RENDICONTI del Seminario Matematico della Università di Padova

A. ORSATTI

V. ROSELLI

A characterization of discrete linearly compact rings by means of a duality

Rendiconti del Seminario Matematico della Università di Padova, tome 64 (1981), p. 219-234

http://www.numdam.org/item?id=RSMUP_1981__64__219_0

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 65 (1981)

A Characterization of Discrete Linearly Compact Rings by Means of a Duality.

A. Orsatti - V. Roselli (*)

1. Introduction.

All rings considered in this paper have a non zero identity and all modules are unitary.

A ring A is said to have a right Morita duality if there exists a faithfully balanced bimodule $_{R}K_{A}$ such that $_{R}K$ and K_{A} are injective cogenerators of R-Mod and Mod-A respectively. This means that the subcategories of R-Mod and Mod-A consisting of K-reflexive modules are both finitely closed and contain all finitely generated modules.

It is well known (see Müller [4]) that if A has a right Morita duality then A is right linearly compact (in the discrete topology). The converse of this result is false for non commutative rings (see Sandomierski [5]) while for commutative rings the question is still open and seems to be hard to solve (see Müller [4], Vamos [6], [7]).

The purpose of this paper is to show that a ring A is right linearly compact if and only if A has a good duality.

This means that there exists a faithfully balanced bimodule $_{R}K_{A}$ such that K_{A} is a cogenerator of Mod-A and $_{R}K$ is strongly quasiinjective. This means also that there exists a duality between Mod-A and the category of K-compact left R-modules (see section 2 below).

In particular it is shown that, if A is linearly compact, then such a duality may be induced by the minimal cogenerator of Mod-A.

(*) Indirizzo degli AA.: Istituto di Algebra e Geometria, Via Belzoni 7, 35100 Padova (Italy).

Lavoro eseguito nell'ambito dell'attività dei gruppi di ricerca del CNR.

Furthermore we prove that if a ring A is Morita equivalent to a right linearly compact ring then A is such.

Finally we give a description of the basic ring of a linearly compact ring (which is semiperfect) by means of a representation property.

2. Strongly quasi-injective modules and good dualities.

In this section we recall some known facts which will be useful later.

2.1. Let A, R be two rings and $_{R}K_{A}$ a faithfully balanced bimodule (right on A and left on R). This means that $A \simeq \text{End}(_{R}K)$ and $R \simeq \text{End}(K_{A})$ canonically.

Denote by Mod-A the category of right A-modules and by R-LT the category of linearly topologized Hausdorff left R-modules over the ring R endowed with the _RK-topology. This ring topology on R is obtained by taking as a basis of neighbourhoods of zero in R the annihilators of the finite subsets of K.

In the following $_{R}K$ will have the discrete topology. Then $_{R}K \in R$ -LT. Let M be a module belonging to Mod-A (to R-LT). A character of M is a morphism of M in K_{A} (a continuous morphism of M in $_{R}K$).

Let $M \in Mod-A$; we define the character module M^* of M as the left R-module $Hom_A(M, K_A)$ endowed with the finite topology. This topology has as a basis of neighbourhoods of 0 in M^* the submodules

$$W(F) = \{\xi \in \operatorname{Hom}_{A}(M, K_{A}) \colon \xi(F) = 0\}$$

where F is a finite subset of M. Then $M^* \in R$ -LT and it is K-compact.

Recall that a module $M \in R$ -LT is K-compact if it is topologically isomorphic to a closed submodule of a topological product of copies of _RK. Let $C(_RK)$ be the subcategory of R-LT consisting of K-compact modules. Clearly M is K-compact if and only if M is complete and its topology coincides with the weak topology of characters.

Let $M \in R-LT$. The character module M^* of M is simply the abstract A-module $\operatorname{Chom}_R(M, {}_RK)$. M^* is K-discrete. Recall that a right A-module is K-discrete if it is isomorphic to a submodule of a product of copies of K_A . Denote by $\mathfrak{D}(K_A)$ the category of K-discrete modules. A module $M \in \operatorname{Mod} A$ is K-discrete if and only if $\operatorname{Hom}_A(M, K_A)$ separates points of M.

Let $\Delta_1: \mathfrak{D}(K_A) \to \mathbb{C}({}_{\mathbb{R}}K)$ be the contravariant functor that asso-

ciates to each K-discrete module M its character module M^* and to each morphism in $\mathfrak{D}(K_A)$ its transposed morphism. The functor $\Delta_2: \mathbb{C}(_RK) \to \mathfrak{D}(K_A)$ is defined in a similar way.

We say that $\Delta_{\kappa} = (\Delta_1, \Delta_2)$ is a good duality if:

- 1) Δ_{κ} is a duality in the sense that for every K-discrete and every K-compact module M the canonical morphism $\omega_{M}: M \to M^{**}$ is an isomorphism in the corresponding category.
- 2) The category $C(_RK)$ has the extension property of characters, *i.e.* for every topological submodule L of a module $M \in C(_RK)$, any character of L extends to a character of M.

If Δ_{κ} is a duality and $\mathfrak{D}(K_A) = \text{Mod-}A$ then Δ_{κ} is necessarily good (cf. [3], Prop. 1.11).

Looking for conditions in order that Δ_{κ} be a good duality, leads us to consider strongly quasi-injective modules.

The module $M \in R$ -Mod is said strongly quasi-injective (s.q.i. for short) if for every submodule $L \leq_R M$ and every $x_0 \in M \setminus L$, any morphism $\xi: L \to_R M$ extends to an endomorphism $\overline{\xi}$ of $_R M$ such that $(x_0)\overline{\xi} \neq 0$. In particular $_R M$ is quasi-injective.

Recall that a module $M \in R$ -Mod is a selfcogenerator if for every $n \in \mathbb{N}$, given a submodule L of M^n and an element $x_0 \in M^n \setminus L$, there exists $f \in \operatorname{Hom}_R(M^n, M)$ such that (L)f = 0, $(x_0)f \neq 0$.

2.2 PROPOSITION ([2], Lemmata 2.1 and 2.5). A module $M \in R$ -Mod is strongly quasi-injective if and only if M is a quasi-injective self-cogenerator.

Let \mathcal{F} be the filter of open left ideals in the _RK-topology of R. Put

 $\mathcal{C}_{\mathcal{F}} = \{ M \in R \text{-Mod} : \operatorname{Ann}_{R}(x) \in \mathcal{F}, \forall x \in M \}.$

The modules belonging to $\mathcal{C}_{\mathcal{F}}$ will be called \mathcal{F} -torsion modules. The \mathcal{F} -torsion submodule of a module $M \in R$ -Mod will be denoted by $t_{\mathcal{F}}(M)$. For every $M \in R$ -Mod E(M) is the injective envelope of M.

Let $(S_{\lambda})_{\lambda \in A}$ be a system of representatives of left \mathcal{F} -torsion simple modules and set $S_{\mathcal{F}} = \bigoplus_{\lambda \in A} S_{\lambda}$.

2.3. THEOREM ([3], Theorem 6.7).

Let $_{R}K_{A}$ be a faithfully balanced bimodule. The following statements are equivalent.

- (a) Δ_{κ} is a good duality between $\mathfrak{D}(K_{A})$ and $\mathfrak{C}(_{\mathbb{R}}K)$.
- (b) $_{R}K$ is strongly quasi-injective.
- (c) _RK is quasi-injective and contains a copy of $S_{\mathcal{F}}$.
- (d) $_{R}K$ is quasi-injective and contains a copy of $\bigoplus t_{\mathcal{F}}(E(S_{\lambda}))$.
- (e) $_{\mathcal{R}}K$ is an injective cogenerator of $\mathcal{C}_{\mathcal{F}}$.
- (f) For every $M \in R$ -LT, for every closed submodule L of M and for every $x_0 \in M \setminus L$, any character ξ of L extends to a character $\overline{\xi}$ of M such that $(x_0)\overline{\xi} \neq 0$.

Recall that the socle Soc $(_{R}M)$ of the module $_{R}M$ is the sum of the simple submodules of $_{R}M$.

Observe that Soc $(_{R}K)$ is the sum of the annihilators in $_{R}K$ of the maximal left ideals of R. Then Soc $(_{R}K)$, being fully invariant, is a submodule of K_{A} .

2.4. PROPOSITION ([3], Proposition 6.10).

Let _RK be a s.q.i. left R-module and let $A = \text{End}(_{R}K)$. Then

- a) Soc $(_{\mathbb{R}}K)$ = Soc $(K_{\mathbb{A}})$.
- b) Soc (K_A) is an essential submodule of K_A .

2.5. PROPOSITION ([3], Corollary 7.4).

Let $_{\mathbb{R}}K$ be a selfcogenerator and $A = \text{End}(_{\mathbb{R}}K)$. Then $\text{End}(K_{\mathcal{A}})$ is naturally isomorphic to the Hausdorff completion of R in its $_{\mathbb{R}}K$ -topology.

2.6. REMARK. The theory of s.q.i. modules may be developed in the more general setting $_{R}K \in R$ -Mod and $A = \text{End}(_{R}K)$.

Let \tilde{R} be the Hausdorff completion of R in the _RK-topology. Then _RK is in a natural way a left \tilde{R} -module and the *R*-submodules of _RK are \tilde{R} -submodules. Moreover $A = \text{End}(_{\tilde{R}}K)$ and _RK is s.q.i. iff $_{\tilde{R}}K$ is s.q.i. In this case End $(K_A) = \tilde{R}$ by Proposition 2.5 and thus $_{\tilde{R}}K_A$ is faithfully balanced.

Finally $_{R}K$ -compact modules and $_{\tilde{R}}K$ -compact modules are essentially the same.

For more information about s.q.i. modules and good dualities see [3].

A characterization of discrete linearly compact rings etc. 223

3. Some useful results.

3.1. Let M be a linearly topologized Hausdorff left module over the discrete ring R. M is said to be *linearly compact* if any finitely solvable system of congruences $x \equiv x_i \mod X_i$, where the X_i are closed submodules of M, is solvable.

R is left linearly compact if $_{R}R$ is such and multiplication is continuous.

We write d.l.c. for linearly compact in the discrete topology.

The following result is essentially due to Müller ([4], Lemma 4) and Sandomierski ([5], Corollary 2, pag. 342).

3.2. PROPOSITION. Let _RK be a selfcogenerator and let $A = \text{End}(_{R}K)$. Then:

 K_A is injective if and only if _RK is linearly compact in the discrete topology.

(For a proof see [3], Theorem 9.4).

3.3. LEMMA. Let $_{R}K$ be a selfcogenerator and let $A = \text{End}(_{R}K)$. Let L be a finitely generated submodule of a module $M \in \mathfrak{D}(K_{A})$. Then every morphism of L in K_{A} extends to a morphism of M in K_{A} .

PROOF. Let $\{x_1, ..., x_n\}$ be a set of generators of L and $f \in \text{Hom}_A(L, K_A)$. Consider the subset B of K^n defined by:

$$B = \left\{ \left(g(x_1), \ldots, g(x_n) \right) \colon g \in \operatorname{Hom}_A(M, K_A) \right\}.$$

Since $\operatorname{Hom}_{A}(M, K_{A})$ is a left *R*-module, *B* is a submodule of $_{R}K^{n}$. Put $y = (f(x_{1}), ..., f(x_{n}))$.

We claim that $y \in B$. Suppose $y \notin B$. Then there exists $\alpha \in \operatorname{Hom}_{R}(K^{n}, K)$ such that

$$B\alpha = 0$$
, $y\alpha \neq 0$.

Then $\alpha = (a_1, ..., a_n)$ where $a_i \in A, i = 1, ..., n$.

For every $g \in \operatorname{Hom}_A(M, K_A)$ we have:

$$\sum_{i=1}^{n} g(x_i) a_i = \sum_{i=1}^{n} g(x_i a_i) = g\left(\sum_{i=1}^{n} x_i a_i\right) = 0,$$

thus $\sum_{i=1}^{n} x_{i}a_{i} = 0$ since $M \in \mathfrak{D}(K_{d})$.

Therefore $y\alpha = \sum_{i=1}^{n} f(x_i)a_i = f\left(\sum_{i=1}^{n} x_ia_i\right) = 0$, contradiction.

3.4. PROPOSITION. Let $_{R}K_{A}$ be a faithfully balanced bimodule.

a) If $_{R}K$ is a selfcogenerator and R is linearly compact in the $_{R}K$ -topology, then K_{A} is quasi-injective.

b) If $_{R}K$ is a cogenerator, then $_{R}R$ is linearly compact in the discrete topology if and only if K_{A} is quasi-injective.

PROOF. a) Let L be a submodule of K_A and $g \in \text{Hom}_A(L, K_A)$. We have to show that g coincides with the left multiplication by an element of R.

Let $(L_i)_{i \in I}$ be the family of all finitely generated submodules of L. By Lemma 3.3 $g|L_i$ coincides with the left multiplication by an element $r_i \in R$. Consider the following system of congruences

(1)
$$r \equiv r_i \mod \operatorname{Ann}_R(L_i).$$

Obviously $\operatorname{Ann}_{R}(L_{i})$ are closed left ideals in the _RK-topology of R and (1) is finitely solvable. Let r be a solution of (1). Then for every $i \in I$ and $x \in L_{i}$ we have $rx = r_{i}x = g(x)$.

b) Suppose that $_{R}R$ is linearly compact in the discrete topology. Then $_{R}R$ is linearly compact in any Hausdorff linear topology. Therefore K_{A} is quasi-injective. Suppose that K_{A} is quasi-injective and consider the finitely solvable system of congruences

(2)
$$r \equiv r_i \mod J_i \quad i \in I$$

where the J_i , $i \in I$, are left ideals of R. $L = \sum_{i \in I} \operatorname{Ann}_K (J_i)$ is a submodule of K_A . Define the A-morphism $g: L \to K_A$ by putting $g\left(\sum_{i \in F} x_i\right) =$ $= \sum_{i \in F} r_i x_i \text{ where } F \text{ is a finite subset of } I \text{ and, for every } i \in F,$ $x_i \in \operatorname{Ann}_{\kappa} (J_i).$

Since (2) is finitely solvable, g is well defined. Indeed suppose $\sum_{i \in F} x_i = \sum_{i \in F} x'_i$. Then there exists $u \in R$ such that $r_i - u \in J_i$, $i \in F$. $\sum_{i \in F} (r_i - u) x_i = 0$ thus $\sum_{i \in F} r_i x_i = u \left(\sum_{i \in F} x_i\right)$ and similarly $\sum_{i \in F} r_i x'_i = u \sum_{i \in F} x'_i$. Since K_A is quasi-injective g extends to an endomorphism \overline{g} of K_A . \overline{g} is the left multiplication by an element $r \in R$ so that we have for every $i \in I$ and $x \in \operatorname{Ann}_K(J_i)$, $g(x) = rx = r_i x$.

Therefore $r - r_i \in \operatorname{Ann}_R \operatorname{Ann}_K (J_i) = J_i$ since $_R K$ is a cogenerator.

REMARK. The proof of the above proposition closely follows the methods of Müller [4].

4. The main theorem.

4.1. We say that a ring A has a (right) good duality if there exists a faithfully balanced bimodule ${}_{R}K_{A}$ such that K_{A} is a cogenerator of Mod-A and ${}_{R}K$ is strongly quasi-injective. This means that Δ_{K} is a good duality between Mod-A and $C({}_{R}K)$.

We will prove that A is right d.l.c. if and only if A has a good duality.

By Proposition 3.4 b) we get the following

4.2. LEMMA. If A has a good duality then A is right d.l.c.

When $_{R}K$ is s.q.i. Proposition 3.2 may be sharpened in the following way.

4.3. PROPOSITION. Let _RK be a s.q.i. module and let $A = \text{End}(_{R}K)$. Let \mathcal{F} be the filter of open left ideals in the _RK-topology of R. Then the following conditions are equivalent.

- (a) $_{R}K$ is linearly compact in the discrete topology and Soc ($_{R}K$) is essential in $_{R}K$.
- (b) K_A is an injective cogenerator of Mod-A.

If these conditions are fulfilled then:

1) ${}_{R}K$ is a finite direct sum ${}_{R}K = \bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i}))$ where S_{i} are \mathcal{F} -torsion simple left modules.

225

A. Orsatti - V. Roselli

2) A_A is linearly compact in the discrete topology.

PROOF. By Remark 2.6 we may suppose that the bimodule ${}_{R}K_{A}$ is faithfully balanced.

 $(a) \Rightarrow (b)$. K_A is injective by Propositions 2.2 and 3.2. Let S be a simple module in the category Mod-A and let us prove that $\operatorname{Hom}_A(S, K_A) \neq 0$. Consider the exact sequence

$$0 \to P \xrightarrow{i} A \to S \to 0$$

where P is a right maximal ideal of A and i is the canonical inclusion. Since K_A is injective we have the exact sequence

$$0 \to \operatorname{Hom}_{A}(S, K_{A}) \to {}_{R}K \xrightarrow{i^{*}} \operatorname{Hom}_{A}(P, K_{A}) \to 0$$
.

Suppose $\operatorname{Hom}_A(S, K_A) = 0$. Then i^* is a continuous isomorphism of the K-compact module $_RK$ onto the K-compact module P^* . Since $_RK$ is linearly compact Soc $(_RK)$ is a direct sum of a finite number of simple modules and moreover Soc $(_RK)$ is essential in $_RK$. It is well known, and easily checked, that in this case the unique Hausdorff linear topology on $_RK$ (which is algebraically isomorphic to P^*) is the discrete one. Thus i^* is a topological isomorphism. Since the functor $\Delta_1: \mathfrak{D}(K_A) \to \mathbb{C}(_RK)$ is a good duality, i is an isomorphism. Contradiction.

 $(b) \Rightarrow (a)$. Since _RK and K_A are both s.q.i. and by Propositions 2.4 and 3.2 the conclusion is reached.

Suppose now that conditions (a) and (b) are fulfilled.

1) Soc $(_{R}K)$ is d.l.c. thus it is the direct sum of a finite family $\{S_{1}, ..., S_{n}\}$ of left \mathcal{F} -torsion simple modules. For every i = 1, ..., n $_{R}K$ contains a copy of $t_{\mathcal{F}}(E(S_{i}))$ since $_{R}K$ is an injective object in $\mathcal{C}_{\mathcal{F}}$ (see Theorem 2.3). Thus $_{R}K$ contains a copy of $\bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i}))$. Put $K_{0} = \bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i}))$ and let $E(K_{0})$ be the injective envelope of K_{0} . Then $E(K_{0}) = \bigoplus_{i=1}^{n} E(S_{i})$. The identity map on K_{0} extends to a morphism $j: {}_{R}K \to E(K_{0})$. Since ${}_{R}K$ is \mathcal{F} -torsion, $j({}_{R}K) \leq t_{\mathcal{F}}(E(K_{0}))$ and since $t_{\mathcal{F}}(E(K_{0})) = K_{0}, j({}_{R}K) = K_{0}$. Thus K_{0} is a direct summand of $_{R}K$ and contains the socle of $_{R}K$. Hence $_{R}K = K_{0}$.

Statement 2) follows from Proposition 3.4 b) since K_{4} is a cogenerator and $_{R}K$ is quasi-injective.

4.4. PROPOSITION. Let A be a right d.l.c. ring, J(A) the Jacobson radical of A, U_A the minimal cogenerator of Mod-A, $R = \text{End}(U_A)$. Then:

- a) A/J(A) is a semisimple artinian ring, and thus Mod-A has only a finite number of non isomorphic simple modules, so that U_A is injective.
- b) The bimodule $_{R}U_{A}$ is faithfully balanced.

PROOF. a) By a well known result of Zelinski (cf. [8]), A/J(A) is semisimple artinian, so that A has only a finite number of right maximal ideals. Since U_A is the direct sum of one copy of the injective envelope of each simple module, U_A is the direct sum of a finite number of injective modules, thus U_A is injective.

b) Since U_A is a selfcogenerator the endomorphism ring of $_RU$ is the Hausdorff completion of A in the K_A -topology by Proposition 2.5. On the other hand A is right d.l.c. so that A is complete in any right linear Hausdorff topology. Thus $A = \text{End} (_RU)$.

Recall that a module M is *finitely embedded* if M is an essential submodule of a finite direct sum of injective envelopes of simple modules.

4.5. LEMMA ([6], Lemma 1.3; [4], Lemma 2). Let $\{M_i\}_{i\in I}$ and H be submodules of a d.l.c. module M. Suppose that $\bigcap_{i\in I} M_i \leqslant H$ and that M/H is finitely embedded. Then there exists a finite subset F of I such that $\bigcap_{i\in F} M_i \leqslant H$.

4.6. LEMMA. Let _RK be quasi-injective and $A = \text{End}(_{R}K)$. Then _RK is s.q.i. if and only if for every submodule L of _RK it is Ann_K Ann_A (L) = L.

4.7. THEOREM. Let A be a ring, U_A the minimal cogenerator of Mod-A, $R = \text{End}(U_A)$. The following conditions are equivalent:

- (a) A is right linearly compact in the discrete topology.
- (b) _RU is strongly quasi-injective and End (_RU) = A.
- (c) Δ_U is a good duality between Mod-A and $\mathbb{C}(_{\mathbb{R}}U)$.
- (d) A has a good duality on the right.

227

- (e) For every faithfully balanced bimodule $_{T}K_{A}$, if K_{A} is a cogenerator then $_{T}K$ is quasi-injective.
- (f) $A = \text{End}(_{\mathbf{T}}K)$ where $_{\mathbf{T}}K$ is a discrete linearly compact and strongly quasi-injective module with essential socle.

Moreover:

- 1) If condition (a) is fulfilled, then A is semiperfect, U_A is an injective cogenerator and $_{R}U$ is discrete linearly compact with essential socle.
- 2) If condition (f) is fulfilled, then K_A is an injective cogenerator of Mod-A and $_{T}K$ is a finite direct sum of modules of the form $t_{\mathcal{F}}(E(S))$ where S in an \mathcal{F} -torsion simple T-module.

PROOF. (a) \Rightarrow (b). $A = \text{End} (_{R}U)$ and U_{A} is an injective cogenerator by Proposition 4.4. Thus, by Proposition 3.4 b), $_{R}U$ is quasiinjective. Let L be a submodule of $_{R}U$ and let us show that $\text{Ann}_{\sigma} \text{Ann}_{A}(L) = L$, from which it will follow that $_{R}U$ is s.q.i., by Lemma 4.6.

First of all observe that we have a good duality

$$\mathfrak{D}(_{R}U) \xrightarrow{\mathcal{A}_{1}} \mathfrak{C}(U_{A})$$

by Theorem 2.3 and since U_A is s.q.i.

Being L an $_{\mathbb{R}}U$ -discrete module, $\Delta_1(L)$ is $\operatorname{Hom}_{\mathbb{A}}(L, _{\mathbb{R}}U)$ endowed with the finite topology and $\Delta_2\Delta_1(L) = \operatorname{Chom}_{\mathbb{A}}(\Delta_1(L), U_{\mathbb{A}})$. We claim that

$$\operatorname{Chom}_{\mathcal{A}}(\varDelta_1(L), U_{\mathcal{A}}) = \operatorname{Hom}_{\mathcal{A}}(\varDelta_1(L), U_{\mathcal{A}})$$

For every $a \in A$ denote by v_a the right multiplication by a in U. Since $_{R}U$ is quasi-injective every character of L is of the form $v_{a|L}$. Let $\varphi \in \operatorname{Hom}_{4}(\Delta_{1}(L), U_{4})$ and consider the diagram

where $j(a) = v_{a|L}$.

229

Obviously $\operatorname{Ann}_{\mathcal{A}}(L) \leq \operatorname{Ker}(\varphi \circ j)$, thus

$$\bigcap_{y \in L} \operatorname{Ann}_{A}(y) \leq \operatorname{Ker}(\varphi \circ j) \leq A.$$

Now A is linearly compact discrete, $A/\text{Ker}(\varphi \circ j)$ is a submodule of U_A and U_A is finitely embedded. Therefore it follows from Lemma 4.6 that there exists a finite subset F of L such that

$$\bigcap_{x \in F} \operatorname{Ann}_{A}(x) \leq \operatorname{Ker}(\varphi \circ j)$$

Put $W(F) = \{\xi \in \operatorname{Hom}_R(L, _RU) : F\xi = 0\}.$

Note that $W(F) \leq \operatorname{Ker} \varphi$. Indeed if $F\xi = 0$ there exists $a \in A$ such that $\xi = v_{a|L}$ and $(\varphi \circ j)(a) = 0$. Therefore $\varphi(v_{a|L}) = 0$. Since W(F) is an open submodule of $\Delta_1(L)$, φ is continuous.

Therefore

$$\Delta_2 \Delta_1(L) = \operatorname{Hom}_A (\Delta_1(L), U_A) = \operatorname{Hom}_A (\operatorname{Hom}_R (L, {}_RU), U_A).$$

Since $_{R}U$ is quasi-injective there exists the natural isomorphism

$$\psi: A/\operatorname{Ann}_{A}(L) \to \operatorname{Hom}_{R}(L, {}_{R}U)$$

given by $\psi(a + \operatorname{Ann}_{A}(L)) = v_{a|L}$.

Using ψ we have the natural isomorphisms

$$\Delta_2 \Delta_1(L) \xrightarrow{f_1} \operatorname{Hom}_A\left(\frac{A}{\operatorname{Ann}_A(L)}, U_A\right) \xrightarrow{f_2} \operatorname{Ann}_{\sigma} \operatorname{Ann}_A(L) .$$

Putting $f = f_2 \circ f_1$, f works as follows:

for every $\xi \in \Delta_2 \Delta_1(L)$, $f(\xi) = (\xi \circ \psi \circ \pi)(1)$ where $\pi \colon A \to A/\operatorname{Ann}_A(L)$ is the canonical mapping.

Let us show that the diagram

is commutative, where *i* is the inclusion and ω_L is the natural morphism. Since Δ_U is a duality, ω_L is an isomorphism.

Let $x \in L$. It is

$$\begin{aligned} (f \circ \omega_L)(x) &= (\omega_L(x) \circ \psi \circ \pi)(1) = \omega_L(x)[(\psi \circ \pi)(1)] = \\ &= [(\psi \circ \pi)(1)](x) = [\psi(1 + \operatorname{Ann}_A(L))](x) = v_{1|L}(x) = i(x) \,. \end{aligned}$$

- $(b) \Rightarrow (c)$ is obvious.
- $(c) \Rightarrow (d)$ is obvious.
- $(d) \Rightarrow (a)$ follows from Lemma 4.2.
- $(b) \Rightarrow (f)$ We know that $A = \text{End}(_{R}U)$ and that $_{R}U$ is s.q.i.

Since $(a) \Leftrightarrow (b)$, it follows from Proposition 4.4 that U_A is an injective cogenerator of Mod-A. Then by Proposition 4.3 _RU is d.l.c. with essential socle.

- (f) \Rightarrow (a) By Proposition 4.3.
- (e) \Leftrightarrow (a) follows by Proposition 3.4 b).

1) Recall that A is semiperfect if A/J(A) is semisimple artinian and the idempotents of A/J(A) can be lifted in A.

If A_A is d.l.c. then A/J(A) is semisimple artinian by Proposition 4.4. On the other hand, by (f), A is the endomorphism ring of a quasiinjective module, thus by a well known result the idempotents of A/J(A) can be lifted in A.

2) Follows from Proposition 4.3.

REMARK. The equivalence between conditions (a) and (f) has been found by Sandomierski ([5], Theorem 3.10 pg. 344). Moreover it is well known that a d.l.c. ring is semiperfect.

5. Further results.

5.1. PROPOSITION. Let B and A be two Morita equivalent rings and suppose that B_B is discrete linearly compact. Then A_A is discrete linearly compact.

PROOF. This proposition may be obtained using some results of Sandomierski ([5], Corollary 1, pg. 336).

230

We give here a simple direct proof by means of good dualities. Let Mod- $A \rightleftharpoons_{G}^{F}$ Mod-B an equivalence and ${}_{A}P_{B}$ a faithfully balanced bimodule such that P_{B} and ${}_{A}P$ are both progenerators and $F = - \bigotimes P_{B}$, $G = \operatorname{Hom}_{B}(P_{B}, -)$ (see [1], Theorem 22.2).

Let U_B be the minimal cogenerator of Mod-B and $R = \text{End} (U_B)$. Then by Theorem 4.7, Δ_{σ} is a good duality. Consider the diagram

where $D_1 = \varDelta_1 \circ F$.

Clearly D_1 is a duality and for every $M \in Mod-A$

$$egin{aligned} D_1(M) &= arDelta_1 \Big(M \mathop{\otimes}_A P_B \Big) = \operatorname{Hom}_B \Big(M \mathop{\otimes}_A P_B, \ U_B \Big) \cong \ &\cong \operatorname{Hom}_A ig(M, \operatorname{Hom}_B(P_B, \ U_B) ig) \cong \operatorname{Hom}_A ig(M, G(U_B) ig), \end{aligned}$$

the isomorphisms being canonical and topological. Put $G(U_B) = K_A$. Since U_B is an injective cogenerator of Mod-B, K_A is an injective cogenerator of Mod-A (see [1], Proposition 21.6). Clearly End $(K_A) = R$. Let us show that $C(_RK) = C(_RU)$ and that $_RK_A$ is faithfully balanced. It is $\Delta_1(P_B) = \operatorname{Hom}_B(P_B, U_B) \cong _RG(U_B) = _RK$ so that $C(_RK) \subseteq C(_RU)$. Moreover $A = \operatorname{End}(_RK)$. In fact

End
$$(_{\mathbb{R}}K)$$
 = End $(\varDelta_1(P_{\mathbb{R}})) \simeq$ End $(P_{\mathbb{R}}) = A$, canonically.

Thus $_{R}K_{A}$ is faithfully balanced.

Since P_B is projective and finitely generated, B is a direct summand of P_B^m where m is a positive integer. Then $_{R}U = \operatorname{Hom}_{B}(B, U_B)$ is a direct summand of $\operatorname{Hom}_{B}(P_B^m, U_B) = _{R}K^m$, therefore $C(_{R}U) \subseteq C(_{R}K)$.

Thus $C(_RK) = C(_RU)$.

We know that $D_1 = \operatorname{Hom}_4(-, K_A)$ endowed with the finite topology. On the other hand since K_A is a cogenerator, $\mathfrak{D}(K_A) =$ = Mod-A. Therefore, by 2.1, D_1 gives a good duality between Mod-A and $\mathcal{C}(_RK)$. Thus, by Theorem 4.7, A_A is d.l.c.

5.2. Recall that a semiperfect ring B is a basic ring if B/J(B) is a ring direct sum of division rings. It is well known (see [1], Proposition 27.14) that any semiperfect ring is Morita equivalent to a basic ring, which is unique up to isomorphisms. Our aim is to give a description of the basic ring of a right d.l.c. ring by means of a representation of it as endomorphism ring.

5.3. PROPOSITION. Let A be a right d.l.c. ring, U_A the minimal cogenerator of Mod-A, $R = \text{End}(U_A)$, \mathcal{F} the filter of open left ideals in the _RU-topology of R. Then the basic ring B of A is isomorphic to the endomorphism ring of the minimal cogenerator of $\mathcal{C}_{\mathcal{F}}$, i.e.

$$B \cong \operatorname{End}_{R}\left(\bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i})) \right)$$

where $(S_i)_{i=1,...,n}$ is a system of representatives of the non isomorphic simple \mathcal{F} -torsion left R-modules.

PROOF. Let $\{S_1, ..., S_n\}$ be a system of representatives as above. Then by Theorem 4.7 and Proposition 4.3, A is the endomorphism ring of the left *R*-module

$$_{R}U = \bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i}))^{m_{i}}$$

where m_i are suitable positive integers (in general >1, as may be showed by examples).

Put
$$_{R}K = \bigoplus_{i=1}^{n} t_{\mathcal{F}}(E(S_{i})), B = \operatorname{End} (_{R}K).$$

It is clear that $_{R}K$ is strongly quasi-injective, discrete linearly compact with essential socle.

Thus K_B is an injective cogenerator of Mod-*B* by Proposition 4.3. Note that $_RK_B$ is faithfully balanced since the $_RK$ -topology of *R* coincides with the $_RU$ -topology and using Proposition 2.5. Moreover it is obvious that $C(_RK) = C(_RU)$. Since Δ_U is a good duality between Mod-A and $C(_RU) = C(_RK)$ and Δ_K is a good duality between Mod-B and $C(_RK)$, it follows that A and B are Morita equivalent so that B_B is d.l.c., hence semiperfect.

To conclude it is enough to show that B/J(B) is a ring direct sum of division rings (see [1], Propositions 27.14 and 27.15).

For every i = 1, ..., n put $P_i = Ann_B(S_i)$ and consider the exact sequence

$$0 \to S_i \to {}_RK \to {}_RK/S_i \to 0$$
.

Since $_{R}K$ is quasi-injective and S_{i} is fully invariant in $_{R}K$, applying $\operatorname{Hom}_{R}(-, _{R}K)$ we get the exact sequence

$$0 \to P_i \to B \to \operatorname{End}_R(S_i) \to 0.$$

Then $D_i = B/P_i \cong \operatorname{End}_R(S_i)$ is a division ring and P_i is a maximal ideal of B.

We claim that $J(B) = \bigcap_{i=1}^{n} P_i$. It is clear that $J(B) \leq \bigcap_{i=1}^{n} P_i$. On the other hand let $b \in J(B)$. Since $_{R}K$ is quasi-injective, Ker (b) is essential in $_{R}K$, thus ker (b) contains $\bigoplus_{i=1}^{n} S_i$ which is the essential socle of $_{R}K$. Therefore $b \in \bigcap_{i=1}^{n} P_i$. Then B/J(B) is the ring direct sum of the division rings D_i . i=1

Acknowledgement. We are indebted to C. MENINI for a number of useful suggestions.

REFERENCES

- F. W. ANDERSON K. R. FULLER, Rings and categories of modules, Springer-Verlag, New York, 1974.
- S. BAZZONI, Pontryagin Type Dualities over Commutative Rings, Annali di Mat. Pura e Appl., (IV), 121 (1979), pp. 373-385.
- [3] C. MENINI A. ORSATTI, Good dualities and strongly quasi-injective modules, to appear in Annali di Mat. Pura ed Applicata.
- [4] B. J. MÜLLER, Linear compactness and Morita duality, J. Alg., 16 (1970), pp. 60-66.

A. Orsatti - V. Roselli

- [5] F. L. SANDOMIERSKI, Linear compact modules and local Morita duality, in Ring Theory, ed. R. Gordon, New York, Academic Press, 1972.
- [6] P. VAMOS, Classical rings, J. Alg., 34 (1975), pp. 114-129.
- [7] P. VAMOS, *Rings with duality*, Proc. London Math. Soc., (3), 35 (1977), pp. 275-289.
- [8] D. ZELINSKY, Linearly compact modules and rings, Amer. J. Math., 75 (1953), pp. 79-90.

Manoscritto pervenuto in redazione il 16 luglio 1980.