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On Some Algebraic and Geometric Extension
of the Theory of Adjoints.

LUCA CHIANTINI (*)

In the classical literature there are various definitions of adjoint
divisor to a plane curve over an algebraically closed field (see [B-N],
[Go], [K], [W]). In [G-V] there is an ample discussion on the rela-
tions between the concepts of adjoint to a curve on a smooth surface
with an investigation on the conductor sheaf and on effective passage
through neighbouring points.

In the present paper we extend the idea of adjoint to a more
general situation. We consider an excellent curve on a regular surface
without any assumption on the base field (it may be not algebraically
closed, or even missing). Our investigation shows that all the classical
definitions may be easily given and compared. This is more or less
the content of the first section where we prove that some relations
established in [G-V] again hold, but in this general case we have two
ways to define the order of a branch, which give rise to two distinct
definitions of adjoint. Only the  algebraic » way leads to a «good »
definition.

The second section is concerned with the permanence of adjonc-
tion in some class of morphisms; more precisely we consider a faith-
fully flat morphism 99: Y 2013~J~ of regular surfaces and the curve 

(*) Indirizzo dell’A.: Istituto Matematico del Politecnico, Corso Duca

degli Abruzzi 24, Torino.
Paper written while the autor was member of G.N.S.A.G.A. The autor

wishes to thank prof. S. Greco and prof. P. Valabrega for their useful sugges-
tions in the preparation of the paper.
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on Y. We can show that if 99 is normal at a point P E D then a di-
visor H is adjoint (of any kind excluded the « wrong)) one) to D at P
if and only if cp*(H) is such to cp*(D) at every point of 

Preliminaries.

1 ) A scheme X is « excellent » if it has an open cover of affine

subsets {Ui} where SpecA, and Ai is an excellent ring (for
properties of excellent rings see [M] ch. XIII).

The «points ~&#x3E; of X are the closed points.

2) A scheme X is a surface if it is locally noetherian and has
dimension 2; when .X~ is a regular surface, an effective Cartier divisor
of .~ is called a « curve on .X &#x3E;&#x3E; if its associated closed subscheme is
reduced. Note that a regular surface need not be smooth, i.e. it is

not necessarily geometrically regular over a base field, unless it is

perfect.

We consider only excellent curves on regular surfaces.

3 ) Words as « singular points », « normalization », « blowing up »,
etc. are used in the sense of [G-V]. We recall that the « conductor
sheaf » of a curve D is the sheaf where D is the nor-
malization.

~ 4) It is well known that given any excellent curve D on a re-
gular surface, there is a chain of blowing up’s of .X along singular
points of D, of finite length and such that the induced chain on D:

normalizes the curve. A point which
belongs to some strict transform of D in this chain is called « neigh-
bouring point of D &#x3E;&#x3E; while a point of D is called also an « actual »
point. A point Q of the normalization of D which lies over the actual
point P E D is called « place » over P. Since the local ring of Q in D
is a D.V.R., we have a canonical valuation associated with Q. If Pi
is the center of the blowing up of D i , the set of points of D,~i lying
over Pi is called ((first neighbour of Pi in Di ». If Q is a place over P, a
chain P = Po- Px- ... - P, = Q, where Vi is in the first neigh-
bour of Pi , is called « branch of D with center P)). For more details,
see [G-V], § 2, or [V], § 4.
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5) The « multiplicity » of a Cartier divisor H at a point P of X
is 0 if P 0 H, otherwise it is the algebraic multiplicity of the local
ring of H at P (see [Z-S], vol. 2, ch. VIII, p. 294). If P is a non actual
point of .X’, the multiplicity of .H’ at P is the multiplicity at P of a
strict transform of .H on a strict transform of X where P is actual.

I) DEFINITIONS OF ADJOINT DIVISOR

Through this section X is always a regular surface, D is an ex-
cellent curve on X, H is an effective Cartier divisor of X and P an
actual point of D.

1. Order of a hanach.

Le (A, m) be the local ring of D at P; it is well known that the
places of D with center P correspond one-to-one both to the maximal
ideals of the normalization A of A and to the minimal prime ideals
of the completion .A" of A (see [G1], Th. 2.1).

DEFINITION 1.1. Zet Q be a place of D over P, n the corresponding
maximal ideal of A and p the corresponding minimal prime of A ". We
define:

1) « Algebraic order &#x3E;&#x3E; of the branch P - Q the number

2) « Analytic order » of the branch P - Q the number 

(e = multiplicity, l = length, see vol. 2, ch. VIII).
PROPOSITION 1.2. Let P - Q be a branch of D, Zl its algebraic order

and Z2 its analytic order. Then Zl and the equality holds if and only
i f K(P) = K(Q) (K(.) = residue field).

PROOF. ’W’e write B for A n and C for It is well known
that B^ is isomorphic to C (see [G-V], Remark at p. 6) . B is a D.V.R.,
hence principal; put n = nB = (x) and mB = (x)q = (xq) ; we have :



204

lB(BfmB) = q and q = Zl; moreover B~ is local, its maximal ideal
is xB~ hence:

and

On the other hand we have: ~3= e(C) = co(mO) (see [Z-S], vol. 2,
p. 294). _

Now, C = B~ is a local domain and ~C = xqB- is nB"-primary,
thus we may apply the equation 8’ at p. 300 of [Z-S] getting:

where 8 == CIMC] is the dimension of B~/nB~ - B/nB =
K(Q) as a C/mC = = K(P) vector space.

Since olbviously E &#x3E; 1, we have and E = 1 if and only if

K(Q) = K(P).
If is algebraically closed, then automatically K(P) = K(Q).

The previous proposition is well known in the classical theory of

projective curves over an algebraically closed field. It has been also
more or less proved in [C].

We give an example of a branch such that z, ~ z2.

EXAMPLE 1.3. Let .X be the affine plane over the real field R, D the
curve defined by x2 + y~. It is easy to check that D has multiplicity 2
at P--- (0, 0). The local ring 0,,, is (R[x, y]/(x2 + y2))(x,1I) and it is

isomorphic to A == R[T, 
We have and (C = complex field).

Since A" is a domain, we have only a place Q of D over P, which
corresponds to the null ideal of A~ and to the maximal ideal of A.

Look at the orders of the branch P - Q. We have:

while, using the Jordan-Hölder equality (see [Z-S], vol. 1, p. 160), y a
straightforward computation shows that z2 = 2.

2. Adjoint divisors.

Through this section we discuss various definitions of adjoint
divisor to a curve D, extending to the case of an excellent curve on a
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regular surface concepts which are classically well known for algebraic
curves over an algebraically closed field.

First we start with « local definitions &#x3E;&#x3E;, involving a single singular
point P of D ; then we shall try to globalize our concepts.

DEFINITION 2.1. i) H is « Al to D at P &#x3E;&#x3E; (P actual point of D) if
it passes through every r-fold actual or neighbouring point of D lying
over P with multiplicity r -1 (at least). I f the multiplicity of H at
every such point is exactly r -1, we say that H is a « special adjoint
(AS) )) to D at P.

ii) H is « A2 to D at P &#x3E;&#x3E; if its local equations in 0 D,P belongs to
the stalk of the conductor sheaf of the curve at P.

iii) Let T(P = Po - Pl - ... -Pn= Q) be a branch of D with
center P. We say that the number (si-1) ri, where si = ep,(D)
and ri = algebraic (resp. analytic) order of the branch Pi- Q, is the
« algebraic (resp. analytic) coefficient of the branch ».

We de fine on the normalization D of D the « algebraic (resp. analytic)
divisor of double points of D over P v as L dQQ where Q ranges over
the places of D with center P.

iv) We say that H is « algebraic (resp. analytic) A3 to D at P))
if and only if for every branch P - Q with center P, we have : vQ(h»dQ, 7
where vQ = valuation associated with Q, h = local equation of H in °D,P
and dQ = algebraic (resp. analytic) coefficient of the branch P - Q.

PROPOSITION 2.2. If H is Al to D at P, then it is A2 to D at P.
If D is desingularizable at P with one blowing up, then also the converse
holds.

PROOF. The proof of the first statement is faithfully equal to
the proof of [G-V] Th. 4.3 i), we only need to make a suitable use of
Prop. 3.11 of [G-V].

To see the converse, put (A, m) = local ring of D at P ; then by
our hypothesis and by Prop. 3.12 of [G-V], the conductor of A is
ms-I where s = ep(D). The claim follows easily from the definitions.

There are divisors A2 but no Al to a curve D at a point P even
in the case of the affine complex plane. See [G-V], Ex. 4.6.

The next statement easily follows by Prop. 1.1.

PROPOSITION 2.3. I f H is A3An to D at P, then it is A3Alg to D
at P. I f for every place Q of D over P we have K(Q) = K(P) (e.g. if
K(P) is algebraically closed) then also the converse holds.
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EXAMPLE 2.4. We give an example of a divisor which is A3Alg
but not A3An to a curve at a point. We use the curve of Ex. 1.3.
If Q is the (unique) place of D over P - (o, 0), then the algebraic
divisor of double points of D over P is Q itself, while the analytic
one is 2Q. Now, it is immediate that the divisor .H’ defined by x - y
is A3Alg but not A3An to D at P.

THEOREM 2.5. H is A2 to D at P if and A3Alg to D at P.

PROOF. Put (A, m) = OD,P and let (A, %1 , ... , nk) be its normaliza-
tion ; put YA = conductor of A and h = local equation of H at P.

Since A,,, is a D.V.R., we have:

moreover by [G-V] 3.12:

where the mr’s are the maximal ideals corresponding to the center
of some blowing up in the desingularization of D and sr = e (mr ) . It

follows:

where mri= ideal of the r-th point of the branch P_- Q i (Q is the
place corresponding to by the fact that i4n, is a D.V.B. :

the algebraic coefficient of the branch hence:

If H is A2 to D at P, then h E yA, hence Vi the image h i of h in
An; belongs to (niAni)ài; this is just as to say that vi(h) ~ di, where vi
is the valuation associated with Q, .

Conversely, if H is A3A1g to D at P, then we have Vi :

and by [B], p. 111-112, h belongs to
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LEMMA 2.6. Let A be a non normal local ring with f inite normaliza-
tion A ; then the conductor YA is not contained in any principal ideal
generated by a regular element.

PROOF. If where a is a regular element, then VXE’fA’
x = ax’ and by definition of conductor we have since
normalization preserves regular elements, a is regular in A too ; it

follows that y~ thus x’ E y~ and x’ = aA. Repeating the argu-
ment, we obtain x E n anA = (0) that is yA = (0), absurd.

PROPOSITION 2.7. Let X be a regular surface and P a point of X
such that K(P) is infinite. Let D be a curve on X through P and H a
divisor which is A2 to D at P. Then there are divisors Hi , ... , Ht which
are AS to D at P and such that if h, hl, ... , ht are local equation
in for them, then h = ~ hi .

PROOF. Put (A, m) and let A = ... A. = A
be a desingularization of A ; put mi = center of the blowing up 

emi(Ai) and Vi choose a regular element xiE Ai such that’
(it is possible, see [Mt], Th. 12.2).

By [G-V] 4.11 our claim is proved if we show by induction on
the length of the desingularization, that we have h = ~ hj (finite
sum) where h is a local equation of .g at P and the hi Is are elements
of A such that :

The step n = 0 is obvious and the step n = 1 follows at once by
Prop. 2.2, thus suppose n &#x3E; 1. By our assumption we have (see [G-V],
3.12): hEy A = and h = where h’E ’Y AI’ hence by induc-
tion h’ = Eh’j where the h’,js fulfil conditions i) and ii). If Vj

we put h, = and we are done.

Assume By Lemma 2.6 there is 1 and by
induction again, write f’= ~ f j where the fulfil conditions i) and
ii). At least one of the say f§, does not belong to xoAl.

Put h’/ r -1 ... xri-11 and z,,i = initial form of h’,i in the asso-U i,i 
= 

IL /xr1-11 ... i an z1,i = InI Ia orm 0 I In e asso-

ciated graded similarly we define the elements ti,2 and
their initial forms w,,i; since Vi, ia an A/m vector space,
using [G-V] 4.12 we find such that Vi, a’ Wl,ï"=F Zl,i. Lift a’ f

to an element then put Now, 1ai - g1 and both
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fulfil condition i) and ii), do not belong to zouii and they can re-
place h’. Repeating the argument we see that we may suppose Vj,

hence we are done.

3. Global statements.

We can restate our theory in a global form simply defining H
adjoint of any kind to D if and only if it is such at every singular point
of the curve. The following proposition is an obvious consequence
of the statements of the previous section.

PROPOSITION 3.1. i) If H is D, .A2 to D. The con-
verse holds when only a blowing up at every singular point is needed
to normalize D.

i) H is A2 to D if and only i f it is A3Alg to D.

iii) I f H is A3An to D then it is also A3Alg to D; the converse
holds if for every singular point P of D and every place Q of D over P
we have I~(P) _ KK(Q).

The following example shows that Prop. 2.7 is not true in a global
form.

EXAMPLE 3.2. Put Y = A~ and let C be a cuspidal cubic curve
on it. Let X denote the regular surface obtained glueing two copies Y,,
and Y, of Y along Y - C (we use the glueing of [H], p. 80, Ex. 2.12;
namely we obtain an affine complex plane with the curve C « doub-
led ~)) - Let 01 and O2 be the two unglued copies of C ; let C’ be the
image on X of another cuspidal cubic curve on Y, whose cusp is a
regular point of C. Put D = C’+ C, (sum of divisors, i.e. local prod-
uct of the equations), thus D is a curve on X and it is singular at the
cusp P1 of 01 (double point), at the cusp P2 of C’ lying over C, (triple
point) and at the other cusp of C’ (double point).

We have the two following easy facts:

a) every divisor of ~ comes from both a divisor of Yl and of Y2;

b) if a divisor .H of X does not contain Ci, then eps(H) 
A divisor AS to D must pass twice through P2 and only once

through P3 thus by b ) a divisor which does not contain 01 cannot
be AS to D while for every divisor .H’ which contains C, we have
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epl(H»2 hence no divisor is AS to D. On the other hand there are
divisors A2 to D and this shows that the divisors of Prop. 2.7 cannot
in general be chosen globally AS to the curve.

This Example however is rather pathological: we have a non-
separated surface and there is not an affine open subset of X contain-
ing all the singular points of D.

With a slight modification of the proof of Prop. 2.7 one can easily
check that the following statement holds:

If D is an excellent curve on a regular surface X and:

a) there is an open affine subset of .~ which contains all the

singular points of D ;

b) the residue fields at the points of Sing D are infinite;
then for every divisor .g A2 to D there are divisors .gx, ... , J3~ globally
AS to .D which satisfy the claim of 2.7 at every point of Sing D.

(To prove it, start with the semilocal ring A of the singular points
of D then follow the proof of 2.7, using the fact that the desingula-
rization trees of two distinct points do not overlap.)

II) ADJOINTS AND MORPHISMS

Our purpose is to look for morphisms which preserve adjoint di I

visors. We begin pointing out some (already known) algebraic result

LEMMA 1.1. Let A, B be reduced local rings and A -~ B a f aith-
fully flat morphism; let yB be the conductors. Then:

i) 

ii) if moreover A is finite over A and B = A ~x ~ B then yB = 
henee yB n A 

PROOF. i) Let h G YBn A ; then but by [N]
18.4 we have B n A = A.

ii) ?JAB == = and by [N] 18.1, this is equal
to = yB ; using i) we see that yB n A 

REMARK 1.2. If cp is normal and faithfully flat, then = B

Prop. 1). If and cp is faithfully flat
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and reduced, then its fibers are reduced artinian hence it is also

regular.

LEMMA 1.3. Let (A, m), (B, n) be reduced local rings and A - B a

faithfully flat morphism such that mB = n. Then e(A) = e(B).

REMARK. The hypothesis mB = n is satisfied if dim A = dim B
and 99 is faithfully flat and reduced, namely in this case, by the going
down theorem, the fiber over m is reduced and artinian.

PROOF. 99 is dominant, injective and by [N] 19.1 the theorem of
transition holds for A and B, thus, since mB = ~2, we have lB(Blnr) ==
= = 1A(A/Mr) and A and B have the
same Hilbert function.

If (p: Y - X is a morphism of schemes and I’ is an Ox-module
we define as the 0,-module (see [H], p. 110). On
the stalks it corresponds to consider VQ E Y the OY,Q-module 0 YIQ

where P=~(9). 
’

If F is an Og-ideal we may also consider the 0,-ideal 
which is defined by F through the canonical morphism
(see [H], p. 163); on the stalks it corresponds to consider

the extended ideal F pO y,Q in the canonical morphism 0 y,Q .
There is a canonical morphism and it is obvious that

when q is flat, = rOp.
If H is a divisor and q is faithfully flat, then is still a divisor,

namely our previous argument shows that its stalk is generated at
every point Q E Y by the image of a local equation of H at cp(Q).

LEMMA 1.4. Let 99: Y -~ X be a flat morphism of locally noetherian
schemes, I a quasi-coherent Og-ideaZ. Put:

X = blowing up of X along I ; r blowing up of Y along J = cp* I .
Then Xg.X.

PROOF. Look at the canonical diagram
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where Y’= Y XxX. Since it is commutative, we have: JO,, = =

= Since T and 99’ are flat, we have: 
and similarly since IOi is invertible, cp’* lOx is
invertible too (see [S], § 2).

Let Z be another scheme with a morphism Z - Y such that

ioz is invertible; then 10z is invertible and by the universal property
of the blowing up we have a morphism a: Z - X and a commutative
diagram

which, y by the universal property of the fibred product, is closed
with a This works for every such Z, hence
X XxY fulfils the universal property of the blowing up.

Using again the universal property of the blowing up, it is easy
to check the following

LEMMA 1.5. Let X be a locally noetherian scheme and let 11, ..., In
be a f inite collection of pairwise comaximal Ox-ideal. If X is the blow-
ing up of X atong fl li i and chain o f blow-
ing up’s, where f i is a blowing up along Ii, then X = Xn.

2. Ascent and descent of adj oint divisors.

Through this section X and Y are regular surfaces, D is an ex-
cellent curve on X, H is an effective Cartier divisor of X, cp : ~ --~ Y
is a faithfully flat morphism such that D’ = is still reduced (hence
a curve on Y) and excellent. Let 99.,, be the induced map D’ - D.

We shall show that Al and A2 are stable under faithfully flat
normal morphisms while A2 descends if the morphism is only faith-
fully flat.

REMARK 2.1. We are strongly interested in the case in which
or CPD are normal at a point P E D (that is, when VQ E gg-’(P), the
fibers of the morphism ~ are geometrically normal and the
morphism is fiat) .
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If ’BIQ E dim °D,P = dim then, as in Remark 1.2, 99D
has artinian fibers at P, hence if it is reduced, it is also normal (even
regular). Note that, since is the quotient of 0,,p by a regular
element, we have and the same happens to
OD,,Q ; it follows that the equality dim OD,P = dim 0,  holds if and
only if dim °x,p== dim 0,,Q (hence it does not depend on the divisor D
but only on the point and on the surface).

By faithful flatness, we have always dim dim Oy,Q hence when
dim 0x p = 2 the equality holds, however a surface may have points P
of codimension less than two (take for example on X = Spec [y]
the point associated with the maximal ideal (1- xy)).

We have the two following basic situations:

i) dim 0,p = if 99D is reduced at P, it is automatically
normal (even regular).

ii) dim = 0 and dim = 1; if 99D normal is needed, it is
not enough to require CPD reduced. In fact in this case K = OD,1, =
- field, A = OD,,Q == 1-dimensional geometrically reduced K-algebra,
and it is well known that A may be not geometrically regular (see
also Ex. 3.4).

When dim OD,P = 0, P is a component of D (not embedded since D
is reduced) and since a reduced subscheme of .~ must be regular at
the generic point of every component, P is a regular point of D ; in
any case if D has such a point, it has a component of dimension 0
and this shows that dim may happen only in a some-
what pathological situation.

Observe also that when 2, then the fiber of 99 over P
is artinian, hence is a finite set of points (never empty by
faithful flatness).

THEOREM 2.2. Zet q*(H) be A2 to D’ at a point Q E q-i(P) ; then H
is A2 to D at P. If moreover CPD is normal at P, then the following are
equivalent :

a) H is A2 to D at P;

b) cp*(H) is A2 to D’ at every point Q E gg-’(P);
c) cp*(H) is A2 to D’ at a point Q E gg-’(P).

PROOF. Let h be a local equation for H in OD P and yp and yQ be
the conductors of OD,P and OD’,Q respectively. By our hypothesis and
by Lemma 1.1 hence and the first claim follows.
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To prove the second, we only need to show that a) ~ b), but if h e yp
again by Lemma 1.1, for every Q e belongs to the conductor
of OD’,Q.

REMARK 2.3. Let D be singular at P (hence by Remark 2.1,
dim 0,p = 1), and suppose CPD normal at _P. Take a desingularization
of D at P : J9=~o-~jDi-~...-~~=D where P° , ... , .Pn are the
centers of the blowing up’s. Put Di = Di XDD’ and look at the in-
duced chain : D’ = Do f D1-~ ’"’7~ By Lemma 1.4 each f is a
blowing up along the finite set of points of D§ lying over Pi, then
by Lemma 1.5 each f i may be viewed as a product of consecutive
blowing up’s, everyone along a point, and we obtain a « refined »
chain which is a desingularization of D’ namely the canonical
morphism cpn : is normal moreover Lemma 1.3 tells us that
we blow up only singular points of Dr.

LEMMA neighbouring point Q o f D’ is actual in some D$ .
PROOF. Same notation as in the previous Remark. Q is actual

in some curve of the « refined » chain, say Q actual in DO and let DO
lie between Di and that is, we have a chain 
where g10g2= gi and g2 are blowing up’s along finite sets of points,
say Ti and T2 moreover by construction every point of T2 is actual
in Now, T2 it is actual in otherwise it is actual in Dz .

THEOREM 2.6. I f the induced morphisms CPH: 
are normal at P, then the following are equivalent:

a) Al (resp..AS) to A at P;

b) D’ (resp. AS to D’) at every Q 

c) D’ (resp. AS to D’) at a point Q 

PROOF. If dim 0~ p = 1 then D is normal at P and the claim is
trivially true. Thus suppose 2. Let Q’ be an s-fold point
of a branch of D’ with center Q. By Lemma 2.4 we may suppose Q’
actual in some D§ . Put P’ = cpi(Qr) where is the canonical

morphism. By Lemma 1.3 and Remark 2.3, P’ is an s-fold point of a
branch of D with center P, hence -1 (resp. ep,(H) = s -1 )
and by the same argument = = this shows
that a) =&#x3E; b).

b ) ~ c) is obvious
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c) =&#x3E; a) If P’E Di is an s-fold point of a branch of D with

center P, then by Remark 2.3 there is a point Q’ E which is
an s-fold point of a branch of D’ with center Q ; thus &#x3E;

~ s -1 (resp. = s -1) but again ep,(H) = 

REMARK. When dim Og,P = 2 , by Remark 2.1, the hypothesis 
and qn normal)&#x3E; are satisfied if 99 is reduced.

DEFINITION 2.7. We say that H is a « true (TA) to D at P
if its local equation h in OD,P generates the conductor yp of OD,P (see [A]
or [0]). 

PROPOSITION 2.8. If H is TA to D’ at a point Q E then it
is TA to D at P. If moreover CPD is regular at P, then the following are
equivalent:

a) H~ is TA to D at P;

b) cp*(H) is TA to D’ at every point Q E 

c) cp*(H) is TA to D’ at a point Q E gg-’(P).

PROOF. If then = = yQ (by Lemma 1.1 )
and this proves the first claim; it remains to show that a ) ~ b ) ; in
this case we have HOD’,Q = yQ hence by faithful flatness we have
hOD,p = r1 OD,P = YQ r1 OD,P = yp by Lemma 1.1 again.

Obviously, the behaviour of A3Alg under our morphism is the
behaviour of A2; we study the behaviour of A3An.

PROPOSITION 2.9. Let P - P be a braneh of D and Q E Let

Ql, ..., Qt be the places of D’ with center Q, lying over P in the canonical
morphism D’ - D induced by CPD, and suppose TD normal at P. Then :

analytic order of P - P = Z’t analytic order of Q - Q t .

PROOF. Put 6 = local equation of D in 0,,p; then P - P cor-
responds to a prime factor 6’ of 6 in (which is local and
regular, hence U.F.D.) while the branches Q2013~i?-"?Q2013Q corre-
spond to the prime factors ~i,_... , b) of a’ in 1-~’ = 0; Q.

The analytic order of P - P is and since the morphism
is normal (it is the completion of the normal morphism

OD P --~ OD’ 0 and OD’ 0 is excellent) we have that also the morphism
-~ is normal, and by Lemma 1.3 and [Z-S], p. 294
= _ but note that Vi, e(R’16’) is just

the analytic order of the branch Q - Qi.
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COROLLARY 2.10. Let P, P, Q be as above and Q be a place of D’
with center Q lying over 

analytic coefficient of P - P &#x3E; analytic coefficient of Q - Q.

PROOF. Write down the two branches P = - Pn = P
where Vi, Q i lies over PZ (see Re-

mark 2.3), then we have = eot(D’) and by the previous proposi-
tion analytic order of Q i - Q ~ analytic order of Pi- P hence our claim
follows by the definitions.

THEOREM 2.11. If 99D is normal at P and H is A3An to D at P, then
is A3An to D’ at every point Q E 

PROOF. Put 0 p = (A, m), (B, n). Let Q be a place of D’
with center Q and put (B’, n’ ) = local ring of Q on the normalization
of D’, (A’, m’ ) = local ring of the place P of D with center P over
which Q lies; put _dl = analytic coefhcient of l’ - P and d2 = analytic
coefhcient of Q - Q, h = local equation of .g in A.

By our assumption, h E (m’)dl hence h E (m’B’)dl but by the regu-
larity of the morphism A’ - B’, m’B = n’ and by Corol. 2.10 
hence h E (n’)ds. This just means that v(h) ~ d2, where v is the valua-
tion associated with Q, and the claim follows.

Example 3.6 shows that the converse of this theorem does not
hold in general.

We give a global version of the main resulties of this section.

THEOREM 2.12. i) I f A2 to cp*(D), then H is A2 to D.

ii) If 99D is normale, then the following are equivalent :

a) H is A2 (resp. TA) to D,

b) cp*(H) is A2 (resp. TA) to 
Moreover if H is A3An to D, then rp*(H) is A3An to 

iii) If 99D and 99.,, are normal, then ii) holds with Al or AS instead
of A2.

REMARK 2.13. Our statements work even if cp : Y -~ X is only flat
and P E cp( Y), namely in this case we may restrict our attention
to 
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3. Examples.

3.1. If .I) is an excellent curve on a regular surface and P is a
point of D, then the canonical morphism 99: A - A’" is regular and
faithfully flat; hence our theorems show that to text whether or not
a divisor is A2 or Al to D at P, we may work in 

3.2. A flat morphism of ring (see [G3], it is the case for

instance, y of absolutely flat morphisms, hence etale morphisms too) is
regular, thus if q is moreover faithfully flat, our statements work
in this situation.

As a consequence : if ~ is a field and L is a separable extension
of 1~ for every K-algebra A, 7 the morphism 99: A --~ A ~x g L is faith-
fully flat and regular. In particular, if K is a perfect field and L is
its algebraic closure, we may pass from P~ to Pi to text if a divisor
is adjoint to a curve.

3.3. Let 99 be the automorphism of A~ induced by the inclusion
of C[x, t], where t = y2 in C[x, y]. C[x, y] is free, hence faithfully
flat over C[x, t].

Clearly every divisor is Al or A2 or A3An to the smooth curve
D = x3- t but this is no longer true for and this
shows that adjoints of any kind are not stable under 99.

Take now the curve D = xt2 + X4 -~- t6 and put .lq = ~7~ Then 0 =
_ (o, 0) is a triple point of D with the following normalization tree:

and .H does not pass through O2 hence it is not Al to D at 0. On the
other hand, we have D’= q*(D) - xy4 + x6 --E- y14 and the singularity
in 0 is solvable with one blowing up, hence is Al to D’ at 0;
this shows that Al does not descend through faithfully flat morphism.

Note that p*(H) is also A2 to D’ at 0, hence H is A2 to D at 0
by Theorem 2.1 (this is not obvious at a first sight).

3.4. If rpD has discrete fibers and is reduced, then it is also normal,
but the following example shows that the hypothesis reduced &#x3E;&#x3E;
does not suffice if points of strange codimension are involved.
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v]) ; the canonical morphism q : Y --~ .X is faithfully flat, indeed K[u, v]
is free over g[u2- v3]. The curve D defined on .,X~ by (1, u2- v3)
is regular, but its inverse image is the cuspidal cubic curve on a copy
of A.2 ,,, hence it is singular at the origin. - It is clear that CPD is not
normal even if it is reduced and every divisor A2 to D’ is also A2 to D
but there are divisors A2 to D, whose inverse image is not A2 to D’.

3.5. In the three-space there are non flat morphisms (see [M],
p. 24) from a smooth surface onto a plane, which send regular curves
to non regular ones. Obviously these morphisms do not preserve
adjoints of any kind.

3.6. We show that in general A3An does not descend even through
faithfully flat regular morphisms of surfaces; namely in I, Example 1.3
we provided a divisor .H A3Alg but not A3An to a curve D on AR;
passing to Aj, by Theorem 2.2 cp*(H) is A3Alg to D’, but note that
in A 2 c A3An«A3Alg.
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