}^{*}\right)\right|=\left|l_{3}^{*}\right|=n-m-1$. As $\left|\mathscr{L}\left(l_{3}^{*}, P_{i}\right)\right|=1$ for every $i=2,3, \ldots, m+2$, we have by lemma 4 (ii) $\left|\mathscr{L}\left(l_{3}^{*}, P_{0}\right)\right|=n-m-1-$ $-(m+1)=n-2 m-2$. On the other hand $\left|\subseteq-\left(l_{1} \cup l_{2} \cup l_{3}\right)\right|=$ $=n-m-2$. It follows

Lemma 10. Under Hyp. (2.1) we have $\mathscr{L}\left(P_{0}\right)=\mathscr{L}_{2}\left(P_{0}\right) \cup \mathscr{L}_{m+3}$, $a_{m+3}=2, a_{2}\left(P_{0}\right)=n-m-2, \mathscr{L}\left(l_{3}^{*}, X\right)=\mathscr{L}_{2}\left(l_{3}^{*}, X\right),\left|\mathscr{L}\left(l_{3}^{*}, X\right)\right|=1$ for every $X \in\left\{P_{2}, \ldots, P_{m+2}, Q_{2}, \ldots, Q_{m+2}\right\}$.

We set $P_{i} Q_{i} \in \mathscr{L}_{2}, i=2,3, \ldots, m+2$.
Assume $a_{m+2}\left(Q_{1}\right)>2$. Let $\left\{Q_{1} P_{2}, Q_{1} P_{3}\right\} \subseteq \mathscr{L}_{m+2}$. Apply lemma 10 to these $(m+2)$-lines. It follows $\left\{P_{1} Q_{2}, P_{1} Q_{3}\right\} \subseteq \mathscr{L}_{2}$. But $\left\{P_{1} Q_{2}, P_{1} Q_{3}\right\} \subseteq$ $\subseteq \mathscr{L}\left(\left(Q_{1} P_{2}\right)^{*}\right)$, a contradiction to lemma 10.

Lemma 11. $a_{m+2}(X) \leqslant 2$ for every $X \in\left\{P_{1}, \ldots, P_{m+2}, Q_{1}, \ldots, Q_{m+2}\right\}$. Assume $a_{m+2}\left(Q_{1}\right)=2$. Set $l_{4}=Q_{1} P_{2} \in \mathscr{L}_{m+2}$, so that $P_{1} Q_{2} \in \mathscr{L}_{2}$.
Let first $n=8$, set $l_{3} \cap \mathbb{S}=\left\{P_{1}, Q_{1}, R_{1}, R_{2}\right\}, l_{4} \cap \mathbb{S}=\left\{P_{2}, Q_{1}, S_{1}, S_{2}\right\}$.
Then $\subseteq \subseteq l_{1} \cup l_{2} \cup l_{3} \cup l_{4}$. We have $P_{1} S_{1} \in \mathscr{L}_{3},\left\{S_{2} R_{1}, S_{2} R_{2}\right\} \subseteq \mathscr{L}_{4}$.
So there is a 4 -line, which doesn't intersect $P_{1} S_{1}$ in \subseteq. This contradicts lemma 3.

We have $m \geqslant 3$. Assume $Q_{1} \in g \in \mathscr{L}_{m_{+1}}$, set $P_{3}=g \cap l_{1}$.
Then $\mathscr{L}\left(g^{*}\right)=\mathscr{L}_{2}\left(g^{*}\right) \cup \mathscr{L}_{3}\left(g^{*}\right),\left|\mathscr{L}_{2}\left(g^{*}, P_{0}\right)\right|=n-m-2-(m-1)=$ $=n-2 m-1,\left|\mathscr{L}_{2}\left(g^{*}, P_{j}\right)\right|=1$ for $j \notin\{0,3\}$. Thus $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=n-$ $-2 m-1+m+1=n-m,\left|\mathscr{L}_{3}\left(g^{*}\right)\right|=m+1$. A g^{*}-argument gives

$$
2\left|g^{*}\right|=\left|\mathscr{L}_{2}\left(g^{*}\right)\right|+2\left|\mathscr{L}_{3}\left(g^{*}\right)\right|, \quad 2(n-m)=n-m+2(m+1)
$$

and so

$$
\begin{equation*}
n=3 m+2 \tag{*}
\end{equation*}
$$

Thus $m^{2}+1 \leqslant n \leqslant 3 m+2, m(m-3) \leqslant 1$ and thus $m=3$.
From (*) we get $n=11,|\subseteq|=17$. On the other hand $|\subseteq| \geqslant 11+$ $+6+2=19$, a contradiction. We have $a_{m+1}\left(Q_{1}\right)=0$.

Assume $Q_{1} \in g \in \mathscr{L}_{m}$. Use a $\left(Q_{2}, l_{1}\right)$-argument. We know $a_{2}\left(Q_{2}\right)=2$.
As $a_{2}\left(P_{1}\right)=1$ and $P_{1} Q_{2} \in \mathscr{L}_{2}$, we have $a_{m+2}\left(Q_{2}\right)=0$ because of lemma 10.

Further $a_{3}\left(Q_{2}\right)+a_{4}\left(Q_{2}\right) \geqslant 1$ as $\left|\mathscr{L}\left(g^{*}, Q_{2}\right)\right|=3$. It follows
$(* *) \quad m^{2}+m+4 \leqslant|\subseteq| \leqslant 2 m+5+2+(m-1)(m-1)=m^{2}+8$
and $m \leqslant 4$. Let first $m=3$, set $g \cap \mathbb{S}=\left\{Q_{1}, P_{3}, M\right\}$.

As $\left\{Q_{2} P_{1}, Q_{2} P_{2}\right\} \subseteq \mathscr{L}_{2}$, we get $Q_{2} M \in \mathscr{L}_{5}$, which contradicts $a_{5}\left(Q_{2}\right)=0$. So $m=4$. We have equality in (**). Thus $n=17,|\mathbb{S}|=24$.
Use a g^{*}-argument: $\left|\mathscr{L}_{2}\left(g^{*}, P_{0}\right)\right|=9,\left|\mathscr{L}_{2}\left(g^{*}, P_{i}\right)\right|=1, i=1,2,4$, 5,6 and so $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=14$. Further $\mathscr{L}_{3}\left(g^{*}, P_{i}\right)=\emptyset$ for $i=4,5,6$ and thus $\left|\mathscr{L}_{4}\left(g^{*}, P_{i}\right)\right|=2$ for $i=4,5,6$. Set $v=\left|\mathscr{L}_{4}\left(g^{*}, P_{1}\right) \cup \mathscr{L}_{4}\left(g^{*}, P_{2}\right)\right|$.

Then $0 \leqslant v \leqslant 4$ and the g^{*}-argument gives

$$
3(18-4)=z\left(g^{*}\right)=14+3 \cdot 2 \cdot 3+3 v+2(4-v)
$$

so $v=2$. Thus $\left\{P_{1} N, P_{2} N\right\} \subseteq \mathscr{L}_{4}$, where $Q_{1} \in h \in \mathscr{L}_{3}, h \cap \mathbb{S}=\left\{Q_{1}, P_{4}, N\right\}$ (see fig. 3).

Figure 3

Set $g \cap \mathbb{S}=\left\{Q_{1}, P_{3}, M_{1}, M_{2}\right\}$. Then $k=N M_{1} \in \mathscr{L}_{6}$ as $k \cap\left\{P_{1}, P_{2}\right\}=\emptyset$.
We can assume $P_{5} \in k$. Then $Q_{5} \notin k$ and because $a_{2}\left(Q_{5}\right)=1, P_{5} Q_{5} \in$ $\in \mathscr{L}_{2}$, we get $\mathscr{L}_{2}\left(k^{*}, Q_{5}\right)=\mathscr{L}\left(k^{*}, Q_{5}\right)=\emptyset$, a contradiction.

We have $a_{m+1}\left(Q_{1}\right)=a_{m}\left(Q_{1}\right)=0$. A $\left(Q_{1}, l_{1}\right)$-argument gives
(***) $m^{2}+m+4 \leqslant|\subseteq| \leqslant 2 m+5+2 m+m(m-3)=m^{2}+m+5$.
It follows $n \in\left\{m^{2}+1, m^{2}+2\right\}$ and $a_{m-1}\left(Q_{1}\right) \neq 0$. Thus $a_{3}\left(Q_{2}\right)+$ $+a_{4}\left(Q_{2}\right)+a_{5}\left(Q_{2}\right) \geqslant 2$ and our $\left(Q_{2}, l_{1}\right)$-argument gives $m^{2}+m+4 \leqslant$ $\leqslant 2 m+5+6+(m-2)(m-1)=m^{2}-m+13$ and thus $m \in\{3,4\}$.

Let $m=3$. Then $|\subseteq| \geqslant 17, n \geqslant 11$ and so $n=11$ because of ($* * *$).
Set $l_{3} \cap \mathbb{S}=\left\{P_{1}, Q_{1}, R_{1}, R_{2}, R_{3}\right\}, l_{4} \cap \mathbb{S}=\left\{P_{2}, Q_{1}, S_{1}, S_{2}, S_{3}\right\}$.
Then $\mathscr{L}_{4}=\left\{R_{i} S_{j} \mid i, j=1,2,3\right\}, a_{4}=9, a_{4}\left(P_{0}\right)=a_{4}\left(P_{1}\right)=a_{4}\left(P_{2}\right)=$
$=a_{4}\left(Q_{1}\right)=0, a_{4}\left(Q_{2}\right) \leqslant 3, a_{4}\left(Q_{j}\right) \leqslant 2, a_{4}\left(P_{j}\right) \leqslant 3$ for $j \in\{3,4,5\}$. It follows $a_{4}\left(Q_{2}\right)=3, a_{4}\left(Q_{j}\right)=2, a_{4}\left(P_{j}\right)=3$ for $j=3,4,5$. Let $v \in \mathscr{L}_{4}, Q_{2} \notin v$.

As by lemma 3 every 4 -line has to intersect v in points of \mathbb{S} we get $a_{4}=1+1+2+2+2=8$, a contradiction.

We have $m=4, n \in\{17,18\},|\Im| \in\{24,25\}$.
Let $M \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3} \cup l_{4}\right)$. As $Q_{2} M \cap\left\{P_{1}, P_{2}\right\}=\emptyset, a_{6}\left(Q_{2}\right)=0$, we get $g=Q_{2} M \in \mathscr{L}_{5}$. We have $\mathscr{L}\left(g^{*}\right)=\mathscr{L}_{2}\left(g^{*}\right) \cup \mathscr{L}_{3}\left(g^{*}\right), \mathscr{L}\left(g^{*}, P_{0}\right)=$ $=\mathscr{L}_{2}\left(g^{*}, P_{0}\right),\left|\mathscr{L}\left(g^{*}, P_{0}\right)\right|=8$ resp. 9 if $n=17$ resp. $n=18,\left|\mathscr{L}\left(g^{*}\right)\right|=$ $=\left|\mathscr{L}\left(g^{*}, P_{0}\right)\right|+10=18$ resp. 19 for $n=17$ resp. $n=18$.

A g^{*}-argument shows

$$
\begin{equation*}
2\left|g^{*}\right|=\left|\mathscr{L}_{2}\left(g^{*}\right)\right|+2\left|\mathscr{L}_{3}\left(g^{*}\right)\right| . \tag{+}
\end{equation*}
$$

Let first $n=17$. Then $\left|g^{*}\right|=13$ and $(+)$ shows $26=\left|\mathscr{L}_{2}\left(g^{*}\right)\right|+$ $+2\left(18-\left|\mathscr{L}_{2}\left(g^{*}\right)\right|\right)$ and so $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=10$. If $n=18$, we get $\left|\mathscr{L}_{2}\left(g^{*}\right)\right|=$ $=10$ from (+) again. However $\left|\mathscr{L}_{2}\left(g^{*}, P_{0}\right)\right| \geqslant 8$ and $\left|\mathscr{L}_{2}\left(g^{*}, X\right)\right| \geqslant 1$ for every $X \in\left(\subseteq \cap l_{1}\right)-\left\{P_{0}, P_{1}, P_{2}, g \cap l_{1}\right\}$. Thus $\left|\mathscr{L}_{2}\left(g^{*}\right)\right| \geqslant 11$, a contradiction. We have

Lemma 12. $a_{m+2}(X) \leqslant 1$ for every $X \in\left\{P_{1}, \ldots, P_{m+2}, Q_{1}, \ldots, Q_{m+2}\right\}$.
We have $a_{m+2}\left(Q_{1}\right)=1$. Assume $a_{m+1}\left(Q_{1}\right) \neq 0$. Let $Q_{1} \in l_{4} \in \mathscr{L}_{m+1}$, $l_{4} \cap l_{1}=P_{2}$. Use a l_{4}^{*}-argument: $\left|\mathscr{L}_{2}\left(l_{4}^{*}, P_{0}\right)\right|=n+m+3-(3 m+4)=$ $=n-2 m-1$.

For $i \in\{3, \ldots, m+2\}$ we have $\left|\mathscr{L}_{2}\left(l_{4}^{*}, P_{i}\right)\right|=\left|\mathscr{L}_{3}\left(l_{4}^{*}, P_{i}\right)\right|=1$. Hence $2(n-m)=\left|\mathscr{L}_{2}\left(l_{4}^{*}\right)\right|+2\left|\mathscr{L}_{3}\left(l_{4}^{*}\right)\right|=n-m-1+2 m+a_{2}\left(P_{1}\right)+2(2-$ $\left.-a_{2}\left(P_{1}\right)\right), a_{2}\left(P_{1}\right) \leqslant 2$.

It follows
(*)

$$
n=3 m+3-a_{2}\left(P_{1}\right)
$$

Thus $m^{2}+1 \leqslant 3 m+3, m(m-3) \leqslant 2$ and $m \leqslant 3$.
First let $n=8$, set $\mathscr{L}_{3}\left(Q_{1}\right)=\left\{l_{4}, l_{5}\right\}, l_{4} \cap \mathbb{S}=\left\{Q_{1}, P_{2}, S\right\}, l_{5} \cap \mathbb{S}=$ $=\left\{Q_{1}, P_{3}, T\right\}$. From (*) $a_{2}\left(P_{1}\right)=1$ and so $S T \notin P_{1}$. We get the contradiction $S T \in \mathscr{L}_{5}$.

Let $m=3$. (*) shows $n=12-a_{2}\left(P_{1}\right), a_{2}\left(P_{1}\right) \leqslant 2$. Set

$$
l_{3} \cap \mathbb{S}=\left\{P_{1}, Q_{1}, R_{1}, R_{2}, R_{3}\right\}, \quad l_{4} \cap \mathbb{S}=\left\{P_{2}, Q_{1}, S_{1}, S_{2}\right\}
$$

If $n=10$, then $\mathscr{L}_{4}=\left\{l_{4}\right\} \cup\left\{S_{i} R_{j} \mid i=1,2 ; j=1,2,3\right\}, a_{4}=7$.
Let $r \in\{2,3,4,5\}$. Then $a_{2}\left(Q_{r}\right) \neq 0$, hence $a_{4}\left(Q_{r}\right) \neq 0$ by a $\left(Q_{r}, l_{1}\right)$ argument. Let $Q_{r} \in v=\mathbb{S}_{i} R_{j} \in \mathscr{L}_{4}$. There exists $v^{\prime}=\mathbb{S}_{a} R_{b} \in \mathscr{L}_{4}$ such
that $a \neq i, b \neq j$ and $v \cap l_{1} \neq v^{\prime} \cap l_{1}$. As $v \cap v^{\prime} \in \mathbb{S}$, we have $Q_{r} \in v^{\prime}$.
Thus $a_{4}\left(Q_{r}\right) \geqslant 2$ for every $r \in\{2,3,4,5\}$ and $a_{4} \geqslant 9$, a contradiction.
If $n=11$, set $Q_{1} \in l_{5} \in \mathscr{L}_{3}, l_{5} \cap \mathbb{S}=\left\{Q_{1}, P_{3}, T\right\}$. Then $T S_{i} \neq P_{1}$ as $a_{2}\left(P_{1}\right)=1$. It follows $\left\{T S_{1}, T S_{2}\right\} \in \mathscr{L}_{5}$ and we can choose $P_{4} \in T S_{1}$, $P_{5} \in T S_{2}$. Thus $\left\{Q_{4} P_{1}, Q_{5} P_{1}\right\} \subseteq \mathscr{L}_{2}, a_{2}\left(P_{1}\right)>1$, a contradiction. In case $n=12$ we get the same type of contradiction. We have

Lemma 13. $a_{m+1}\left(Q_{1}\right)=a_{m+1}\left(P_{1}\right)=0$ under Hyp. (2.1). Further $m \geqslant 3$.

Proof. The case $n=8$ is clearly impossible under Hyp. (2.1).
Hypothesis (2.1.1). $a_{m}\left(Q_{1}\right) \neq 0$.
Choose $Q_{1} \in l_{4} \in \mathscr{L}_{m}, P_{2} \in l_{4}$. Use a l_{4}^{*}-argument: $\left|\mathscr{L}_{2}\left(l_{4}^{*}, P_{0}\right)\right|=n-$ $-2 m$. Further $\left|\mathscr{L}_{2}\left(l_{4}^{*}, P_{i}\right)\right|=1$ for $i=3,4, \ldots, m+2$.

We get the inequality $3(n+1-m) \leqslant n-2 m+m+2 m \cdot 3+9$, $2 n \leqslant 8 m+6$ or

$$
\begin{equation*}
n \leqslant 4 m+3 . \tag{*}
\end{equation*}
$$

Thus $m^{2}+1 \leqslant 4 m+3, m(m-4) \leqslant 2$ and $m \in\{3,4\}$.
Let $m=4$ first. Then $n \leqslant 19$ by ($*$). Obviously $a_{4}\left(Q_{1}\right) \geqslant 2$.
Let $l_{4}=Q_{1} P_{2} \in \mathscr{L}_{4}, l_{5}=Q_{1} P_{3} \in \mathscr{L}_{4}$.
Assume $a_{4}\left(Q_{1}\right)=2$. Because of $|\subseteq| \geqslant 24$ then $Q_{1} P_{i} \in \mathscr{L}_{3}$ for $i=4,5,6$.
Set $Q_{1} P_{i} \cap \subseteq=\left\{Q_{1}, P_{i}, M_{i}\right\}, i=4,5,6$. The points M_{4}, M_{5}, M_{6} cannot be collinear as $a_{7}=2$. So we can choose $P_{1} \notin M_{4} M_{5}$. Then $M_{4} M_{5} \in \mathscr{L}_{6}$.

Let $Q_{i}=M_{4} M_{5} \cap l_{2}$. Then $P_{i} Q_{1} \in \mathscr{L}_{2}$ by lemma 10 , a contradiction. So we have $a_{4}\left(Q_{1}\right) \geqslant 3$. Let $l_{6}=Q_{1} P_{4} \in \mathscr{L}_{4}$, choose $M \in \mathbb{S}, M \notin l_{i}$, $1 \leqslant i \leqslant 6$, set $l_{i} \cap \mathbb{S}=\left\{Q_{1}, P_{i-2}, R_{i-2}, S_{i-2}\right\}, i=4,5,6$.

Choose $g=M R_{4} \nexists P_{1}$. Then $g \in \mathscr{L}_{6}$ and thus $g \cap\left\{P_{2}, P_{3}\right\} \neq \emptyset$. We can choose $P_{3} \in g$. Set $g \cap l_{2}=Q_{j}$. Then $P_{j} Q_{1} \in \mathscr{L}_{2}$ by lemma 10. It follows $Q_{1} P_{6} \in \mathscr{L}_{2}, Q_{6} \in g$. Choose R_{3} on l_{5} such that $M R_{3} \nexists P_{1}$. Then $M R_{3} \in \mathscr{L}_{6}$ and like above we get $Q_{6} \in M R_{3}$, which is a contradiction.

So we have $m=3$. As $|\mathbb{S}| \geqslant 16$, we have $a_{3}\left(Q_{1}\right) \geqslant 2$. Set $l_{4}=Q_{1} P_{2} \in$ $\in \mathscr{L}_{3}, l_{5}=Q_{1} P_{3} \in \mathscr{L}_{3}, l_{4} \cap \mathbb{S}=\left\{Q_{1}, P_{2}, M_{1}\right\}, l_{5} \cap \mathbb{S}=\left\{Q_{1}, P_{3}, M_{2}\right\}$.

Assume $n>10$. Then we can choose $l_{6}=Q_{1} P_{4} \in \mathscr{L}_{3}, l_{6} \cap \mathbb{S}=$ $=\left\{Q_{1}, P_{4}, M_{3}\right\}$. The points M_{1}, M_{2}, M_{3} are not collinear because $a_{6}=2, a_{5}\left(P_{1}\right)=1$.

Set $g_{1}=M_{3} M_{1}, g_{2}=M_{3} M_{2}$. As $a_{4}\left(P_{1}\right)=a_{4}\left(Q_{1}\right)=0$, we have $g_{i} \cap$ $\cap\left\{P_{1}, Q_{1}\right\}=\emptyset, i=1,2$ and thus $\left\{g_{1}, g_{2}\right\} \subseteq \mathscr{L}_{5}$. Set $g_{i} \cap l_{2}=Q_{j}$. By
lemma 10 then $P_{j} Q_{1} \in \mathscr{L}_{2}$, thus $j=5$. We have $g_{i} \ni Q_{5}, i=1,2$, a contradiction.

Finally $n=10,|\Im|=16$. Choose $P_{4} \in M_{1} M_{2}$. Clearly $M_{1} M_{2} \in \mathscr{L}_{5}$ and $Q_{4} P_{1} \in \mathscr{L}_{2}$ by lemma 10. Further $Q_{5} \in M_{1} M_{2}$ and consequently $P_{1} Q_{5} \in \mathscr{L}_{2}$. This is case (iii) of the theorem. It is easy to see, that (S, $\mathscr{L}-\mathscr{L}_{1}$) is uniquely determined. We have

Lemma 14. Under Hyp. (2.1.1), case (i) or (iii) of the theorem holds.

We can assume $a_{m}\left(Q_{1}\right)=a_{m+1}\left(Q_{1}\right)=0 . \quad$ A $\left(Q_{1}, l_{1}\right)$-argument yields the contradiction $m^{2}+m+4 \leqslant|\subseteq| \leqslant 3 m+5+(m+1)(m-3)=m^{2}+$ $+m+2$.

Thus we can assume, that Hyp. (2.1) is not satisfied.
Hypothesis (2.2). $\mathscr{L}_{m+2}=\mathscr{L}_{m+2}\left(P_{0}\right), \mathscr{L}_{m+1} \neq \mathscr{L}_{m+1}\left(P_{0}\right)$.
Set $l_{3}=P_{1} Q_{1} \in \mathscr{L}_{m+1}$, use a l_{3}^{*}-argument: $z\left(l_{3}^{*}\right)=2(n-m), z\left(l_{3}^{*}, P_{0}\right) \leqslant$ $\leqslant n+m+3-(3 m+4)=n-2 m-1$. For $i \in\{2, \ldots, m+2\}$ we have $\left|\mathscr{L}\left(l_{3}^{*}, P_{i}\right)\right|=2$, thus $z\left(l_{3}^{*}, P_{i}\right) \leqslant 4$. It follows $2(n-m) \leqslant n-2 m-$ $-1+4(m+1)$,

$$
\begin{equation*}
n \lesssim 4 m+3 . \tag{*}
\end{equation*}
$$

Thus $m^{2}+1 \leqslant 4 m+3, m(m-4) \leqslant 2$ and $m \leqslant 4$.
Let first $n=8$. It is then immediate, that we are in case (ii) of the theorem.

Let $m=3$, set $l_{3} \cap \subseteq=\left\{P_{1}, Q_{1}, R_{1}, R_{2}\right\}$. Assume first $a_{4}\left(Q_{1}\right) \geqslant 3$, so that $n \geqslant 11$. Set $l_{4}=Q_{1} P_{2} \in \mathscr{L}_{4}, l_{5}=Q_{1} P_{3} \in \mathscr{L}_{4}, l_{4} \cap \mathbb{S}=\left\{Q_{1}, P_{2}\right.$, $\left.S_{1}, S_{2}\right\}, l_{5} \cap \mathbb{S}=\left\{Q_{1}, P_{3}, T_{1}, T_{2}\right\}$. For $X, Y \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3}\right), X \neq Y$, have $X Y \cap\left\{P_{0}, P_{1}, Q_{1}\right\} \neq \emptyset$ because of lemma 3 and $\mathscr{L}_{5}=\mathscr{L}_{5}\left(P_{0}\right)$.

So we can choose $\left\{P_{0}, R_{1}, S_{1}, T_{1}\right\} \subseteq g_{1},\left\{P_{0}, R_{2}, S_{2}, T_{2}\right\} \subseteq g_{2}$.
Then $z\left(l_{3}^{*}, P_{0}\right) \leqslant 11$ and instead of $(*)$ we get $n \leqslant 11$, thus $n=11$.
We have $P_{1} \in S_{1} T_{2}=l \in \mathscr{L}_{4}, z\left(l^{*}\right)=16, z\left(l^{*}, P_{0}\right)=0, z\left(l^{*}, P_{i}\right) \leqslant 3$ for $i=4,5, z\left(l^{*}, P_{j}\right) \leqslant 4$ for $j=2,3$. The contradiction $16=z\left(l^{*}\right) \leqslant 2 \cdot 3+$ $+2 \cdot 4=14$ follows.

Assume next $a_{4}\left(Q_{1}\right)=2$. Define l_{4} like above. As $|S| \geqslant 16$, there is $T \in \mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3} \cup l_{4}\right)$. Like above we can choose l such that $l \supseteq\left\{P_{0}, T, S_{1}, R_{1}\right\}$. As $S_{2} X \in P_{1}$ for every $X \in(l \cap \mathbb{S})-\left\{P_{0}, S_{1}, R_{1}\right\}$ we get $l \in \mathscr{L}_{4}, S_{2} T \ni P_{1}$.

Further $\mathbb{S}_{2} R_{2} \ni P_{0}$ as otherwise $\mathbb{S}_{2} R_{2} \in \mathscr{L}_{4}$, but $\mathbb{S}_{2} R_{2} \cap l \notin \mathbb{S}$.
Clearly now \mid S $\mid=16, n=10$. We have $z\left(l^{*}\right)=14, z\left(l^{*}, P_{0}\right)=$ $=z\left(l^{*}, P_{1}\right)=z\left(l^{*}, P_{2}\right)=0$. But $z\left(l^{*}, P_{i}\right) \leqslant 4$ for $i \in\{3,4,5\}$ and so we have the contradiction $14=z\left(l^{*}\right) \leqslant 3 \cdot 4=12$.

Hence $a_{4}\left(Q_{1}\right)=a_{4}\left(P_{1}\right)=1, n \in\{10,11\}$. Let first $n=11$, so that $a_{2}\left(Q_{1}\right)=0$. Like above we see, that all the points in $\subseteq-\left(l_{1} \cup l_{2} \cup l_{3}\right)$ are collinear with P_{0} and thus $a_{6}=3, a_{2}=1$.

We can choose $P_{0} R_{2} \in \mathscr{L}_{2}$. Further $a_{5}=0, a_{4}=5, a_{3}=20$ (see fig. 4).

Figure 4

Let $l \in \mathscr{L}_{3}$. Then $\left|l^{*}\right|=9$. There are at least four points $X \in l^{*}$ with $a_{4}(X)=0$. But then a l^{*}-argument shows $a_{2}(X) \neq 0$ and so $a_{2} \geqslant 4$, a contradiction.

Let $n=10$. Like above we see $a_{5}\left(P_{0}\right)=1, a_{2}\left(P_{0}\right)=1, P_{0} R_{2} \in \mathscr{L}_{2}$.
Let $P_{0} \in l \in \mathscr{L}_{5}$. Then $\left|l^{*}\right|=\left|\mathscr{L}_{2}\left(l^{*}\right)\right|=6$. On the other hand $\left|\mathscr{L}\left(l^{*}, P_{i}\right)\right|=1$ for $1 \leqslant i \leqslant 5$ and thus $\left|\mathscr{L}\left(l^{*}\right)\right|=5$, a contradiction.

Let now $m=4$. By $(*) 17 \leqslant n \leqslant 19$. Set $\mathscr{M}=\mathbb{S}-\left(l_{1} \cup l_{2} \cup l_{3}\right)$, let \mathscr{N} consist of the pairs of different elements of \mathscr{M} and for $X \in \mathscr{P}$ set $n_{x}=|\{\{A, B\} \in \mathscr{N} \mid A B \ni X\}|$. Clearly $8 \leqslant|\mathscr{M}| \leqslant 10$.

Let $f=|\mathscr{N}|-\left(n_{P_{0}}+n_{P_{1}}+n_{Q_{1}}\right) . \quad$ Then $f=\mid\left\{l \mid l \in \mathscr{L}_{5}, l \cap\left\{P_{0}, P_{1}\right.\right.$, $\left.\left.Q_{1}\right\}=\emptyset\right\} \mid$ and we have $n_{x} \leqslant 3$ for $X \in\left\{P_{2}, P_{3}, \ldots, P_{6}\right\}$.

Assume $P_{0} \in l, l \notin\left\{l_{1}, l_{2}\right\}$, st $(l) \geqslant 5$. Then $l \cap l_{3} \in \subseteq$ by lemma 3 and instead of (*) we get $n \leqslant 16$, which is impossible. If st (l) $=4$, again $1 \cap l_{3} \in \mathbb{S}$. So we have $n_{P_{0}} \leqslant \frac{1}{2}|\mathscr{M}|$.
 $n_{P_{0}} \leqslant 5, n_{P_{1}} \leqslant 9, n_{P_{2}} \leqslant 9, f \geqslant 45-23=22$. So there is $i \in\{2,3, \ldots, 6\}$ with $n_{P_{l}} \geqslant 5$, a contradiction.

Let $n=18$, so $|\mathscr{M}|=9,|\mathscr{N}|=36$. We have $n_{P_{0}} \leqslant 4$.
Assume $a_{5}\left(Q_{1}\right)=4$. Then clearly $a_{5}\left(P_{1}\right)>1$. Let $P_{1} \in k \in \mathscr{L}_{5}, k \neq l_{3}$. As $a_{2}\left(Q_{1}\right)=2$, a k^{*}-argument analagous to the l_{3}^{*}-argument at the beginning of the paragraph leads to a contradiction.

Thus $a_{5}\left(Q_{1}\right) \leqslant 3, a_{5}\left(P_{1}\right) \leqslant 3, n_{P_{1}} \leqslant 7, n_{Q_{1}} \leqslant 7$ and $f \geqslant 36-(4+7+7)=18$. There exists then a $X \in\left\{P_{2}, \ldots, P_{6}\right\}$ with $n_{x} \geqslant 4$, which is impossible.

Finally $n=17$. Assume first $a_{5}\left(Q_{1}\right) \leqslant 2 \geqslant a_{5}\left(P_{1}\right)$. Then $n_{P_{1}} \leqslant 5 \geqslant n_{Q_{1}}$ and $f \geqslant 28-(4+5+5)=14$. So there are at least four points $P \in\left\{P_{2}, \ldots, P_{6}\right\}$ with $n_{P}=3$. For these points $a_{2}(P) \neq 0$. As $a_{2}\left(Q_{1}\right) \leqslant 1$ we get $\sum_{i=2}^{6}\left|\mathscr{L}_{2}\left(l_{3}^{*}, P_{i}\right)\right| \geqslant 3$ and the l_{3}^{*}-argument leads to a contradiction. So we can choose $a_{5}\left(Q_{1}\right)=3$. Set $\mathscr{L}_{5}\left(Q_{1}\right)=\left\{l_{3}, l_{4}, l_{5}\right\}, l_{i} \cap l_{1}=$ $=P_{i-2}, i=3,4,5$. Set $\{X, Y\}=\mathbb{S}-\left(l_{1} \cup \ldots \cup l_{5}\right)$.

Choose $M \in l_{5} \cap \mathscr{M}$ such that $X M \cap\left\{P_{0}, P_{2}\right\}=\emptyset$. Then $X M \in \mathscr{L}_{5}$ and thus $P_{1} \in X M$. It follows $\left\{P_{1} X, P_{1} Y\right\} \subseteq \mathscr{L}_{5}$ and so $a_{5}\left(P_{1}\right)=3$.

We have shown $a_{5}(X) \in\{0,3\}$ for every $X \in\left\{P_{1}, \ldots, P_{6}, Q_{1}, \ldots, Q_{6}\right\}$.
Let $P \in\left\{P_{4}, P_{5}, P_{6}\right\}$. A $\left(P, l_{2}\right)$-argument and lemma 3 show, that $a_{5}(P) \neq 0$. For every $i \in\{1,2, \ldots, 6\}$ we have $a_{5}\left(P_{i}\right)=3$ and thus $a_{2}\left(P_{i}\right) \neq 0$. As $a_{2}\left(Q_{1}\right) \leqslant 2$, we get $\sum_{i=2}^{6}\left|\mathscr{L}_{2}\left(l_{3}^{*}, P_{i}\right)\right| \geqslant 3$ again and the l_{3}^{*} argument provides us with a contradiction.

From now on we can assume, that Hyp. (2.2) doesn't hold, so that $\mathscr{L}_{m+2}=\mathscr{L}_{m+2}\left(P_{0}\right), \mathscr{L}_{m+1}=\mathscr{L}_{m+1}\left(P_{0}\right)$. Clearly $m \geqslant 3$.

Assume $\mathscr{L}_{2} \neq \mathscr{L}_{2}\left(P_{0}\right)$, choose $P \in l_{1} \cap \subseteq, P \neq P_{0}, a_{2}(P) \neq 0$.
A $\left(P, l_{2}\right)$-argument yields the contradiction

$$
m^{2}+m+4 \leqslant|\subseteq| \leqslant 2 m+5+(m+1)(m-2)=m^{2}+m+3
$$

Thus $\mathscr{L}_{2}=\mathscr{L}_{2}\left(P_{0}\right)$.
Assume $\mathscr{L}_{3} \neq \mathscr{L}_{3}\left(P_{0}\right)$, let $P_{0} \notin l_{3} \in \mathscr{L}_{3},\left\{P_{1}, Q_{1}\right\} \subseteq l_{3}$. A $\left(Q_{1}, l_{1}\right)$-argument like above leads to equality and we get one of the following:

Let first $m=3, n=10$. As $\mathscr{L}_{5}=\mathscr{L}_{5}\left(P_{0}\right), \mathscr{L}_{4}=\mathscr{L}_{4}\left(P_{0}\right)$, we get $a_{6}=3, a_{2}=a_{4}=0$. Let $l \in \mathscr{L}_{3}$. A l^{*}-argument leads to a contradiction. So $m \geqslant 4$. Clearly $a_{m}\left(P_{1}\right)=m+1$. Assume $P_{1} \in l \neq l_{3}$, st $(l) \geqslant 5$. Because of (ii) and lemma 3 then $l \in \mathscr{L}_{m_{+3}}$, which is impossible.

Thus $m=4, n=17$. Let $Q_{1} \in l \in \mathscr{L}_{4}, l_{3} \cap \subseteq=\left\{P_{1}, Q_{1}, S\right\}$. Then there is $M \in l \cap \subseteq, M \notin\left\{Q_{1}, l \cap l_{1}\right\}$ such that $S M \nexists P_{0}$. It follows $S M \in \mathscr{L}_{4}$. In this way we get the five lines of \mathbb{S} through S, which don't contain Q_{1} or P_{0}. Necessarily then $l_{0}=P_{0} S \in \mathscr{L}_{7}$. As $\mathscr{L}_{5}=$ $=\mathscr{L}_{5}\left(P_{0}\right)$, the points in $\mathcal{S}-\left(l_{0} \cup l_{1} \cup l_{2}\right)$ are collinear and so $P_{0} \in$ $\in k \in \mathscr{L}_{6}$. A k^{*}-argument yields the contradiction $\mathscr{L}_{2} \neq \mathscr{L}_{2}\left(P_{0}\right)$.

Hence we can assume $\mathscr{L}_{3}=\mathscr{L}_{3}\left(P_{0}\right)$. Assume $\mathscr{L}_{m} \neq \mathscr{L}_{m}\left(P_{0}\right)$, choose $P_{0} \notin l_{3} \in \mathscr{L}_{m},\left\{P_{1}, Q_{1}\right\} \subseteq l_{3}$. As $\mathscr{L}_{3}=\mathscr{L}_{3}\left(P_{0}\right)$, we have $m \geqslant 4$. Use a l_{3}^{*}-argument. We get

$$
\begin{gathered}
3(n+1-m) \leqslant n+m+3-(3 m+3)+9(m+1), \\
2 n \leqslant 10 m+6, \quad n \leqslant 5 m+3 .
\end{gathered}
$$

Thus $m^{2}+1 \leqslant 5 m+3, m(m-5) \leqslant 2$ and $m \in\{4,5\}$. We have $\mathscr{L}\left(l_{3}^{*}\right.$, $\left.P_{i}\right)=\mathscr{L}_{4}\left(l_{3}^{*}, P_{i}\right), i=2,3, \ldots, m+2$ because $\mathscr{L}_{2}=\mathscr{L}_{2}\left(P_{0}\right), \mathscr{L}_{3}=\mathscr{L}_{3}\left(P_{0}\right)$. It follows $z\left(l_{3}^{*}\right)=3(n+1-m) \geqslant 9(m+1)$ and

$$
\begin{equation*}
n \geqslant 4 m+2 \tag{*}
\end{equation*}
$$

First let $m=5, i \in\{2,3, \ldots, 7\}$. Then a l_{3}^{*}-argument together with lemma 3 shows $a_{4}\left(P_{i}\right) \geqslant 3$. A $\left(P_{i}, l_{2}\right)$-argument shows $|\subseteq| \leqslant 15+3$. $\cdot 2+4 \cdot 3=33, n \leqslant 25$, which is impossible.

Finally let $m=4$, so that $n \geqslant 18$ by ($*$). A (Q_{1}, l_{1})-argument shows $n \leqslant 18$, so that $n=18,|\mathfrak{S}|=25$. Let $X \in \mathbb{S}-\left(l_{1} \cup l_{2}\right)$. Then $X P_{i} \in \mathscr{L}_{4}$ for $i=1,2, \ldots, 6$. Thus $P_{0} X \in \mathscr{L}_{7}$. It follows $a_{7}=4$. Set $\mathscr{L}_{7}=\left\{l_{1}\right.$, $\left.l_{2}, l_{R}, l_{s}\right\}, l_{R} \cap \mathbb{S}=\left\{P_{0}\right\} \cup\left\{R_{i} \mid i=1,2, \ldots, 6\right\}, l_{s} \cap \mathbb{S}=\left\{P_{0}\right\} \cup\left\{S_{i} \mid i=\right.$ $=1,2, \ldots, 6\}$ (see fig. 5).

Figure 5

Consider the 6×6-matrix with entry $\left(R_{k}, S_{i}\right)$ in the i-th row and j-th column whenever $P_{i}, Q_{j}, R_{k}, S_{l}$ are collinear. It is immediate,
that this has to be a pair of orthogonal 6×6-latin squares. However, such a pair doesn't exist (see [1], Chap. 5). Thus the proof of our theorem is complete.

REFERENCES

[1] J. Dénes - A. Keedwell, Latin Squares and Their Applications, English Universities Press, London, 1974.
[2] J. Bierbrauer, On Minimal Blocking Sets, to appear.
[3] R. H. Bruck - H. J. Ryser, The non-existehce of certain finite projective planes, Can. J. Math., 1 (1948), pp. 88-93.
[4] A. A. Bruen, Blocking Sets in Finite Projective Planes, Siam J. of Math., 21 (1971).
[5] A. A. Bruen - J. A. Thas, Blocking Sets, Geom. Ded., 6 (1977).
[6] M. Hall jr. - D. Swift - R. J. Walker, Uniqueness of the Projective Plane of Order Eight, Math. Tables Aids Comput., 10 (1956), pp. 186-194.
[7] L. M. Kelly - S. Nwankpa, Affine embeddings of Sylvester-Gallai designs, J. Combinatorial Theory Ser. A, 14 (1973), pp. 422-438.

Manoscritto pervenuto in redazione il 12 agosto 1980.

