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Periodic Solutions

for Second Order Differential Systems with Damping.

FABIO ZANOLIN (*)

Introduction.

In this paper we deal with the problem of the existence of periodic
solutions for the differential systems of the Rayleigh type

where h is bounded and periodic in t.

In our approach we consider some conditions, on .F and G, which
extend to the systems those used by G. E. H. Reuter in [15]. In 1952
he proved a boundedness theorem for the solutions of the second order
scalar differential equation

with F, G, h continuous and h bounded. He also obtained the exist-
ence of periodic solutions, for any periodic forcing term, under the

(*) Author’s address: Istituto Matematico, University, Piazzale Europa 1,
34100 Trieste.

Work announced at the Workshop on Nonlinear Boundary Value Prob-
lems, Trieste, 9-20 June 1980 (Scuola Internazionale Superiore di Studi Avan-
zati in Trieste).
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assumption

(see also [18, page 459]).
We remark that the assumption of Reuter about the damping

term .F is physically significant: in the applications we often have
to consider a dissipation term .F’(x’ ) which behaves as a (positive)
power of I for I large enough.

Hypotheses on the order of growth for the damping terms have
already been considered by several authors. For instance, we recall
that in the study of the wave equation

the case F(x’) vPas dealt with by J. L. Lions -
W. Strauss [8] and G. Andreassi - G. Torelli [1] for the Cauchy problem
and by G. Prodi [11] and G. Prouse [12], [13], for the existence of

periodic solutions. 
’

Also in the case of ordinary differential equations there are some
physical and engineering applications where a polynomial growth for
the dissipative term is considered, as, for instance, in the scalar equa-
tion (of Rayleigh type)

which arises in the problem of the vibrations of a suspended wire
and which was studied by J. Cecconi [4] and F. Stoppelli [19] (for
a recent result on this equation, see also L. Sanchez [17]).

Recently R. Reissig [14] (see also J. R. Ward [20]) considered the
system (1) with .I’ linear and symmetric and G. Caristi - S. Inver-

nizzi [3] assumed that F(x’) &#x3E; 0), with p &#x3E; 1. All of

these authors reached their results using the «non resonance » hypoth-
esis that p .I G’(x) q.I, where I is the identity matrix and p, q
are real numbers, cc~ 2 n 2 C ~ c q C c~ 2 {~z -]- 1 ) 2, = 0, 1, ... ), as in the
theorem of A. C. Lazer - D. A. Sanchez [7].

In a forthcoming paper [21], we prove that, under a « sign» con-
dition on the scalar product (F(x’)Ix’) and a growth restriction on G
(which must be weakly nonlinear), an existence result can be obtained
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in such a way as to extend to systems a theorem by A. Ascari [2]
(see also [18, page 499]).

Here, in the sequel, we shall show that, when the rate of increase
of is of the same type as the o-th power of , (e &#x3E; 1),
then we get the existence of periodic solutions of (1) if, for G, we
assume a « sign » condition as in the Reuter theorem. More precisely,
we shall prove a rather general result which permits us to extend
the theorem of Reuter to the systems, in the part concerning the
existence of periodic solutions. Moreover, we shall show that, when
a polynomial expression for F and G is considered, also a result of
J. Mawhin [9, Theoreme 5.2, page 373] can be extended to the case
of systems.

We prove our existence result using the Leray-Schauder continua-
tion method in its simplest version, namely by finding a-priori bounds
for the periodic solutions of the «homotopic» » equation

where 2 E (0, 1] and 0 is a sufficiently small real number.

The main result.

Here we are interested in the existence of T-periodic solutions
( T’ &#x3E; 0) for the diff erential system

Henceforth we shall assume that F, G : are continuous

and there exists a continuously differentiable scalar function g,

Moreover, y we shall suppose that h : .Rm is continu-

ous, T-periodic with respect to its first variable (i.e. h(t + T, x, y) =
- h(t, x, y), for every t, x, y) and bounded by a constant D (D &#x3E; 0) :

y ) ~ C D, for every t, x, y.
We use the symbol (- I - ) for the euclidean inner product in B-

and I. I for the corresponding norm. R+ will denote the set of the
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non negative real numbers. If x : R - Rm is a continuous T-periodic
function, we set

THEOREM 1. Let .F’, G, h be continuous and let G = grad j1. Let h

be bounded by D. Let us suppose that there exists a continuous func-
H, H: Rm - .R+, satisfying to

such that

and, either

or

hold. Finally, let us suppose that, for every positive constant M it is

uni f ormly with respect to y. Then the system (1) has a T-periodic sol2c-
tion, provided that

(Note that from (i) it follows that H(y) &#x3E; 0 f or y large enough and
so (ii) and (j) or (~’) are meaningful.)

Before proving Theorem 1, we give some applications of our result.
Using an «angle condition » between F(x’) and x’, G(x) and x,

we get the following more expressive corollary. (For different results
which have been obtained using an angle condition between G(x)
and x, see also [6] and, for the first order systems, see [5].)
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COROLLARY 1. Let F, G, h be continuous acnd let G = grad ~. As-
sume

and, either

or

Moreover, let

and, either

or

Then (1 ) has a T-periodic solution for every bounded f orcing term 7:

such that

PROOF OF COROLLARY 1. Define H(y) == IF(y)llyl. Then, by an
easy computation, (a) implies (i), ( b ) implies ( ~ ) and ( b’ ) implies 
Moreover, also (ii) is satisfied in virtue of the definition of 

Now assume that (d) holds; let us iix 1Vl &#x3E; 0 and let Then,
from lxl -~ + oo, it follows that Ix + yl - + oo and + -~

~ + oo, uniformly with respect to y. Let us consider the equality
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and take lim inf (respectively lim. sup, if we assume the second angle
condition (d’) on G) of both sides, for ixi - + oo and if. Then,
since

uniformly with respect to y, we get

for somme (positive) c, (respectively lim sup ...  -,E  0, if (d’)), ~uni-

formly with respect to y, Let us observe now that

(uniformly in y ) and conclude thtlt

Finally, y we recall that I G(x + y)1 ~ + oo and so we have (k). Then
we apply Theorem 1 and the corollary is proved. (Note that a similar
argument gives condition (k), with - oo as limit, when the second
angle condition (d’) is assumed for the vector field G.) Q.E.D.

REMARK 1. Observe that if with B &#x3E; 0 and
e &#x3E; 0, then F verifies the assumptions of Corollary 1; theorefore our
result applies to a class of dampings which are of physical interest.
Let us observe also that if we change the condition into

then Corollary 1 gives the existence of T-periodic solutions of (1) for
every bounded forcing term. Moreover if we assume that the direc-
tion of F(y) is the same (or the opposite) as that of y for y large
enough, then ( b ) (respectively (b’)) is satisfied with B = 1. Obviously
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also (d) or ( d’ ) holds if we assume for G the same condition on the
direction as assumed for F.

Hence, if the dimension of is 1 (m = 1), so that (1) becomes
a scalar equation, then all the hypotheses about F and G of Corol-
lary 1 (using ( c~’ ) instead of ( a)), can be summarized by writing

Thus we have as consequences a theorem of J. Mawhin [9, Theo-
reme 5.2, page 373], taking for F and G two polynomials of odd

degree, and the above mentioned Reuter Theorem, in the part con-
cerning the existence of periodic solutions.

At last we give another possible condition (instead of (c) and (d)
(or (d’))~, on the vector field G, which ensures the validity of (k) and
which is easy to verify. That is the strong monotonicity, namely

for some L &#x3E; 0.
In fact9 if ( m ) holds, then

and taking the limit as xy -~ ---~- oo we get ( 7v ) since I is bounded
when jyj is so.

PROOF OF THEOREM 1. Let us denote by W§ (k = 0, 1, 2) the
(Banach) space of the T-periodic functions class ~k,
equipped with the norm = 0, ... , k~. If E ~~, we

T

set the 22-scalar product of u and v.
o

Assume that the hypothesis (k) holds with + 00 as limit; fix a

positive real number a sufhciently small so that the linear homo-
geneous scalar equation x" -f-- oc ~ ~ = 0 has no nontrivial T-periodic
solution. (If - oo appears in (k), then we choose a  0.) Then, in the
framework of the Leray-Schauder topological degree theory [10], [16],
it is well known that, in order to get the existence of the (T-periodic)
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solutions of (1), it is sufficient to prove that every (T-periodic) solu-
tion of (2), for any h E (0, 1], is bounded in the W§-norm by some
constant (which is independent by A and x) . (For the same approach,
with more details in the functional setting, see [21].)

Let x be a solution of (2) for some ~ E (0, 1].
Let us take the 22-scalar product by x’ of both members of (2).

Observe that (x", x’), = (x, x’)2 = 0 and, from G = gradj1, also ((~(x),
X’)2 = 0. Then, dividing by A (h &#x3E; 0), we have:

Remark that, from ( j ), or ( j’ ), it follows that for any E, 0  ë  B,
there exists a positive constant Me such that

(4) either

(4’) or

holds (respectively), for every y in 
Then, from (3) and (4) (or (4’)), using the Holder inequality

~h( ~ , x, x’), x’)21 (where D is a bound for h), we get

Remark that, because of (i), for any 8, 0  s  A, there exists a
positive constant NE such that

holds, for every z in I~m.
Then, from (5) and (6) we deduce (7):

From (7) and the condition A B &#x3E; D, we immediately have that
is bounded by some positive constant, say Ci, as soon as we

choose e sufficiently small:



231

From (8) and (5) we also get

for some positive constant C2.

Let _ = 
1 T 

x(t dt the mean value of x and set u( t) = x t - x.Let x = 1/T fT0x(t) dt, the mean value and set 
T 

== x(t) 

For the r-th coordinate in .Rm it is ds (as

every has mean value 0); we easily deduce,
o

using also (8), that there exists a positive constant ~l, such that

Let us take the ’p2-scalar product of both sides of (2) by the con-
stant periodic (vector) function x. Observe that = 0, (x, x)2 =
== T’ ~ x ~ 2 ~ 0 and therefore

Hence, since oc &#x3E; 0, dividing by 2 &#x3E; 0 we get

From (ii) it follows that there exist two positive constant, W and V,
such that

holds for every y in .Rm.

Then, from (11) and (12), using the a-priori bound (9), we get
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Now either = 0 (and so it is bounded) or we can divide (13)
by |x| and have that the ratio (G(x), x)2/lx! is bounded by some con-
stant ; call it C3 .

The last result can be written also in the following way:

If we now use the mean value theorem for the continuous periodic
scalar function we know that there is some

point to in the interval [0, T] such that

with M, as in (10).
Comparing (14) with hypothesis (k) we obtain that |x| must be

bounded. Finally, from the bounds for IX-1 and we get a bound
for x.

Then, from (15) and the continuity of G, we have that G(x) is
bounded in the supremum norm (and also in the 

1VIoreover, from (9) and (12) we have already seen that F(x’) is
bounded in the 2cnorm, and so we conclude that, in the equa-
tion (2), all the terms with x or x’ are bounded in the 21-nornl. Then
(from (2)) also x" is bounded in the 

Since from (8) and (16), we finally obtain the
required bound for x’ in the supremum norm:

Estimates (15) and (17) prove that every periodic solution of (2),
for any Å, is bounded in W§ and so the thesis is proved.

With obvious modifications it is possible to deal with the case in
Which the limit in (k) is - 00. Q.E.D.
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