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On Index Preserving Projectivities of Finite Groups.

FEDERICO MENEGAZZO (*)

If G is a group, a projectivity of Gis anisomorphism of the lattice 
of subgroups of G onto the lattice C(H) of subgroups of a group H;
the projectivity a : is index preserving if U : VI
for every pair U&#x3E; V of subgroups of G. As a motivation for this rese-
arch one might look at these well known facts: if G is finite simple
(non abelian) then every projectivity of G is index preserving; if A

is an abelian subgroup of the group G, AJ may be non abelian (thus
projectivities, generally speaking, do not preserve centres nor cen-
tralizers) [3]. In this paper the following problem is investigated:
let P be a p-Sylow subgroup of G, a : G - H an index preserving pro-
jectivity ; under which assumptions can we assert that u sends the
centre of P into a central subgroup of pay We prove that if pa is not
centralized by the image of the centre of P, and if G is either p-normal
or p-soluble, then G has a proper normal subgroup K such that G/K
is a p-group.

The notation is standard; by  group » we shall mean « finite group ».

1. This section includes some introductory results and remarks.

LEMMA 1.1. Let A and B be subgroups of G, 0’: G -+ Ga an index
preserving projectivity, and assume that A is generated by its p-
elements, while B = Op(B) . If then By if B c
~ ~a(A), then (Here, and in the rest of the paper, if X

(*) Indirizzo dell’A. : Seminario Matematico dell’Università di Padova.
Lavoro eseguito nell’ambito dei gruppi di ricerca afferenti al Comitato

per la matematica del C.N.R.
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is any group, denotes the subgroup of X generated by all the
elements in X whose orders are prime to p.)

PROOF. Let x be any element of B with every p-element
of x~ is in A, i.e. A is the union of the cyclic subgroups of Av x~
whose orders are a power of p. Since u is index preserving, Aa is the
union of the cyclic subgroups of whose orders are a power of p,
so AC1 « x~)6; as x describes all the elements of B whose orders
are prime to p we get B~’  Xoa(A). If furthermore B  for every
element x of B such that and for every p-element y of A 
U y _ x X y where the decomposition is both group- and lattice-
theoretical ; it follows that x, = x y6. Letting x, y describe
all the elements of B with an order prime to p and all the p-elements
of A respectively, y we get [A C1, B~] = 1.

LE&#x3E;rMA 1.2. Let P be a p-Sylow subgroup of G, Q a complement
of P in X o(P). G - Ga is an index preserving projectivity, then
P6 is a p-Sylow subgroup of GO", = [P, Q]a =
= [PC1, = epa(QC1). ·

PROOF. The only thing to prove is that [P, QJ1= [p6, Qa]. [P, Q]
is the intersection of P with the same is true for 
and the equality follows.

LEMMA 1.3. Let G be a non-abelian non-Hamiltonian modular

p-group. G has a maximum subgroup M which is characteristic and
such that either 

PROOF. Let G be a counterexample of least possible order. Every
non-trivial characteristic subgroup H of G which is contained in 
contains G’ : thus, should G/.H be non-abelian, by the minimality of G
there would exist a maximum subgroup X of G, characteristic and
such that either Aut G/H] c 1Vl/g (in which case [G, Aut G] c 1Vl
would follow) or

i. e. In particular i. e. G’
So G = A (b) with A abelian, every a c- A,

exp A = p8+1, p s &#x3E; 2. We now prove that we may choose A, b such
that lb c exp 1. : thus, if &#x3E; then 1 E A _ _

= Us+1(G) = O(G), whence G’  b&#x3E; and G’ is cyclic; on the
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other hand G’= [A, b] = U.1(A), so A = U with exp 
=p8+1; V --- Ub~ is now abelian, and t normalizes every cyclic sub-
group of V, because if i = 0 (mod. p) [ubi, t] = 1 and if 0 (mod. p)
[ubi, t] = [bi, t] E bp8+1~ _ « Ubi)PB+!)  hence t induces on TT a

power automorphism, and a suitable generator of t&#x3E; induces exactly
the power 1 + p r for some r ; since exp V &#x3E; p 2, we get p r &#x3E; 2, and V,
t satisfy the condition we asked for. Put lVl = M is a maxi-

mum subgroup of G, and If is abelian. Remark that for every x =
= so xb - x1+pB. If M is a charac-

teristic subgroup of G, then for every x E M, a E Aut G 
= (xb)rx, i.e. [b, a] E eo(M) = M; and [G, Aut G]  M. If M

is not characteristic in G, then ~(G) c Z(G), and since
Z(G) - Z(G)  AZ(G) = M  G, we get = p, i.e.
A = with p s &#x3E; exp We prove next that under
these assumptions we can choose b such that Thus, as-
sume there is no g E Ab with 191 Ps; it follows = 1, since

otherwise and ( u-i b ) ~8 = 1, contradicting the former as-
sumption, for a suitable hence for

every integer 1~. But we have so proved that If is the only maximum
subgroup of G containing Z(G) all whose subgroups are normal in G;
hence If is characteristic, against a former assumption: thus, if Z(G) 
 N  M, ~uk bZ(G) ~ with 1~ a suitable integer, and
since [uk b, u] = [b, u] = U-p’o N contains uk b~ which is not

normal in G. So assume we chose b such that for every x E G,
x = abi, Xp8 = ap8, xb = a1+pB bi = aP8 x === x1+p8: b induces on G a
homogeneous power automorphism, hence [b, Aut 6~]~(~). Further-

more .Qs(G) == uP, TT, b~ = Z(G) b~, 10: I - Z(G) I - p, and
eventually Aut G] _ ~(G) [Z(G)b~, Aut q.e.d.

REMARK. Lemma 1.3 is in some way a refinement of a result in [2]
which would however be enough for the needs of this paper.

LEMMA 1.4. Let A  G be an abelian p-group, 
If or: is an index-preserving projectivity, then Aa = [A6, Qa] X
X C.,,(Q,9), and [Aa, Qa] is in the centre of A6.

PROOF. Put .H = Op(AQ) ; then Ha = [Aa, Qa] _ [A, Q]a -
(A A H) -7 = a Aa Q6 ~
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= [A, Q, QJ1 == [A, = [Aa, QaJ : by lemma 1.3, since [Aa, Qa] is a

modular non-Hamiltonian p-group, is abelian, q.e.d.

COROLLARY 1.5. Let A be a 2-generator abelian p-subgroup of G,
o~: an index-preserving projectivity. If A.~ is not abelian, then
X(1(A)/eo(A) is a p-group.

PROOF. Let Q be a subgroup of Xo(A) such that p,~ (Q ~. Aa is a

2-generator modular non-abelian non-Hamiltonian p-group, so A~ is
not directly decomposable; by 1.4  AJ, whence [Ag, Qa]
= 1 = [A, Q], q.e.d.

REMARK 1.6. The hypothesis on the number of generators of A
in 1.5 cannot be dispensed with, as the following example shows. We
first look at the groups

in fact, this is true if and only if E h’ eX’dll’), but if

~==0(mod.p), then oc(x’, y) = 0 (mod. p) and 1, whereas if

Z’ fl 0 (mod. p )

So i induces a bijection of C(H X L) onto which clearly is an
index-preserving projectivity. Now G = H X K, A =
= (a)xK; A is a 3-generator abelian p-subgroup of G, (a) X L
is no longer abelian, but XQ(A)/CQ(A) = b~ has order q.

2. The following lemma is the crucial step in the proof of the
results of this paper.
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LEMMA 2.1. Let P be a p-Sylow subgroup of the group G, Z a
normal subgroup of G contained in the centre of P, an

index-preserving projectivity. If G = OP(G), then Z~ is in the centre
of P(1.

PROOF. Let G be a counterexample of least possible order. Since

G(1 = Op(G6) lemma 1.1 implies Z6 a G(1; moreover if A, B are normal
subgroups of G contained in Z such that 1, then Aa and B(1
are both normal in G6 and if both are non-trivial by the minimality
of G i. e. Za would be in the centre of P(1, con-
tradicting our choice of G; so our assumptions imply that either A
or B is trivial. Should Z be in the centre of G, then by 1.1 Za would
be in the centre of G(1; hence As (p, IGjCQ(Z) I) = 1
Z= [Z, G] X Cz(G); both factors are normal subgroups of G, Cz(G) =/=- Z
and by what we have just pointed out Z = [Z, G], Cz(G) = 1. We
can now prove that Z(1 is abelian: since otherwise for every h E G(1

such that by 1.4 with abelian

h~], whence &#x3E; Op(G6), so would be in the

centre of G6 contradicting an earlier statement. Call L the subgroup
of G generated by its p-elements, M = Op(L). Then [L, Z] = 1; in

particular and by 1.1 and since L = PM,
L6 = then is a p-group. It follows that 

and in particular the intersection T6 of .QI(Z(1) with the centre of L(1
is a non-trivial normal subgroup of G(1; T a is a p-group, Ga = 

so by 1.1 I is not divisible by p, hence T has a
complement S in which is normal in G; an earlier remark shows
T = i.e. is contained in the centre of Pcl and of every

conjugate of Therefore pn - exp Z &#x3E; p; the minimality of G then
implies Cpa, [Ø(pa), Z6] - [pa, = 1 (for every group

= Frattini subgroup of X ) . Define G* = GIIMI, G = 
(for every x c and x = xCQa(za)); G is isomorphic to a
quotient group of G*. Since L6 --- .P6 lVl6 _4_G6, the p-Sylow subgroup
P* = p6 o f G* is normal in G_*, and P = a G;

by our choice of G; let Q*, Q be complements of P*, P in G*,
G respectively. Since _G* = OP(G*) and G = OP(G), it follows that

P* _ [P*, Q*J, P = [P, Q] ; moreover if H* = is a proper sub-

group of Q* then [P*, H*] ~ P*, since otherwise PU H 
 G would imply, by the minimality of G, P6] = 1; from



232

follows that P is elementary abelian. Q* and Q both operate in a natural
way on and G* = Q* G = so 

both Q*- and Q-irreducible : thus, if = Aa X Ba with Q*- (or Q- )
invariant All, then are normal p-subgroups of G6, whence A,
B are normal subgroups of G with trivial intersection both contained
in Z; an earlier remark implies that one of them is trivial. In parti-
cular i.e. Z is a direct product of cyclic groups of
the same order pn. Choose now a E Pcl, and assume a induces a power
automorphism on then d is in the centre of G and, as Cy(Q) = 1,
a = 1: i.e. if an element of Pcr induces a power automorphism on Za,
then it centralizes Za; in particular Z cannot be cyclic. We shall now
prove that Q* (and of course Q) is a cyclic q-group for some prime

so assume, by way of contradiction, that there is a family
of elements of Q* such that h*~  Q* for every i, while
= Q*. By an earlier remark [P*, h*]  P*, and, if 11,7= hi Ma

with p ) = 1, hi]MG(hi» = [pG,  G(1, which im-
plies, by our choice of G, that r. ) is con-

tained in the centre of Pan [Pa9 whence [Za, hi] ~ hi]).
Furthermore, if (gi)a= (hi&#x3E;,

It then follows that [Eal hi, Za] =1 and since = Q_*,
[P*, Q*, Z"] = [P*, ZI] = 1, a contradiction. So assume Q = ~h~
with z ~ 1; we have already seen that h has no invariant
subspace on either or and that [hq, P_]  P; w_e

presently shall prove that P is A-irreducible. Thus, suppose P = P1 x Pz
is a proper h-factorization; if 
= with then Za= so Z is in the

centre of p-Sylow subgroup of 02,(PQ), which implies
[Za, =1 (because is normal and proper in G) ;
if now x = with x E Pa is any element of Pi, there exists

with and this means that

x = [y, h]c with ce and eventually [f,, ~]= 1, again a con-

tradiction ; in particular, [hq, P] =1. For the next step, we choose
and we start with a detailed investigation of which

are the possible structures for First of all, if (z)d= ~), then
x~ /~ Z ~ 1, since otherwise for every Z E za, z, ~z~ d (z, y~,
i.e. y would operate on Za as a non-trivial power automorphism;
further, pm= would imply that every z E z ~ 1, has the
same height in Z as in Zx&#x3E;, hence we could assume = .Z x (z)
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and we would get the same contradiction as before. In view of the

particular structure of Z, we can find a cyclic direct factor of Z

containing x~ is a direct factor of Zx&#x3E; and for z # 1
in a complement S of ~x~ in the heights of z in Z~x&#x3E;
and in Z are the same, so we may construct a decomposition
Zx~ _ x&#x3E; X X ... X X c~, where X (VI) X ... X vk~ = Z and

we fix the notation such that wZ~, (c)J= d&#x3E;. We

can also manage to get and Wo = ypm-n d. as a mo-

dular non-Hamiltonian group, has the form At~, where t induces a
power automorphism on the abelian group .A ; under our assumptions t
can be chosen such that ut= uI+pz where so that

and has class 2. Suppose first that exp A &#x3E; pn ;
in this case (y; Z6)’ = SZ~(y~ ), y~  I Za: eza (y) I = p, and the
matrix of y on Z (with entries from Z/pn Z), for a suitable choice of
the basis, is either

if wo is normalized but not centralized by y; or

if [wo, y] =1, in which case we may assume that y] = and

y] = 1 for 1 ~ i  k (it is understood that to get precisely these
eoefficients we may have to choose another generator for y~). The

exponent of A cannot be for in this case being cyclic
implies that Vl = xrg with so that 1 =1= = Xrpn-l E A

We now assume that exp A =p", and remark that from

I and y = tru with u E A it follows that Iy I = Itri and we can
substitute y for t. Moreover, we can replace A with 
thus, U is abelian and for every u E U; but now U has
index p in TJ, so that za/BUI=p,
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and the last k elements of a basis for Za can be chosen in ZJA U (re-
member that dim k + 1, and that U). The missing ele-

ment of the basis of Z" has the form z = yr:pm-n ~, with p ,~ r, ue U,
and we try to arrange the things so that SZ1(~y~). Since =

= X U), we have [z, y] = [u, y] = 
with so is congruent to z modulo

and as required. For such a

choice of the first element z of the basis = S~1(~y~) ~ 0’~-1(~))? 7
so that [z, y] = [u, y] = and the matrix of y on Za can

be written either as

with ~~0, £ fl l (mod. p), where the right lower corner corresponds
to the action of y on It is easily checked that, under either
(III) or (IV), if S = (u) x (w) is a y-invariant subgroup of Zd and

then S is also the product of two y-invariant cyclic
subgroups : if _ there is nothing to prove ;
otherwise and we may assume that u = woc,

1 

(where h m 0 under (III), ~~0, ~, ~ 1 under (IV) )
so won ~~ _ ~(wo 1)~n 1~ c

and = S~1(wo~ ) 
imply that r =1 (mod. p), whence 
- (urvs)~~"-1, and with both factors y_-invariant.
We also remark that, if we look at the clements of P as linear

Z/pnZ maps on ZlJ, then their determinant is 1, otherwise we would
get this remark eliminates case (I). The next step is to
prove that dim Z &#x3E; 2 : so assume dim Z = 2 and take a e plJ such

that à #I. Suppose a satisfies (II) with respect to a basis 
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clearly we can choose so a is represented by

ah by

det ah=1 implies (mod. p), so if ai E Pa is such that

then ai is represented by

is ai-invariant if there such that 
- - 0 implies s - 0 n r (mod. p), i.e. for

0 we get sifl « 8t2 (mod. p), and either 8 = 0 = If or ifl is a square
in if p #2 this leads to a contradiction, and for p = 2
we check directly that ah is represented by

and aah does not normalize two independent cyclic subgroups of

order 2 n, again a contradiction. So if dim Z = 2, then every a E Pa
with ac ~ 1 is represented, with respect to a suitable basis zo, 9 Zi 7 by

(i.e. case (IV) with ~, _ -1; p # 2 ; we possibly have to change the
generator of ~a~ ). If all is represented by

det all= 1 implies oc + 3 = 0 (mod. p) ; ah induces 1-~- pn-1 on some
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which means that the linear system

has a non trivial solution, and

Now take ai E P6 such that a;= aiah; it is represented by

it has to normalize two independent cyclic subgroups of Zl1, so
., ’-"... ,

must be solvable with
I for two choices of It not congruent mod. p, i.e.

must have two distinct eigenvalues in F p. The characteristic polynomial

has distinct roots in F, if and only if = i2 -f- 23i - 1 E (Fp - {O})2;
= d ( j) if and only if (i - j) (i -f- j -f- 2) = 0 (mod. ), so the par-

tition Sj associated with L1 is {{- 6}, {j, - j - 2 } and has (p + 1)/2
elements; d ( o ) =1 E (.F’p - {o} ) 2. If 0 K - 3, then 

_ (~~1)I2 ~ if 0 --_ - ~, then but 

in any case, we can find (mod.p) such that J(~)~(-Fp2013{0})~:
for such an i ai does not satisfy the conditions we asked for. This
contradiction proves dim Z &#x3E; 2; we shall show that dim Z = 3. Sup-
pose we can choose a E Pa satisfying (II); since [a, Za] =1, I
e,.(ai) = has index p2 in this is only possible when
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dim Z = 3, and ai satisfies (III) . If there is a in PJ satisfying either
(III) or (IV), where 

which has indeg p2 in ZJ, so : if IZl1: = p, a-1 ah satisfies (II)
and we have just proved that dim Z = 3 in this case; if /Zl1:

then a-lah satisfies (III) and once more dim Z = 3.
Suppose now that a ~ 1, a satisfies (II) ; with respect to a basis

Z2 such that z2&#x3E; _ zo&#x3E;,
a is represented by

ah by

Two cases are possible: either zo, = i.e.
a - 0, 0 (mod. p); or zo ~ z2~/~ Cza(aA) = we

choose zi such that Cza(a)¡B then 0, ~ = 0
(mod. p). In the former case ai is represented by

(symbols are as usual; ai must satisfy (III)); it centralizes and

normalizes no other (independent) cyclic subgroup of Za of order pn,
a contradiction. In the latter case ai is represented by

it centralizes and it should work as a power automorphism,
say, (mod. p), on a direct product ~S of two cyclic

subgroups of order pn; but if and only if 
i.e. if and only if (r, s, t) is a solution of
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whose rank is ~ 2 : there is one independent solution at most, a con-
tradiction. So case (II) is ruled out. Now we assume 
a satisfies (III); det a =1=1-f- 2pn-1 forces p = 2. Ci(a) has index 2
in Z6; the same occurs to e1(ah), so we can put 

aah also satisfies (III). With respect to a
basis zo, zi, z, let ac be represented by

Assume further that z we can choose z2
so that &#x3E;-invariant, 

is represented on S by

so but under (III) this intersection is
trivial. So we can assume that and take 

instead of zi in the basis (later on, we shall drop the apex) ; since we
can always arrange that zo = zozl, this means that a is represented by

and ah by

det ah =1-~- (a -f -1 ) 2 n-1=1 forces a =1 (mod. 2); ah must induce the
power 1 + ‘Zn-1 on a cyclic subgroup 1- [zoziz2, ah] _
= so y =- 0 (mod. 2). aah, which should satisfy
(III), is represented by 

-
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it has to induce the power automorphism 1 + on a complement S
of (z~) ; this means that for

so that the system : ~=0y~~0~~0 has two indepen-
dent solutions ; this only happens if fl m 3 m 0. So a is represented by

a contradiction; suppose (the other possibility is zi - zoz2)
(mod. then from (mod. Ø(Za)) it follows that (zoØ(Za) )n8 =

so ~h3~  Q_, and, as Q is isomorphic to a subgroup of
GZ(3, 2 ), h3 =1 and h cannot be irreducible on which has

dimension 3; clearly so h is represented on

by

and on Za by

with ~, = v =1 (mod. 2 ) , where we are using the basis zo , z,,= 

z2 = zi ; moreover ~, = det h = 1. An easy calculation shows that a’~$
is represented by
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and if b E PC1, b should satisfy (III), which contrasts to the
fact that it normalizes ~zo, z2~ and ~z~~, but no complement of z2~
in ~zo, If instead z.1 = ZOZ2 (mod. Ø(ZC1)), a similar argument proves
that h is represented on by

and on Za by

where we refer to the basis zo, zl= z2= zo-1; moreover v = det h =1.
In this case ah’ is represented by

and b as above normalizes ~zo~ and ~zo , Z2), but no complement of zo~
in zo, Z2). So far we showed that no element a in pa satisfies (I), (II)
nor (III); but if a satisfies (IV), y then a-lah should satisfy (III) : this,
last contradiction proves the lemma.

COROLLARY 2.2. Let a: G -~ H be an index-preserving projectivity.
If the image Z(P)a of the centre Z(P) of the p-Sylow-subgroup P
of G is not contained in the centre of PY, then X,(Z(P)) has a proper
normal subgroup K such that Xo(Z(P))/K is a p-group.

PROOF. Apply lemma 2.1 to N = 

3. We shall now use the propositions proved in section 2 in order
to derive the results announced in the introduction.

THEOREM 3.1. Let G be p-normal, P a p-Sylow subgroup of G,
a: (7-~J? an index-preserving projectivity. If the image under a of
the centre of P is not contained in the centre of Pa, then 
in particular G is not simple.
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PROOF. Call Z(P) the centre of P; 2.2 and the second theorem of
Griin imply that 1, q.e.d.

THEOREM 3.2. Let G be a p-soluble group with Op(G) = G. For

every p-Sylow subgroup P of G and every index-preserving projec-
tivity or: G -¿. G~ the image under a of the centre of P is the centre of Pa.

PROOF. For any group X let Z(X) be its centre. It will be enough
if we prove that, under our assumptions, the opposite
inclusion is then proved looking at a-1. Let G be a counterexample of
least possible order. Call A, B respectively 0,,(G), they are the
intersection of all subgroups of G, Ga maximal with respect to the pro-
perty of having an order prime to p, so B = a in-

duces an index-preserving projectivity 6 : GalB and by the mi-
nimality of G (we now put Z = Z(P))

so 1 against our choice of G. There exists a proper
normal subgroup N of G such that p,tIG: NI; put M = Op(N), and
let Q be a complement of P in XG(P). G = [P, Q] Q M : thus, PN
and by the Frattini argument further-

more N = PM, whence G=PQM; but [P,Q]Q=QP, so P c
i. e. 

is a p-group, and eventually G = [P, Q] QM. Since and

we get it follows tbat

We shall now prove that [P, Q]6 centralizes Zu: thus, [P, Q] Q =
= OP([P, Q] Q), Cz(Q) is a p-group contained in the centralizer of

[P, Q]Q so by 1.1 [([P, Q] Q)a, Cz(Q)a] = 1; in particular [[P, 
= 1. Furthermore [Z, Q]  Z([P, Q]); [P, Q] is a p-Sylow sub-

group of [P, Q] Q, so by 2.1 [Z, Q]~) ; we can conclude that
[P, Q]a centralizes Za. Next we prove that Z ~ M;
assume ZM: then ZZ(PAM) and, by the minimality of G, as

PAM is a p-Sylow subgroup of .1V1 C G, this fact,
together with an earlier statement, implies the contradiction Pa] =1.
Let .F’ be the Fitting subgroup of G; under our assumptions I’ is a
nontrivial p-group, and I’’ ~ [1]. We also have I’’ c P c N and
[Z,1~’] = 1 implies whence Z°‘ is an abelian subgroup
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of Z(I’’) . Let 1= Vo  Y1  ...  Yk = If be a p-series of .M whose
elements are normal in G (i. e. Vi/Vi-l is either a p-group or [
for i = 1, ... , k) . We shall prove by induction that 

VI is a p-group, so ViF and [ Yl , ZG] = 1. Assume next = 1;
can write ZG= [ZG, where both fac-

tors are normal p-subgroups of G = OP(G); 1.1 then tells that [ZG, 
and are both normal in G,5; if both are non-trivial by the
minimality of G [PO’7 1 against our choice
of G. But if = 1, then 
tradicting an earlier statement, so in this case [ZG, Yr+1] = 1. In
case is a p -group, Yr+1= for every x E G

for a suitable hence in this case too [Z°‘, Y,.+1] = 1. It fol-

contradiction ends the proof.
(Theorem 3.2 dealt originally with soluble groups; the author is

grateful to prof. F. Napolitani who pointed out to him that the proof
worked for p-soluble groups too).
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