Federico Menegazzo

On index preserving projectivities of finite groups

<http://www.numdam.org/item?id=RSMUP_1974__52__227_0>
On Index Preserving Projectivities of Finite Groups.

FEDERICO MENEGAZZO (*)

If G is a group, a projectivity of G is an isomorphism of the lattice $\mathcal{L}(G)$ of subgroups of G onto the lattice $\mathcal{L}(H)$ of subgroups of a group H; the projectivity $\sigma: G \to H$ is index preserving if $|U^\sigma: V^\sigma| = |U: V|$ for every pair $U > V$ of subgroups of G. As a motivation for this research one might look at these well known facts: if G is finite simple (non abelian) then every projectivity of G is index preserving; if A is an abelian subgroup of the group G, A^σ may be non abelian (thus projectivities, generally speaking, do not preserve centres nor centralizers) [3]. In this paper the following problem is investigated: let P be a p-Sylow subgroup of G, $\sigma: G \to H$ an index preserving projectivity; under which assumptions can we assert that σ sends the centre of P into a central subgroup of P^σ? We prove that if P^σ is not centralized by the image of the centre of P, and if G is either p-normal or p-soluble, then G has a proper normal subgroup K such that G/K is a p-group.

The notation is standard; by « group » we shall mean « finite group ».

1. This section includes some introductory results and remarks.

LEMMA 1.1. Let A and B be subgroups of G, $\sigma: G \to G^\sigma$ an index preserving projectivity, and assume that A is generated by its p-elements, while $B = O_p^p(B)$. If $B \triangleleft N_p^g(A)$, then $B^\sigma \triangleleft N_{g^\sigma}^g(A^\sigma)$; if $B \triangleleft C_g^g(A)$, then $B^\sigma \triangleleft C_{g^\sigma}^g(A^\sigma)$. (Here, and in the rest of the paper, if X (*) Indirizzo dell’A.: Seminario Matematico dell’Università di Padova. Lavoro eseguito nell’ambito dei gruppi di ricerca afferenti al Comitato per la matematica del C.N.R.
is any group, \(O^p(X) \) denotes the subgroup of \(X \) generated by all the elements in \(X \) whose orders are prime to \(p \).

Proof. Let \(x \) be any element of \(B \) with \(p \nmid |x| \); every \(p \)-element of \(A \triangleleft \langle x \rangle \) is in \(A \), i.e. \(A \) is the union of the cyclic subgroups of \(A \triangleleft \langle x \rangle \) whose orders are a power of \(p \). Since \(\sigma \) is index preserving, \(A^\sigma \) is the union of the cyclic subgroups of \((A \triangleleft \langle x \rangle)^\sigma \) whose orders are a power of \(p \), so \(A^\sigma \leq (A \triangleleft \langle x \rangle)^\sigma \); as \(x \) describes all the elements of \(B \) whose orders are prime to \(p \) we get \(B^\sigma \leq N^\sigma_{\sigma}(A) \). If furthermore \(B \leq C^\sigma_{\sigma}(A) \), for every element \(x \) of \(A \) such that \(p \nmid |x| \) and for every \(p \)-element \(y \) of \(A \) \(\langle x \rangle \triangleleft \langle y \rangle = \langle x \rangle \times \langle y \rangle \) where the decomposition is both group- and lattice-theoretical; it follows that \(\langle x, y \rangle^\sigma = \langle x \rangle^\sigma \times \langle y \rangle^\sigma \). Letting \(x, y \) describe all the elements of \(B \) with an order prime to \(p \) and all the \(p \)-elements of \(A \) respectively, we get \([A^\sigma, B^\sigma] = 1 \).

Lemma 1.2. Let \(P \) be a \(p \)-Sylow subgroup of \(G \), \(Q \) a complement of \(P \) in \(N^\sigma_{\sigma}(P) \). If \(\sigma : G \rightarrow G^\sigma \) is an index preserving projectivity, then \(P^\sigma \) is a \(p \)-Sylow subgroup of \(G^\sigma \), \(N^\sigma_{\sigma}(P^\sigma) = N^\sigma_{\sigma}(P) = P^\sigma Q^\sigma \). Letting \(x, y \) describe all the elements of \(B \) with an order prime to \(p \) and all the \(p \)-elements of \(A \) respectively, we get \([A^\sigma, B^\sigma] = 1 \).

Proof. The only thing to prove is that \([P, Q] = [P^\sigma, Q^\sigma] \). \([P, Q] \) is the intersection of \(P \) with the same is true for \([P^\sigma, Q^\sigma] \) and the equality follows.

Lemma 1.3. Let \(G \) be a non-abelian non-Hamiltonian modular \(p \)-group. \(G \) has a maximum subgroup \(M \) which is characteristic and such that either \([G, \text{Aut } G] \leq M \) or \(\Phi(G)[M, \text{Aut } G] \leq M \).

Proof. Let \(G \) be a counterexample of least possible order. Every non-trivial characteristic subgroup \(H \) of \(G \) which is contained in \(\Phi(G) \) contains \(G' \); thus, should \(G/H \) be non-abelian, by the minimality of \(G \) there would exist a maximum subgroup \(M \) of \(G \), characteristic and such that either \([G/H, \text{Aut } G/H] \leq M/H \) (in which case \([G, \text{Aut } G] \leq M \) would follow) or

\[
\Phi(G/H)[M/H, \text{Aut } G/H] \leq M/H ,
\]

i.e. \(\Phi(G)[M, \text{Aut } G] \leq M \). In particular \(G' \cap \Omega_1(Z(G)) \geq G' \), i.e. \(G' \leq \Omega_1(Z(G)) \). So \(G = A \langle b \rangle \) with \(A \) abelian, \(a^{\exp A} = a^{1+\epsilon} \) for every \(a \in A \), \(\exp A = p^{\epsilon+1} \), \(p^\epsilon > 2 \). We now prove that we may choose \(A, b \) such that \(|b| < \exp A \); thus, if \(|b| > p^{\epsilon+1} \), then \(1 \neq \langle ab \rangle^{p^{\epsilon+1}} \), \(a \in A \) \(= \langle b^{p^{\epsilon+1}} \rangle = \langle b \rangle^\epsilon \langle b \rangle \). Letting \(b \) describe all the elements of \(B \) with a power prime to \(p \) and all the \(p \)-elements of \(A \) respectively, we get \([A^\epsilon, B^\epsilon] = 1 \).

Proof. The only thing to prove is that \([P, Q] = [P^\sigma, Q^\sigma] \). \([P, Q] \) is the intersection of \(P \) with the same is true for \([P^\sigma, Q^\sigma] \) and the equality follows.

Lemma 1.3. Let \(G \) be a non-abelian non-Hamiltonian modular \(p \)-group. \(G \) has a maximum subgroup \(M \) which is characteristic and such that either \([G, \text{Aut } G] \leq M \) or \(\Phi(G)[M, \text{Aut } G] \leq M \).

Proof. Let \(G \) be a counterexample of least possible order. Every non-trivial characteristic subgroup \(H \) of \(G \) which is contained in \(\Phi(G) \) contains \(G' \); thus, should \(G/H \) be non-abelian, by the minimality of \(G \) there would exist a maximum subgroup \(M \) of \(G \), characteristic and such that either \([G/H, \text{Aut } G/H] \leq M/H \) (in which case \([G, \text{Aut } G] \leq M \) would follow) or

\[
\Phi(G/H)[M/H, \text{Aut } G/H] \leq M/H ,
\]

i.e. \(\Phi(G)[M, \text{Aut } G] \leq M \). In particular \(G' \cap \Omega_1(Z(G)) \geq G' \), i.e. \(G' \leq \Omega_1(Z(G)) \). So \(G = A \langle b \rangle \) with \(A \) abelian, \(a^{\exp A} = a^{1+\epsilon} \) for every \(a \in A \), \(\exp A = p^{\epsilon+1} \), \(p^\epsilon > 2 \). We now prove that we may choose \(A, b \) such that \(|b| < \exp A \); thus, if \(|b| > p^{\epsilon+1} \), then \(1 \neq \langle ab \rangle^{p^{\epsilon+1}} \), \(a \in A \) \(= \langle b^{p^{\epsilon+1}} \rangle = \langle b \rangle^\epsilon \langle b \rangle \). Letting \(b \) describe all the elements of \(B \) with a power prime to \(p \) and all the \(p \)-elements of \(A \) respectively, we get \([A^\epsilon, B^\epsilon] = 1 \).

Proof. The only thing to prove is that \([P, Q] = [P^\sigma, Q^\sigma] \). \([P, Q] \) is the intersection of \(P \) with the same is true for \([P^\sigma, Q^\sigma] \) and the equality follows.

Lemma 1.3. Let \(G \) be a non-abelian non-Hamiltonian modular \(p \)-group. \(G \) has a maximum subgroup \(M \) which is characteristic and such that either \([G, \text{Aut } G] \leq M \) or \(\Phi(G)[M, \text{Aut } G] \leq M \).

Proof. Let \(G \) be a counterexample of least possible order. Every non-trivial characteristic subgroup \(H \) of \(G \) which is contained in \(\Phi(G) \) contains \(G' \); thus, should \(G/H \) be non-abelian, by the minimality of \(G \) there would exist a maximum subgroup \(M \) of \(G \), characteristic and such that either \([G/H, \text{Aut } G/H] \leq M/H \) (in which case \([G, \text{Aut } G] \leq M \) would follow) or

\[
\Phi(G/H)[M/H, \text{Aut } G/H] \leq M/H ,
\]

i.e. \(\Phi(G)[M, \text{Aut } G] \leq M \). In particular \(G' \cap \Omega_1(Z(G)) \geq G' \), i.e. \(G' \leq \Omega_1(Z(G)) \). So \(G = A \langle b \rangle \) with \(A \) abelian, \(a^{\exp A} = a^{1+\epsilon} \) for every \(a \in A \), \(\exp A = p^{\epsilon+1} \), \(p^\epsilon > 2 \). We now prove that we may choose \(A, b \) such that \(|b| < \exp A \); thus, if \(|b| > p^{\epsilon+1} \), then \(1 \neq \langle ab \rangle^{p^{\epsilon+1}} \), \(a \in A \) \(= \langle b^{p^{\epsilon+1}} \rangle = \langle b \rangle^\epsilon \langle b \rangle \). Letting \(b \) describe all the elements of \(B \) with a power prime to \(p \) and all the \(p \)-elements of \(A \) respectively, we get \([A^\epsilon, B^\epsilon] = 1 \).
other hand $G' = [A, b] = \mathcal{O}_t(A)$, so $A = \langle t \rangle \times U$ with $\exp U < p^t$, $|t| = p^{r+1}$; $V = U \langle b \rangle$ is now abelian, and t normalizes every cyclic subgroup of V, because if $i \equiv 0 \pmod{p}$, $[ub^i, t] = 1$ and if $i \not\equiv 0 \pmod{p}$, $[ub^i, t] = [b^i, t] \in \langle b^{2ri} \rangle = \langle ub^i \rangle = \langle ub \rangle$; hence t induces on V a power automorphism, and a suitable generator of $\langle t \rangle$ induces exactly the power $1 + p^r$ for some r; since $\exp V > p^2$, we get $p^r > 2$, and V, t satisfy the condition we asked for. Put $M = A \langle b^p \rangle$; M is a maximum subgroup of G, and M is abelian. Remark that for every $x = ab^{ip} \in M$, $x^* = a^x$, so $x^* = a^{1+p^t} b^{ip} = x a^p = a^{1+p^t} b^{ip}$. If M is a characteristic subgroup of G, then for every $x \in M$, $\alpha \in \text{Aut } G$, $G(x^\alpha) = (x^\alpha)^p = (x^{1+p^t})^{\alpha} = (x^{1+p^t})^{\alpha} = (x^p)^\alpha$, i.e. $[b, \alpha] \in C_0(M) = M$; and $[G, \text{Aut } G] \subseteq M$. If M is not characteristic in G, then $|G[Z(G)]| = p^2$, $\Phi(G) < Z(G)$, and since $Z(G) = \mathcal{O}_t(A)/\langle b \rangle$, $Z(G) < AZ(G) = M < G$, we get $|A : \mathcal{O}_t(A)| = p$, i.e. $A = \langle u \rangle \times V$ with $p^r > \exp V$, $p^{r+1} = |u|$. We prove next that under these assumptions we can choose b such that $|b| < \exp A$. Thus, assume there is no $g \in Ab$ with $|g| < p^t$; it follows $\langle u \rangle \times \langle b \rangle = 1$, since otherwise $1 \neq b^p = u^p a^p$, and $\langle u^{-1} b \rangle = 1$, contradicting the former assumption, for a suitable $i \equiv 0 \pmod{p}$; hence $\langle u \rangle \times \langle b \rangle = 1$ for every integer k. But we have so proved that M is the only maximum subgroup of G containing $Z(G)$ all whose subgroups are normal in G; hence M is characteristic, against a former assumption: thus, if $Z(G) < N < G$, $N \not\subseteq M$, $N/Z(G) = \langle u^k b Z(G) \rangle$ with k a suitable integer, and since $[u^k b, u] = [b, u] = u^{-p^t} \not\subseteq \langle u^k b \rangle$ N contains $\langle u^k b \rangle$ which is not normal in G. So assume we chose b such that $|b| < p^t$; for every $x \in G$, $x = ab^i$, $x^* = (ab^i)^p = a^{p^t}$, $x^* = a^{1+p^t} b^i = a^{1+p^t} x = a^{1+p^t} x$; b induces on G a homogeneous power automorphism, hence $[b, \text{Aut } G] < Z(G)$. Furthermore $\mathcal{O}_t(G) = \langle \mathcal{O}_t, V, b \rangle = Z(G)/\langle b \rangle$, $|G : \mathcal{O}_t(G)| = |\mathcal{O}_t(G) : Z(G)| = p$, and eventually $\Phi(G)[\mathcal{O}_t(G), \text{Aut } G] = \Phi(G)[Z(G)/\langle b \rangle, \text{Aut } G] < Z(G)$, q.e.d.

Remark. Lemma 1.3 is in some way a refinement of a result in [2] which would however be enough for the needs of this paper.

Lemma 1.4. Let $A < G$ be an abelian p-group, $Q < N'_G(A)$, $p \not\mid |Q|$. If $\sigma : G \to G^\sigma$ is an index-preserving projectivity, then $A^\sigma = [A^\sigma, Q^\sigma] \times \times C_{A^\sigma}(Q^\sigma)$, and $[A^\sigma, Q^\sigma]$ is in the centre of A^σ.

Proof. Put $H = O^p(AQ)$; then $H^\sigma = O^p(A^\sigma Q^\sigma)$. $[A^\sigma, Q^\sigma] = [A, Q]^\sigma = (A \wedge H)^{\sigma} = A^\sigma \wedge H^\sigma \subseteq A^\sigma Q^\sigma$; $C_{A^\sigma}(Q^\sigma) = C_A(Q) = C_A(H) = C_{A^\sigma}(H^\sigma) \subseteq A^\sigma Q^\sigma$; so $A^\sigma = ([A, Q] \times C_A(Q))^{\sigma} = [A^\sigma, Q^\sigma] \times C_{A^\sigma}(Q^\sigma)$. Moreover $[A^\sigma, Q^\sigma, Q^\sigma]$ =
\[[A, Q, Q]^v = [A, Q]^v = [A^v, Q^v] \]: by lemma 1.3, since \([A^v, Q^v]\) is a modular non-Hamiltonian \(p\)-group, \([A^v, Q^v]\) is abelian, q.e.d.

Corollary 1.5. Let \(A\) be a 2-generator abelian \(p\)-subgroup of \(G\), \(\sigma : G \to G^v\) an index-preserving projectivity. If \(A^v\) is not abelian, then \(\mathcal{N}_\sigma(A) / C_\sigma(A)\) is a \(p\)-group.

Proof. Let \(Q\) be a subgroup of \(\mathcal{N}_\sigma(A)\) such that \(p \mid |Q|\). \(A^v\) is a 2-generator modular non-abelian non-Hamiltonian \(p\)-group, so \(A^v\) is not directly decomposable; by 1.4 \([A^v, Q^v] < A^v\), whence \([A^v, Q^v] = 1 = [A, Q]\), q.e.d.

Remark 1.6. The hypothesis on the number of generators of \(A\) in 1.5 cannot be dispensed with, as the following example shows. We first look at the groups

\[H = \langle a, b | a^p = b^q = 1, a^b = a^r, \exists r \neq 1, r^q = 1 \pmod{p} \rangle \]

where \(p, q\) are prime numbers, \(p \equiv 1 \pmod{q}\); \(K = \langle e, d | e^p = d^q = 1, [e, d] = 1 \rangle\); \(L = \langle e, f | e^p = f^q = 1, e' = e^{1+p} \rangle\). For every element \(he^xf^y\) of \(H \times L\) (\(h \in H\); \(x, y\) integers) put \((he^xf^y)^x = he^x \bar{d}^y \in H \times K\); since \(he^xf^y = h' e^{x'} \bar{d}^{y'} (h, h' \in H; x, x', y, y'\) integers) if and only if \(he^x \bar{d}^y = h' e^{x'} \bar{d}^{y'}\), \(\tau\) is a well defined bijection of \(H \times L\) onto \(H \times K\). Moreover if \(he^xf^y, h' e^{x'} \bar{d}^{y'} \in H \times L\), with \([e^x, f^y] = e^{p\alpha(x', y)}\), we get

\[
((he^xf^y)(h' e^{x'} \bar{d}^{y'}))^x = hh' e^{x+x'+p\alpha(x', y)} \bar{d}^{y+y'} \in \langle he^xf^y \rangle^x, (h' e^{x'} \bar{d}^{y'})^y = \\
= \langle he^x \bar{d}^y, h' e^{x'} \bar{d}^{y'} \rangle ;
\]

in fact, this is true if and only if \(e^{p\alpha(x', y)} \in \langle he^x \bar{d}^y, h' e^{x'} \bar{d}^{y'} \rangle\), but if \(x' \equiv 0 \pmod{p}\), then \(\alpha(x', y) \equiv 0 \pmod{p}\) and \(e^{p\alpha(x', y)} = 1\), whereas if \(x' \not\equiv 0 \pmod{p}\)

\[
e^{p\alpha(x', y)} \in \langle e^p \rangle = \langle e^{p\alpha} \rangle = \langle (h' e^{x'} \bar{d}^{y'})^{pq} \rangle < \langle he^x \bar{d}^y, h' e^{x'} \bar{d}^{y'} \rangle .
\]

So \(\tau\) induces a bijection of \(\mathcal{L}(H \times L)\) onto \(\mathcal{L}(H \times K)\) which clearly is an index-preserving projectivity. Now put \(\sigma = \tau^{-1}\), \(G = H \times K\), \(A = \langle a \rangle \times K\); \(A\) is a 3-generator abelian \(p\)-subgroup of \(G\), \(A^v = \langle a \rangle \times L\) is no longer abelian, but \(\mathcal{N}_\sigma(A) / C_\sigma(A) = G / A \cong \langle b \rangle\) has order \(q\).

2. The following lemma is the crucial step in the proof of the results of this paper.
LEMMA 2.1. Let P be a p-Sylow subgroup of the group G, Z a normal subgroup of G contained in the centre of P, $\sigma : G \to G^\sigma$ an index-preserving projectivity. If $G = O_p(G)$, then Z^σ is in the centre of P^σ.

PROOF. Let G be a counterexample of least possible order. Since $G^\sigma = O_p(G^\sigma)$ lemma 1.1 implies $Z^\sigma \leq G^\sigma$; moreover if A, B are normal subgroups of G contained in Z such that $A \wedge B = 1$, then A^σ and B^σ are both normal in G^σ and if both are non-trivial by the minimality of G $[P^\sigma, Z^\sigma] \leq A^\sigma \cap B^\sigma = 1$, i.e. Z^σ would be in the centre of P^σ, contradicting our choice of G; so our assumptions imply that either A or B is trivial. Should Z be in the centre of G, then by 1.1 Z^σ would be in the centre of G^σ; hence $G/C_{G^\sigma}(Z) \neq 1$. As $(p, |G/C_{G^\sigma}(Z)|) = 1$ $Z = [Z, G] \times C_{G^\sigma}(Z)$; both factors are normal subgroups of G, $C_{G^\sigma}(G) \neq Z$ and by what we have just pointed out $Z = [Z, G]$, $C_{G^\sigma}(G) = 1$. We can now prove that Z^σ is abelian: since otherwise for every $h \in G^\sigma$ such that $(|h|, p) = 1$ by 1.4 $Z^\sigma = [Z^\sigma, \langle h \rangle] \times C_{G^\sigma}(h)$ with abelian $[Z^\sigma, \langle h \rangle]$, whence $C_{G^\sigma}(h) > (Z^\sigma)^\prime$; $G^\sigma = O_p(G^\sigma)$, so $(Z^\sigma)^\prime$ would be in the centre of G^σ contradicting an earlier statement. Call L the subgroup of G generated by its p-elements, $M = O_p(L)$. Then $[L, Z] = 1$; in particular $M < C_{G^\sigma}(Z)$ and by 1.1 $M^\sigma < C_{G^\sigma}(Z)$, and since $L = PM$, $L^\sigma = P^\sigma M^\sigma$, then $L^\sigma/C_{G^\sigma}(Z^\sigma)$ is a p-group. It follows that $C_{G^\sigma}(L^\sigma) \neq 1$ and in particular the intersection T^σ of $\Omega_1(Z^\sigma)$ with the centre of L^σ is a non-trivial normal subgroup of G^σ; T^σ is a p-group, $G^\sigma = O_p(G^\sigma)$, so by 1.1 $T \leq G$. $|G/C_{G^\sigma}(\Omega_1(Z^\sigma))|$ is not divisible by p, hence T has a complement S in $\Omega_1(Z^\sigma)$ which is normal in G; an earlier remark shows $T = \Omega_1(Z^\sigma)$, i.e. $\Omega_1(Z^\sigma)$ is contained in the centre of P^σ and of every conjugate of P^σ. Therefore $p^\sigma = \exp Z > p$; the minimality of G then implies $[P^\sigma, Z^\sigma] < \Omega_1(Z^\sigma)$, $[\Phi(P^\sigma), Z^\sigma] = [P^\sigma, \Phi(Z^\sigma)] = 1$ (for every group $\Phi(X) = Frattini subgroup of X$). Define $G^* = G^\sigma/M^\sigma$, $\tilde{G} = G^\sigma/C_{G^\sigma}(Z^\sigma)$ (for every $x \in G^\sigma$, $x^* = xM^\sigma$ and $\tilde{x} = xC_{G^\sigma}(Z^\sigma)$); \tilde{G} is isomorphic to a quotient group of G^σ. Since $L^\sigma = P^\sigma M^\sigma < G^\sigma$, the p-Sylow subgroup $P^* = P^\sigma M^\sigma/M^\sigma$ of G^* is normal in G^*, and $\tilde{P} = P^\sigma C_{G^\sigma}(Z^\sigma)/C_{G^\sigma}(Z^\sigma) \leq \tilde{G}$; $\tilde{P} \neq 1$ by our choice of G; let Q^*, \tilde{Q} be complements of P^*, \tilde{P} in G^*, \tilde{G} respectively. Since $G^* = O_p(G^*)$ and $\tilde{G} = O_p(\tilde{G})$, it follows that $P^* = [P^*, Q^*]$, $\tilde{P} = [\tilde{P}, \tilde{Q}]$; moreover if $H^* = H^\sigma/M^\sigma$ is a proper subgroup of Q^* then $[P^*, H^*] \neq P^*$, since otherwise $O_p(P \cap H) = P \cap H < H$ would imply, by the minimality of G, $[Z^\sigma, P^\sigma] = 1$; from

$[\Phi(P^\sigma), Z^\sigma] = 1$
follows that \bar{P} is elementary abelian. Q^* and Q both operate in a natural way on $\Omega_1(Z^\sigma)$ and $G^* = Q^* C_{\sigma}(\Omega_1(Z^\sigma))$, $\bar{G} = \bar{Q} C_{\sigma}(\Omega_1(Z^\sigma))$, so $\Omega_1(Z^\sigma)$ is both Q^*- and \bar{Q}-irreducible; thus, if $\Omega_1(Z^\sigma) = A^\sigma \times B^\sigma$ with Q^* (or \bar{Q}-) invariant A^σ, B^σ, then A^σ, B^σ are normal p-subgroups of G^σ, whence A, B are normal subgroups of G with trivial intersection both contained in Z; an earlier remark implies that one of them is trivial. In particular $\bar{G}_{n-1}(Z^\sigma) = \Omega_1(Z^\sigma)$, i.e. Z is a direct product of cyclic groups of the same order p^n. Choose now $a \in P^\sigma$, and assume a induces a power automorphism on Z^σ; then \bar{a} is in the centre of \bar{G} and, as $C_{\sigma}(\bar{Q}) = 1$, $\bar{a} = 1$: i.e. if an element of P^σ induces a power automorphism on Z^σ, then it centralizes Z^σ; in particular Z cannot be cyclic. We shall now prove that Q^* (and of course Q) is a cyclic q-group for some prime $q \neq p$; so assume, by way of contradiction, that there is a family $\{h_i^*\}_{i \in I}$ of elements of Q^* such that $\langle h_i^* \rangle < Q^*$ for every i, while $\langle h_i^* \rangle \neq Q^*$. By an earlier remark $[P^* , h_i^*] < P^*$, and, if $h_i^* = h_i M^\sigma$ with $(|h_i|, p) = 1$, $O^\sigma([P^* , h_i^*] M^\sigma \langle h_i^* \rangle) = [P^*, h_i^*] M^\sigma \langle h_i^* \rangle \neq G^\sigma$, which implies, by our choice of σ, that $[Z^\sigma , h_i^*] < Z^\sigma \neq ([P^*, h_i^*] M^\sigma \langle h_i^* \rangle)$ is contained in the centre of $P^\sigma \cap [P^*, h_i^*] M^\sigma \langle h_i^* \rangle$, whence $[Z^\sigma , h_i^*] < C_{\sigma^2}(\langle L^\sigma , h_i^* \rangle)$.

Furthermore, if $\langle g_i^* \rangle = \langle h_i^* \rangle$,

$$C_{\sigma^2}(h_i) = C_{\sigma} (g_i^*) = C_{\sigma} (O^\sigma(L^\sigma \langle g_i^* \rangle))^\sigma = C_{\sigma^2} (O^\sigma(L^\sigma \langle h_i^* \rangle))^\sigma \subset C_{\sigma^2}(\langle L^\sigma , h_i^* \rangle).$$

It then follows that $[L^\sigma , h_i^* , Z^\sigma] = 1$ and since $\langle h_i^* \rangle \neq Q^*$,

$$[P^*, Q^*, Z^\sigma] = [P^*, Z^\sigma] = 1,$$ a contradiction. So assume $Q = \langle h^\tau \rangle$ with $|h^\tau| = q^\tau, \tau > 1$; we have already seen that h^τ has no invariant subspace on either $Z^\sigma \Phi(Z^\sigma)$ or $\Omega_1(Z^\sigma)$ and that $[h^\tau, P] < P$; we presently shall prove that P is h^τ-irreducible. Thus, suppose $P = P_1 \times P_2$ is a proper h^τ-factorization; if $P_i = P_i/\langle C_{\sigma^2}(Z^\sigma) \rangle$, $\bar{Q} = Q^\sigma/\langle C_{\sigma^2}(Z^\sigma) \rangle$, $h_i = h C_{\sigma^2}(Z^\sigma)$ with $p | |h||$, then $Z_i = [Z^\sigma , h_i] < O^\sigma(P_i^\sigma Q^\sigma)$, so Z is in the centre of $P \cup O^\sigma(P_i^\sigma Q^\sigma)$, a p-Sylow subgroup of $O^\sigma(P_i^\sigma Q)$, which implies $[Z^\sigma, P^\sigma \cup O^\sigma(P_i^\sigma Q)] = 1$ (because $O^\sigma(P_i^\sigma Q)$ is normal and proper in G); if now $\bar{x} = x C_{\sigma^2}(Z^\sigma)$ with $x \in P^\sigma$ is any element of P_i^σ, there exists $\bar{y} = y C_{\sigma^2}(Z^\sigma)$ with $\bar{y} \in P_i^\sigma$, $\bar{x} = [\bar{y}, \bar{h}^\tau]$ and $[y, h^\tau] \in P^\sigma$: this means that $x = [y, h^\tau] \in C_{\sigma^2}(Z^\sigma)$, and eventually $[P_i^\sigma, Z^\sigma] = 1$, again a contradiction; in particular, $[\bar{h}^\tau, \bar{P}] = 1$. For the next step, we choose $y \in P^\sigma$, $y \notin C_{\sigma^2}(Z^\sigma)$, and we start with a detailed investigation of which (and of course Q) is a cyclic q-group for some prime $q \neq p$; so assume, by way of contradiction, that there is a family $\{h_i^*\}_{i \in I}$ of elements of Q^* such that $\langle h_i^* \rangle < Q^*$ for every i, while $\langle h_i^* \rangle \neq Q^*$, $\langle h_i^* \rangle \neq Q^*$. By an earlier remark $[P^* , h_i^*] < P^*$, and, if $h_i^* = h_i M^\sigma$ with $(|h_i|, p) = 1$, $O^\sigma([P^* , h_i^*] M^\sigma \langle h_i^* \rangle) = [P^*, h_i^*] M^\sigma \langle h_i^* \rangle \neq G^\sigma$, which implies, by our choice of σ, that $[Z^\sigma , h_i^*] < Z^\sigma \neq ([P^*, h_i^*] M^\sigma \langle h_i^* \rangle)$ is contained in the centre of $P^\sigma \cap [P^*, h_i^*] M^\sigma \langle h_i^* \rangle$, whence $[Z^\sigma , h_i^*] < C_{\sigma^2}(\langle L^\sigma , h_i^* \rangle)$.
and we would get the same contradiction as before. In view of the particular structure of Z, we can find a cyclic direct factor $\langle v_0 \rangle$ of Z containing $\langle x \rangle \cap Z \neq 1$; $\langle x \rangle$ is a direct factor of $Z\langle x \rangle$ and for $z \neq 1$ in a complement S of $\langle x \rangle \cap \Omega_1(Z)$ in $\Omega_1(Z)$, the heights of z in $Z \langle x \rangle$ and in Z are the same, so we may construct a decomposition $Z\langle x \rangle = \langle x \rangle \times \langle v_1 \rangle \times \ldots \times \langle v_k \rangle \times \langle c \rangle$, where $\langle v_0 \rangle \times \langle v_1 \rangle \times \ldots \times \langle v_k \rangle = Z$ and $|c| < p^n$; we fix the notation such that $\langle v_1 \rangle^\sigma = \langle w_1 \rangle$, $\langle c \rangle^\sigma = \langle d \rangle$. We can also manage to get $v_0 = x^{p^n-k}$ and $w_0 = y^{p^n-k}$. $\langle y \rangle Z^\sigma$, as a modular non-Hamiltonian group, has the form $A\langle t \rangle$, where t induces a power automorphism on the abelian group A; under our assumptions t can be chosen such that $u^t = u^{1+p^i}$ where $p^i = \exp A$, so that $(\langle y \rangle Z^\sigma)' = \Omega_1(A)$ and $\langle y \rangle Z^\sigma$ has class 2. Suppose first that $\exp A > p^n$; in this case $(\langle y \rangle Z^\sigma)' = \Omega_1(\langle y \rangle)$, $\langle y \rangle < \langle y \rangle Z^\sigma$, $|Z^\sigma: C_{Z^\sigma}(y)| = p$, and the matrix of y on Z (with entries from $Z/p^n Z$), for a suitable choice of the basis, is either

$$
\begin{pmatrix}
1 + p^{n-1} & 0 \\
0 & \text{identity}
\end{pmatrix}
$$

if w_0 is normalized but not centralized by y; or

$$
\begin{pmatrix}
\text{identity} & 0 \\
0 & 1
\end{pmatrix}
$$

if $[w_0, y] = 1$, in which case we may assume that $[w_k, y] = w_0^{p^{n-1}}$ and $[w_i, y] = 1$ for $1 < i < k$ (it is understood that to get precisely these coefficients we may have to choose another generator for $\langle y \rangle$). The exponent of A cannot be p^n, for in this case $Z\langle x \rangle / A^\sigma$ being cyclic implies that $v_1 = x^y g$ with $g \in A^\sigma$, so that $1 = v_1^{p^n-1} = x^{y^{p^n-1}} \in \langle v_0 \rangle \setminus \langle v_1 \rangle$. We now assume that $\exp A = p^n$, and remark that from $|t| < |y|$ and $y = t'u$ with $u \in A$ it follows that $|y| = |t'|$ and we can substitute y for t. Moreover, we can replace A with $U = A\langle y^{p^{n-1}} \rangle$: thus, U is abelian and $u^t = u^{1+p^{n-1}}$ for every $u \in U$; but now U has index p in $\Omega_n(\langle y \rangle Z^\sigma) = U\langle y^{p^n-k} \rangle$, $Z^\sigma \cong U$, so that $|Z^\sigma: Z^\sigma \setminus U| = p$,
and the last \(k \) elements of a basis for \(Z^\sigma \) can be chosen in \(Z^\sigma \cap U \) (remember that \(\dim Z^\sigma = k + 1 \), and that \(y^{p^{\sigma - n}} \notin U \)). The missing element of the basis of \(Z^\sigma \) has the form \(z = y^{p^{\sigma - n}} u \), with \(p \nmid r \), \(u \in U \), and we try to arrange the things so that \(w^{p^{n-1}} \in \Omega_1(\langle y \rangle) \). Since \(\Omega_2(Z^\sigma) = \langle y^{p^{n-1}} \rangle \times \sigma_{-1}(Z^\sigma \cap U) \), we have \([z, y] = [u, y] = w^{p^{n-1}} = y^{p^{\sigma - n}} \cdot w^{p^{n-1}} \) with \(w \in Z^\sigma \cap U \), so \(zw^{-1} = y^{p^{n-1}}(uw^{-1}) \) is congruent to \(z \) modulo \(Z^\sigma \cap U \), \(uw^{-1} \in U \), and \((uw^{-1})^{p^{n-1}} \in \Omega_1(\langle y \rangle) \), as required. For such a choice of the first element \(z \) of the basis \(\sigma_{-1}(\langle z \rangle) = \Omega_1(\langle y \rangle) \times \sigma_{-1}(\langle u \rangle) \), so that \([z, y] = [u, y] = w^{p^{n-1}} = z^{p^{n-1}} \), and the matrix of \(y \) on \(Z^\sigma \) can be written either as

\[
\begin{pmatrix}
1 & 0 \\
0 & 1 + p^{n-1}
\end{pmatrix}
\]

(III)

or as

\[
\begin{pmatrix}
1 + \lambda p^{n-1} & 0 \\
0 & 1 + p^{n-1}
\end{pmatrix}
\]

(IV)

with \(\lambda \neq 0 \), \(\lambda \neq 1 \) (mod. \(p \)), where the right lower corner corresponds to the action of \(y \) on \(U \cap Z^\sigma \). It is easily checked that, under either (III) or (IV), if \(S = \langle u \rangle \times \langle v \rangle \) is a \(y \)-invariant subgroup of \(Z^\sigma \) and \([u] = [v] = p^n \), then \(S \) is also the product of two \(y \)-invariant cyclic subgroups: if \(S \leq C_1(y) = \{ z \in Z^\sigma | z^p = z^{1 + p^{n-1}} \} \) there is nothing to prove; otherwise \(|S : C_1(y) \cap S| = p \), and we may assume that \(u = w_0 e \), \(w_0 = w_0^{1, b}p^{n-1} \) (where \(\lambda = 0 \) under (III), \(\lambda = 0 \neq 1 \) under (IV)) \(c \in C_1(y) \), \(v \in C_1(y) \). \([u, y] = (w_0 e)^p - 1 \in S \), so \(\langle w_0^{p^{n-1}} \rangle \times \langle w_0^{1, b} \rangle \times \sigma_{-1}(C_1(y)) \) imply that \((\sigma^v)^{p^{n-1}} = 1 \), \(r = 1 \) (mod. \(p \)), whence \([w_0^{p^{n-1}}, y] = w_0^{1, b}p^{n-1} = (w_0^{p^{n-1}})^{p^{n-1}} \), and \(S = \langle w_0^{p^{n-1}} \rangle \times \sigma_{-1}(C_1(y)) \) with both factors \(y \)-invariant. We also remark that, if we look at the elements of \(\bar{P} \) as linear \(Z/p^nZ \) maps on \(Z^\sigma \), then their determinant is 1, otherwise we would get \(O_\sigma(C^\sigma) \neq G^\sigma \); this remark eliminates case (I). The next step is to prove that \(\dim Z > 2 \): so assume \(\dim Z = 2 \) and take \(a \in P^\sigma \) such that \(\bar{a} \neq 1 \). Suppose \(a \) satisfies (II) with respect to a basis \(z_0, z_1 ; \)

Federico Menegazzo
clearly we can choose \(z_1 = z_0^a \), so \(a \) is represented by

\[
\begin{pmatrix}
1 & 0 \\
p^{n-1} & 1
\end{pmatrix},
\]

\(a^h \) by

\[
\begin{pmatrix}
1 + \alpha p^{n-1} & \beta p^{n-1} \\
0 & 1
\end{pmatrix};
\]

\(\det a^h = 1 \) implies \(\alpha \equiv 0, \beta \not\equiv 0 \pmod{p} \), so if \(a_i \in P^\sigma \) is such that \(\overline{a_i} = \overline{a^h} \) then \(a_i \) is represented by

\[
\begin{pmatrix}
1 & \beta p^{n-1} \\
\gamma p^{n-1} & 1
\end{pmatrix} \quad ((i \not\equiv 0 \pmod{p})
\]

\(\langle z_0^a z_1^a \rangle \) is \(a \)-invariant if there is \(\mu \) such that \((z_0^a z_1^a) \mu p^{n-1} = [z_0^a z_1^a, a_i] = (z_0^a z_1^a)^{p^{n-1}} \). \(\mu \equiv 0 \) implies \(s \equiv 0 \equiv r \pmod{p} \), i.e. \(C_{\Phi^\sigma}(a_i) = \Phi(Z^2) \); for \(\mu \not\equiv 0 \) we get \(s \beta \equiv s \mu^2 \pmod{p} \), and either \(s \equiv 0 \equiv r \) or \(i \beta \) is a square in \(F_p = Z/pZ \); if \(p \neq 2 \) this leads to a contradiction, and for \(p = 2 \) we check directly that \(a^h \) is represented by

\[
\begin{pmatrix}
1 & 2^{n-1} \\
0 & 1
\end{pmatrix},
\]

and \(aa^h \) does not normalize two independent cyclic subgroups of order \(2^n \), again a contradiction. So if \(\dim Z = 2 \), then every \(a \in P^\sigma \) with \(\overline{a} \neq 1 \) is represented, with respect to a suitable basis \(z_0, z_1 \), by

\[
\begin{pmatrix}
1 - p^{n-1} & 0 \\
0 & 1 + p^{n-1}
\end{pmatrix}
\]

(i.e. case (IV) with \(\lambda \equiv -1; p \neq 2 \); we possibly have to change the generator of \(\langle a \rangle \). If \(a^h \) is represented by

\[
\begin{pmatrix}
1 + \alpha p^{n-1} & \beta p^{n-1} \\
\gamma p^{n-1} & 1 + \delta p^{n-1}
\end{pmatrix},
\]

\(\det a^h = 1 \) implies \(\alpha + \delta \equiv 0 \pmod{p} \); \(a^h \) induces \(1 + p^{n-1} \) on some
\[\langle x_0^r x_1^s \rangle \text{ with } (r, s) \neq (0, 0), \text{ i.e. } [x_0^r x_1^s, a^h] = (x_0^r x_1^s x_0^r x_1^s)^{p-1} = (x_0^r x_1^s)^{p-1}, \]

which means that the linear system

\[
\begin{cases}
 r(x - 1) + sy = 0 \\
 r\beta + s(\delta - 1) = 0
\end{cases}
\]

has a non trivial solution, and

\[
\det \begin{pmatrix}
 x - 1 & y \\
 \beta & \delta - 1
\end{pmatrix} = x\delta - \beta y + 1 \equiv 0 \pmod{p}.
\]

Now take \(a_i \in \mathbb{P} \) such that \(a_i \equiv a_i' a_i^h \); it is represented by

\[
\begin{pmatrix}
 1 + (x - i)p^{n-1} & \beta p^{n-1} \\
 \gamma p^{n-1} & 1 + (\delta + i)p^{n-1}
\end{pmatrix};
\]

it has to normalize two independent cyclic subgroups of \(\mathbb{Z}^\sigma \), so \([x_0^r x_1^s, a_i] = (x_0^{(x+i)} x_1^\beta x_0^{(\delta+i)} x_1^\gamma)^{p-1} = (x_0^r x_1^s)^{p-1} \) must be solvable with \((r, s) \neq (0, 0) \) for two choices of \(\mu \) not congruent mod. \(p \), i.e.

\[
\begin{pmatrix}
 x - i & \beta \\
 y & \delta + i
\end{pmatrix}
\]

must have two distinct eigenvalues in \(F_p \). The characteristic polynomial

\[
\chi(\mu) = \det \begin{pmatrix}
 x - i - \mu & \beta \\
 y & \delta + i - \mu
\end{pmatrix} = \mu^2 - i^2 - 2\delta i - 1
\]

has distinct roots in \(F_p \) if and only if \(\Delta(i) = i^2 + 2\delta i - 1 \in (F_p - \{0\})^2 \); \(\Delta(i) = \Delta(j) \) if and only if \((i - j)(i + j + 2\delta) = 0 \pmod{p} \), so the partition \(\mathcal{P}_d \) associated with \(\Delta \) is \(\{-\delta\}, \{j, -j - 2\delta\}, j=\frac{-p-1}{2} \) and has \((p+1)/2\) elements; \(\Delta(0) = 1 \in (F_p - \{0\})^2 \). If \(0 \neq -\delta \), then \(|\Delta(F_p - \{0\})| = (p+1)/2 \); if \(0 = -\delta \), then \(|\Delta(F_p - \{0\})| = (p-1)/2 \), but \(1 \notin \Delta(F_p - \{0\}) \).

In any case, we can find \(i \neq 0 \pmod{p} \) such that \(\Delta(i) \notin (F_p - \{0\})^2 \): for such an \(i \) \(a_i \) does not satisfy the conditions we asked for. This contradiction proves \(\dim Z > 2 \); we shall show that \(\dim Z = 3 \). Suppose we can choose \(a \in \mathbb{P} \) satisfying (II); since \([a, Z^\sigma] a^{\mathbb{P}} Z^\sigma = 1 \), \(C_{2\sigma}(a) = C_{2\sigma}^\sigma(a) \setminus C_{2\sigma}^\sigma(a) \) has index \(p^2 \) in \(Z^\sigma \): this is only possible when
dim $Z = 3$, and a_i satisfies (III). If there is a in P^a satisfying either (III) or (IV), $C_{x^a}(a^{-1}a^h) > C_1(a) \cap C_1(a^h)$, where $C_1(y) = \{z \in Z^a | z^a = z^{1+np^{-1}} \}$, which has index p^2 in Z^a, so: if $|Z^a: C_{x^a}(a^{-1}a^h)| = p$, $a^{-1}a^h$ satisfies (II) and we have just proved that dim $Z = 3$ in this case; if $|Z^a: C_{x^a}(a^{-1}a^h)| = p^2$, then $a^{-1}a^h$ satisfies (III) and once more dim $Z = 3$.

Suppose now that $a \in P^a, a \neq 1$, a satisfies (II); with respect to a basis z_o, z_1, z_2 such that $\langle z_o \rangle \cap Z^a, \langle z_o, z_1 \rangle \Phi(Z^a) = C_{x^a}(a), \langle z_2 \rangle = \langle z_0 \rangle$, a is represented by

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
p^{-1} & 0 & 1
\end{pmatrix},
$$

a^h by

$$
\begin{pmatrix}
1 & 0 & \alpha p^{n-1} \\
0 & 1 & \beta p^{n-1} \\
0 & 0 & 1
\end{pmatrix}.
$$

Two cases are possible: either $\langle z_o, z_1 \rangle \cap C_{x^a}(a) \cap C_{x^a}(a^h) = \langle z_o, z_0^2 \rangle$, i.e. $\alpha = 0, \beta \neq 0$ (mod. p); or $\langle z_o, z_2 \rangle \cap C_{x^a}(a) \cap C_{x^a}(a^h) = \Phi(\langle z_o, z_2 \rangle)$: if we choose z_1 such that $\langle z_1, \Phi(Z^a) \rangle = C_{x^a}(a) \cap C_{x^a}(a^h)$, then $\alpha \neq 0, \beta = 0$ (mod. p). In the former case a_i is represented by

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & \beta p^{n-1} \\
p^{-1} & 0 & 1
\end{pmatrix}
$$

(symbols are as usual; a_i must satisfy (III)); it centralizes $\langle z_o \rangle$ and normalizes no other (independent) cyclic subgroup of Z^a of order p^n, a contradiction. In the latter case a_i is represented by

$$
\begin{pmatrix}
1 & 0 & \alpha p^{n-1} \\
0 & 1 & 0 \\
p^{-1} & 0 & 1
\end{pmatrix};
$$

it centralizes $\langle z_1 \rangle \Phi(Z^a)$, and it should work as a power automorphism, $1 + \mu p^{n-1}$ say, $\mu \neq 0$ (mod. p), on a direct product S of two cyclic subgroups of order p^n; but $\langle z_0^r z_1^t z_2^t \rangle < S$ if and only if $(z_0^r z_1^t z_2^t)^{\mu p^{n-1}} = [z_0^r z_1^t z_2^t, a_i] = (z_2^r z_0^t)^{\mu p^{n-1}}$, i.e. if and only if (r, s, t) is a solution of

\begin{align*}
\begin{cases}
rmu - it & = 0 \\
smu & = 0 \\
rz - \mu t & = 0
\end{cases}
\end{align*}
whose rank is \(\geq 2\): there is one independent solution at most, a contradiction. So case (II) is ruled out. Now we assume \(a \in \mathcal{P}_a, a \not= 1\), \(a\) satisfies (III); \(\det a = 1 = 1 + 2p^{n-1}\) forces \(p = 2\). \(\mathcal{C}_1(a)\) has index 2 in \(\mathbb{Z}^a\); the same occurs to \(\mathcal{C}_1(a^h)\), so we can put \(\mathcal{C}_1(a) \cap \mathcal{C}_1(a^h) = = \mathcal{C}_2(a^h) = \langle \tau_2, \Phi(\mathcal{Z}) \rangle; a^h\) also satisfies (III). With respect to a basis \(\tau_0, \tau_1, \tau_2\), let \(a\) be represented by

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 + 2^{n-1} & 0 \\
0 & 0 & 1 + 2^{n-1}
\end{pmatrix}.
\]

Assume further that \(\langle \tau_1, \tau_2 \rangle \Phi(\mathcal{Z}) = \langle \tau_0, \tau_2 \rangle \Phi(\mathcal{Z})\); we can choose \(\tau_2\) so that \(S = \langle \tau_0, \tau_2 \rangle = \langle \tau_0, \tau_2 \rangle = \langle \tau_0, \tau_2 \rangle\). \(S\) is \(\langle a, a^h \rangle\)-invariant, \(\langle \tau_0 \rangle \wedge \wedge \langle \tau_2 \rangle = 1\), so \(\tau_0 = (a^h)^n \tau_2\), \(\tau_0, a^h = \tau_0^{2^{n-1}}, a^h\) is represented on \(S\) by

\[
\begin{pmatrix}
1 & 2^{n-1} \\
0 & 1
\end{pmatrix},
\]

so \(\langle \tau_0^{2^{n-1}} \rangle \subset [a^h, \mathcal{Z}] \cap \mathcal{C}_2^{n-1}(\mathcal{C}_a(a^h))\); but under (III) this intersection is trivial. So we can assume that \(\langle \tau_0 \rangle \wedge \langle \tau_2 \rangle = 1\), and take \(\tau_1 = \tau_0\) instead of \(\tau_1\) in the basis (later on, we shall drop the apex); since we can always arrange that \(\tau_0 = \tau_0^n \tau_2\), this means that \(a\) is represented by

\[
\begin{pmatrix}
1 & 0 & 0 \\
\delta 2^{n-1} & 1 + 2^{n-1} & 0 \\
0 & 0 & 1 + 2^{n-1}
\end{pmatrix},
\]

and \(a^h\) by

\[
\begin{pmatrix}
1 + \alpha 2^{n-1} & \beta 2^{n-1} & \gamma 2^{n-1} \\
0 & 1 & 0 \\
0 & 0 & 1 + 2^{n-1}
\end{pmatrix},
\]

\(\det a^h = 1 + (\alpha + 1)2^{n-1} = 1\) forces \(\alpha \equiv 1 \pmod{2}\); \(a^h\) must induce the power \(1 + 2^{n-1}\) on a cyclic subgroup \(\langle \tau_0, \tau_1 \rangle = \langle \tau_0, \tau_1 \rangle \rangle = \langle \tau_0, \tau_1 \rangle \rangle = \langle \tau_0^2, \tau_1^2 \rangle^{2^{n-1}} = \langle \tau_0^2, \tau_2^2 \rangle, \ a^h = \rangle = \langle \tau_0^2, \tau_2^2 \rangle^{2^{n-1}}\), so \(\gamma + t = t, \ \gamma \equiv 0 \pmod{2}\). \(a^h\), which should satisfy (III), is represented by

\[
\begin{pmatrix}
1 + 2^{n-1} & \beta 2^{n-1} & 0 \\
\delta 2^{n-1} & 1 + 2^{n-1} & 0 \\
0 & 0 & 1
\end{pmatrix};
\]
it has to induce the power automorphism $1 + 2^{n+1}$ on a complement S of $\langle z_2 \rangle$; this means that $(z_0^a z_1 z_2^a) z_2^{-1} = [z_0^a z_1 z_2^a, a a^h] = (z_0^a z_1 z_2^a)^{z_2^{-1}}$ for $z_0^a z_1 z_2^a \in S$, so that the system: $s \delta = 0$, $r \beta = 0$, $t = 0$ has two independent solutions; this only happens if $\beta = \delta = 0$. So a is represented by

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 + 2^{n-1} & 0 \\
0 & 0 & 1 + 2^{n-1}
\end{pmatrix},
$$

a^h by

$$
\begin{pmatrix}
1 + 2^{n-1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 + 2^{n-1}
\end{pmatrix};
$$

$z_0^h \in \langle z_1, \Phi(Z^a) \rangle$, $\langle z_1, z_2 \rangle^h \Phi(Z^a) = \langle z_0, z_2 \rangle \Phi(Z^a)$. We look at the way h operates on $Z^a/\Phi(Z^a)$: if $z_1^h \equiv z_0 \pmod{\Phi(Z^a)}$, then

$$
z_0 \Phi(Z^a) = (z_0 \Phi(Z^a))^h,
$$

a contradiction; suppose $z_1^h \equiv z_2$ (the other possibility is $z_1^h \equiv z_0 z_2$) (mod. $\Phi(Z^a)$); then from $z_0^h \equiv z_0 \pmod{\Phi(Z^a)}$ it follows that $(z_0 \Phi(Z^a))^h = z_0 \Phi(Z^a)$, so $\langle h^a \rangle < \bar{Q}$, and, as \bar{Q} is isomorphic to a subgroup of $GL(3, 2)$, $h^a = 1$ and h cannot be irreducible on $\Omega_1(Z^a)$ which has dimension 3; clearly $z_2^a \not\equiv z_2$ (mod. $\Phi(Z^a)$), so h is represented on $Z^a/\Phi(Z^a)$ by

$$
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{pmatrix},
$$

and on Z^a by

$$
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
\lambda & 2 \mu & \nu
\end{pmatrix}
$$

with $\lambda \equiv \nu \equiv 1 \pmod{2}$, where we are using the basis $z_0, z_1 = z_0$, $z_2 = z_1$; moreover $\lambda = \det h = 1$. An easy calculation shows that a^h is represented by

$$
\begin{pmatrix}
1 + 2^{n-1} & 0 & 2^{n-1} \\
0 & 1 + 2^{n-1} & 0 \\
0 & 0 & 1
\end{pmatrix}
$$
and if \(b \in P^a, \overline{b} = \overline{a}a^i \), \(b \) should satisfy (III), which contrasts to the fact that it normalizes \(\langle z_0, z_2 \rangle \) and \(\langle z_2 \rangle \), but no complement of \(\langle z_2 \rangle \) in \(\langle z_0, z_2 \rangle \). If instead \(z_2^i \equiv z_0 z_2 \) (mod. \(\Phi(Z^a) \)), a similar argument proves that \(h \) is represented on \(Z^a/\Phi(Z^a) \) by

\[
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

and on \(Z^a \) by

\[
\begin{pmatrix}
0 & 1 & 0 \\
\lambda & 2\mu & \nu \\
1 & 0 & 0
\end{pmatrix},
\]

where we refer to the basis \(z_0, z_1 = z_0^b, z_2 = z_0^{b^{-1}} \); moreover \(\nu = \det h = 1 \). In this case \(a^b \) is represented by

\[
\begin{pmatrix}
1 + 2^{n-1} & 0 & 0 \\
0 & 1 + 2^{n-1} & 0 \\
2^{n-1} & 0 & 1
\end{pmatrix},
\]

and \(b \) as above normalizes \(\langle z_0 \rangle \) and \(\langle z_0, z_2 \rangle \), but no complement of \(\langle z_0 \rangle \) in \(\langle z_0, z_2 \rangle \). So far we showed that no element \(a \) in \(p^a \) satisfies (I), (II) nor (III); but if \(a \) satisfies (IV), then \(a^{-1}a^b \) should satisfy (III): this, last contradiction proves the lemma.

Corollary 2.2. Let \(\sigma: G \to H \) be an index-preserving projectivity. If the image \(Z(P)^a \) of the centre \(Z(P) \) of the \(p \)-Sylow-subgroup \(P \) of \(G \) is not contained in the centre of \(P^a \), then \(N^a_\sigma(Z(P)) \) has a proper normal subgroup \(K \) such that \(N^a_\sigma(Z(P))/K \) is a \(p \)-group.

Proof. Apply lemma 2.1 to \(N = N^a_\sigma(Z(P)) \).

3. We shall now use the propositions proved in section 2 in order to derive the results announced in the introduction.

Theorem 3.1. Let \(G \) be \(p \)-normal, \(P \) a \(p \)-Sylow subgroup of \(G \), \(\sigma: G \to H \) an index-preserving projectivity. If the image under \(\sigma \) of the centre of \(P \) is not contained in the centre of \(P^a \), then \(O^a(\sigma(G)) \neq G \); in particular \(G \) is not simple.
PROOF. Call $Z(P)$ the centre of P; 2.2 and the second theorem of Grün imply that $G/O^{p}(G) \cong N^{p}_{\sigma}(Z(P))/O^{p}\left(N^{p}_{\sigma}(Z(P))\right) \neq 1$, q.e.d.

THEOREM 3.2. Let G be a p-soluble group with $O^{p}(G) = G$. For every p-Sylow subgroup P of G and every index-preserving projectivity $\sigma: G \to G^\sigma$ the image under σ of the centre of P is the centre of P^σ.

PROOF. For any group X let $Z(X)$ be its centre. It will be enough if we prove that, under our assumptions, $Z(P)^\sigma < Z(P^\sigma)$: the opposite inclusion is then proved looking at σ^{-1}. Let G be a counterexample of least possible order. Call A, B respectively $O_{p'}(G)$, $O_{p'}(G^\sigma)$: they are the intersection of all subgroups of G, G^σ maximal with respect to the property of having an order prime to p, so $B = A^\sigma$. Assume $A \neq 1$: σ induces an index-preserving projectivity $\bar{\sigma}: G/A \to G^\sigma/B$ and by the minimality of G (we now put $Z = Z(P)$)

$$(ZA/A)^{\bar{\sigma}} = Z(PA/A)^{\bar{\sigma}} = Z^{\sigma}A^{\sigma}/A^{\sigma} < Z((PA/A)^{\bar{\sigma}}) = Z(P^{\sigma}A^{\sigma}/A^{\sigma}),$$

so $[P^{\sigma}, Z^{\sigma}] \not< A^{\sigma}\cap P^{\sigma} = 1$ against our choice of G. There exists a proper normal subgroup N of G such that $p^{\nu}|G:N|$; put $M = O^{p}(N)$, and let Q be a complement of P in $N_{\sigma}(P)$. $G = [P, Q]QM$: thus, $P < N$ and by the Frattini argument $G = N_{\sigma}(P)N = QPN = QN$; furthermore $N = PM$, whence $G = PQM$: but $[P, Q]Q = Q^{p}$, so $P < N_{\sigma}([P, Q]QM)$, i.e. $[P, Q]QM \leq G$; $G/[P, Q]QM \cong P/[P, Q]QM \wedge P$ is a p-group, and eventually $G = [P, Q]QM$. Since $M \leq QM$ and $p^{\nu}|QM: M|$, we get $P\wedge QM = P\wedge M$; it follows that

$$P = P\wedge [P, Q]QM = [P, Q](P\wedge QM) = [P, Q](P\wedge M).$$

We shall now prove that $[P, Q]^{\sigma}$ centralizes Z^{σ}; thus, $[P, Q]Q = \cdots = O^{p}(P, Q)Q$, $C_{p}(Q)$ is a p-group contained in the centralizer of $[P, Q]Q$ so by 1.1 $([P, Q]Q)^{\sigma}, C_{p}(Q)^{\sigma} = 1$; in particular $[[P, Q]^{\sigma}, C_{p}(Q)^{\sigma} = 1$. Furthermore $[Z, Q] < Z([P, Q])$; $[P, Q]$ is a p-Sylow subgroup of $[P, Q]Q$, so by 2.1 $[Z, Q]^{p} < Z([P, Q]^{p})$; we can conclude that $[P, Q]^{\sigma}$ centralizes $C_{p}(Q)^{\sigma}\cup [Z, Q]^{\sigma} = Z^{\sigma}$. Next we prove that $Z \leq M$: assume $Z < M$: then $Z < Z(P\wedge M)$ and, by the minimality of G, as $P\wedge M$ is a p-Sylow subgroup of $M < G$, $Z^{p} < Z((P\wedge M)^{p})$: this fact, together with an earlier statement, implies the contradiction $[Z^{p}, P^{\sigma}] = 1$. Let F be the Fitting subgroup of G: under our assumptions F is a nontrivial p-group, and $F \supset C_{p}(F)$ [1]. We also have $F < P < N$ and $[Z, F] = 1$ implies $Z < Z(F) < F$; whence Z^{p} is an abelian subgroup
of $Z(F)$. Let $1 = V_0 < V_1 < \ldots < V_k = M$ be a p-series of M whose elements are normal in G (i.e. V_i/V_{i-1} is either a p-group or $p
mid |V_i/V_{i-1}|$ for $i = 1, \ldots, k$). We shall prove by induction that $[V_i, Z^o] = 1$. V_1 is a p-group, so $V_1 \leq F'$ and $[V_1, Z^o] = 1$. Assume next $[V_r, Z^o] = 1$; if $p \nmid |V_{r+1}/V_r|$, we can write $Z^o = [Z^o, V_{r+1}] \times C_{Z^o}(V_{r+1})$ where both factors are normal p-subgroups of $G = O^p(G)$; 1.1 then tells that $[Z^o, V_{r+1}]^o$ and $C_{Z^o}(V_{r+1})^o$ are both normal in G^o; if both are non-trivial by the minimality of $G [P^o, Z^o] < [Z^o, V_{r+1}]^o \cap C_{Z^o}(V_{r+1})^o = 1$ against our choice of G. But if $C_{Z^o}(V_{r+1}) = 1$, then $Z < Z^o = [Z^o, V_{r+1}] < V_{r+1} < M$ contradicting an earlier statement, so in this case $[Z^o, V_{r+1}] = 1$. In case V_{r+1}/V_r is a p-group, $V_{r+1} = (P \cap V_{r+1}) V_r$; for every $x \in G$

$$[P \cap V_{r+1}, Z^o] = [(P \cap V_{r+1})^{v^{-1}}, Z^o] = [(P \cap V_{r+1})^{v}, Z^o] = [P \cap V_{r+1}, Z]^{v^{-1}} = [P \cap V_{r+1}, Z]^{v} = 1$$

for a suitable $v \in V_r$; hence in this case too $[Z^o, V_{r+1}] = 1$. It follows that $[Z^o, M] = [Z^o, V_r] = 1$; Z^o is a p-group, $M = O^p(M)$, so by 1.1 $[Z^o]^o, M^o] = 1$, $C_{Z^o}(Z^o) > [P, Q]^o M^o > [P, Q]^o (P \cap M)^o = P^o$: this contradiction ends the proof.

(Theorem 3.2 dealt originally with soluble groups; the author is grateful to prof. F. Napolitani who pointed out to him that the proof worked for p-soluble groups too).

REFERENCES

Manoscritto pervenuto in redazione il 23 aprile 1974.