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REND. SEM. Mar. UN1v. Papova, Vol. 52 (1974)

On Index Preserving Projectivities of Finite Groups.

FEDERICO MENEGAZZO (*)

If G is a group, a projectivity of G'is anisomorphism of the lattice £(G)
of subgroups of G onto the lattice £(H) of subgroups of a group H;
the projectivity o: @ —H is index preserving if |Uc: Vo|= |U: V|
for every pair U>V of subgroups of G. As a motivation for this rese-
arch one might look at these well known facts: if G is finite simple
(non abelian) then every projectivity of G is index preserving; if A
is an abelian subgroup of the group G, A° may be non abelian (thus
projectivities, generally speaking, do not preserve centres nor cen-
tralizers) [3]. In this paper the following problem is investigated:
let P be a p-Sylow subgroup of @, ¢: G — H an index preserving pro-
jectivity; under which assumptions can we assert that ¢ sends the
centre of P into a central subgroup of P¢? We prove that if P¢ is not
centralized by the image of the centre of P, and if @ is either p-normal
or p-soluble, then @ has a proper normal subgroup K such that G/K
is a p-group.

The notation is standard ; by « group » we shall mean « finite group ».

1. This section includes some introductory results and remarks.

LemmA 1.1. Let A and B be subgroups of @, o: @ — G9 an index
preserving projectivity, and assume that A is generated by its p-
elements, while B= 07(B). If B N4(4), then Bo< Ny(A49); if B<
< C4(4), then Bo< Cyo(A%). (Here, and in the rest of the paper, if X

(*) Indirizzo dell’A.: Seminario Matematico dell’Universitda di Padova.
Lavoro eseguito nell’ambito dei gruppi di ricerca afferenti al Comitato
per la matematica del C.N.R.
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is any group, O?(X) denotes the subgroup of X generated by all the
elements in X whose orders are prime to p.)

ProoF. Let 2 be any element of B with p.f|x|; every p-element
of AV (x)isin A,i.e. A is the union of the cyclic subgroups of AV (x>
whose orders are a power of p. Since ¢ is index preserving, A49is the
union of the cyclic subgroups of (4V {x))° whose orders are a power of p,
80 A°<a(AV<x)>); a8 x describes all the elements of B whose orders
are prime to p we get Bo< Ngs(A). If furthermore B < Cy(4), for every
element « of B such that p.f|z| and for every p-element y of A <z)V
V {y) = (x> X {y) where the decomposition is both group- and lattice-
theoretical; it follows that {z,y)°= <{x)°X (y)°. Letting z, y describe
all the elements of B with an order prime to p and all the p-elements
of A respectively, we get [4°, Bo]= 1.

LeEMMA 1.2. Let P be a p-Sylow subgroup of @, @ a complement
of P in NyP). If ¢: @ - G7is an index preserving projectivity, then
Pr ig a p-Sylow subgroup of G°, Ng(P%) = N (P)°= PoQ°, [P, Q]°=
= [Po, Q°], Cp(@)7= Cpo(Q°).

Proor. The only thing to prove is that [P, Q]o= [P°, @°]. [P, Q]
is the intersection of P with 0?(N¢(P)); the same is true for [P°, Q°]
and the equality follows.

LeEMMA 1.3. Let G be a non-abelian non-Hamiltonian modular
p-group. G has a maximum subgroup M which is characteristic and
such that either [@, Aut G]< M or D (G)[M, Aut G]< M.

Proor. Let G be a counterexample of least possible order. Every
non-trivial characteristic subgroup H of G which is contained in ®(G)
contains G': thus, should G/H be non-abelian, by the minimality of G
there would exist a maximum subgroup M of @, characteristic and
such that either [G/H, Aut G/H]< M/H (in which case [&, Aut G]<M
would follow) or

@(G/H)[M/H, Aut ¢/H] < M/H ,

i.e. ®(Q)[M, Aut G]< M. In particular G'A(Z(G)>G, ie. G'<
<2(Z(@). So G@= Ay with A abelian, a®= a**?’ for every ac A,
exp A = p**l, p*>2. We now prove that we may choose 4, b such
that |b| < exp A: thus,if |b| > p**%, then 1 # {(ab?)*"*|a € A) = (b?"'y =
= 0,.(G)<0,(G) = P(@), whence G'<<b) and @' is cyclic; on the
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other hand G'=[A4,b]= U,(4), so A= >X U with exp U<p", |t|=
=p*t; V= U<{b) is now abelian, and ¢ normalizes every cyclic sub-
group of V, because if ¢+ = 0 (mod. p) [ub’,t]=1 and if ¢ 0 (mod. p)
[ub?, ] = [b%, t] € B> = {(uwb")*"™> < (ub’); hence ¢ induces on V a
power automorphism, and a suitable generator of <¢) induces exactly
the power 1 + p” for some 7; since exp V > p2, we get p"> 2, and V,
t satisfy the condition we asked for. Put M= A<b?); M is a maxi-
mum subgroup of @, and M is abelian. Remark that for every x=
=ab?e M a*°'= a*’, 50 #*= a*+?'bir= pa*" = ", If M is a charac-
teristic subgroup of @, then for every € M, « € Aut G (2%)* = (2*)1*?' =
= (a1+7")* = (2)%, i.e. [b, a] € Co(M) = M; and [G, Aut Gl<M. If M
is not characteristic in @, then |G/Z(G)|= p?, P(G)<Z(G), and since
Z(G)= Q,(ANb, Z(G) < AZ(G)= M < G, we get |4: Q(A)|=p,i.e.
A= uyxV with p*>exp V, p*'= |u|. We prove next that under
these assumptions we can choose b such that |b| <exp A. Thus, as-
sume there is no ge Ab with |g|<p?; it follows <upAb) =1, since
otherwise 1 £ b?° = 4’ and (u~'b)? = 1, contradicting the former as-
sumption, for a suitable 7= 0 (mod. p); hence {upA<u*b>=1 for
every integer k. But we have so proved that M is the only maximum
subgroup of G containing Z(@) all whose subgroups are normal in G;
hence M is characteristic, against a former assumption: thus, if Z(G) <
<N<G, N#£M, N|/Z(G)= {u*bZ(@)> with k a suitable integer, and
since [u*b, u]=[b, w] = w7 ¢ (u*b) N contains {(w*b) which is not
normal in G. So assume we chose b such that |b|<p®; for every x € G,
x = ab’, 1" = (ab’)*" = a*’, 1= a'*?’ b= ' v = 2'*": b induces on G a
homogeneous power automorphism, hence [b, Aut G]<Z(G). Further-
more 2,(6) = <u7, V, by= Z(G)<b, |6: 2,(6)] = |2,(@): Z(&)|=p, and
eventually @(G)[Q,(Q), Aut G] = D(G)[Z(G){b), Aut G]1<Z(G), q.e.d.

REMARK. Lemma 1.3 is in some way a refinement of a result in [2]
which would however be enough for the needs of this paper.

LEMMA 1.4. Let A<G@ be an abelian p-group, @ <Ny(4), pt|Q|
If ¢: @ — G9 is an index-preserving projectivity, then A¢=[4°, @7]X
X Cuo(@9), and [A9, @] is in the centre of As.

PROOF. Put H = 07(AQ); then Ho= 0?(49Q0). [A°, Qo] =[4, Q] =
= (A/\H)a= A"/\H"EIA"Q";

Co(@7) = Cu(Q)°= C (H)7= Cuo(H’) = 4°Q° ;

s0 As= ([4, Q]X C4(Q))°=[4°, @]X Cu(Q°). Moreover [A7, @7, Q7] =
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=[4,0,01°=[4,Ql°=[4°@°]: by lemma 1.3, since [4°% @°] is a
modular non-Hamiltonian p-group, [A°, Q7] is abelian, q.e.d.

COROLLARY 1.5. Let 4 be a 2-generator abelian p-subgroup of G,
o: @ — @° an index-preserving projectivity. If Ac is not abelian, then
Nog(A)/Cy(4) i8 a p-group.

Proor. Let @ be a subgroup of N’g(A4) such that pt|@]. A°is a
2-generator modular non-abelian non-Hamiltonian p-group, so A° is
not directly decomposable; by 1.4 [A°, Q°] < A% whence [A4°, @°]=
=1=[4,@], q.e.d.

REMARK 1.6. The hypothesis on the number of generators of A
in 1.5 cannot be dispensed with, as the following example shows. We
first look at the groups

H={<a,bla*=0b"=1, a®>=a", Ir£1, r*=1 (mod. p))

where p, q are prime numbers, p =1 (mod. q); K = {¢, d|¢e*' = d»= 1,
[e,d]=1); L= {e, fle*'= fr=1, /= e'*?). For every element hefv
of HXL (heH; z, y integers) put (he*f')"= hc*d*€ H X K; since
hesfr="h'e"fV (h, W €H; =, &', y, y' integers) if and only if he*d'=
=h'c¢®d", v is a well defined bijection of H XL onto H X K. More-
over if he'fe, ' ¢ f' € HX L, with [e, f¥] = e»*®¥, we get

((he=fv)(h' e f¥'))* = hh' =+=" 43" @uiv’ e {(he® 1), (B’ e fV')*) =
= <he" @, B e AV
in fact, this is true if and only if ¢»*@' e (he*dv, B/ ¢*' @'y, but if

2'=0 (mod. p), then «(x’,y)=0 (mod.p) and ¢**@¥ =1, whereas if
z'# 0 (mod. p)

e g (v = (%) = (b ¢ @)y < Cherddy B o @'y

So 7 induces a bijection of £(H X L) onto £(H X K) which clearly is an
index-preserving projectivity. Now put oc=1"! G=HXK, A=
=<a>X K; A is a 3-generator abelian p-subgroup of @G, A= {a) XL
is no longer abelian, but N°g(4)/Cy(4)= G/A =~ <b)> has order gq.

2. The following lemma is the crucial step in the proof of the
results of this paper.
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LeEMMA 2.1. Let P be a p-Sylow subgroup of the group G, Z a
normal subgroup of G contained in the centre of P, ¢: G — G an
index-preserving projectivity. If G = 0?(G@), then Z¢ is in the centre
of Po.

Proor. Let G be a counterexample of least possible order. Since
G = 0r(@°) lemma 1.1 implies Z°<1G°; moreover if A, B are normal
subgroups of G contained in Z such that AAB =1, then 4° and B°
are both normal in G¢ and if both are non-trivial by the minimality
of G [P, Zo]<A°AB°=1, i.e. Z° would be in the centre of P°, con-
tradicting our choice of G; so our assumptions imply that either A
or B is trivial. Should Z be in the centre of @, then by 1.1 Z would
be in the centre of Go; hence G/C4(Z)#1. As (p,|G/CZ)])=1
Z = [Z, G]X C,(@); both factors are normal subgroups of G, C,(G) # Z
and by what we have just pointed out Z=[Z, ¢], C,(G)=1. We
can now prove that Z¢ is abelian: since otherwise for every h e G¢
such that (|h|,p)=1 by 1.4 Zo=[Z° (h)]X C,(h) with abelian
[Ze, <h)>], whence C,s(h)>(Z%)'; G°= 07(G°), so (Z°)" would be in the
centre of G contradicting an earlier statement. Call L the subgroup
of G generated by its p-elements, M = O?(L). Then [L,Z]=1; in
particular M <Cy(Z) and by 1.1 M°<Cu(Z), and since L= PM,
Lo= PoMe, then L/C,s(Z%) is a p-group. It follows that C,(L°)+#1
and in particular the intersection T°¢ of £,(Z¢) with the centre of L
is a non-trivial normal subgroup of G¢; T is a p-group, G°= 0?(G°),
so by 1.1 T @. |G/Cy(£2:(2))| is not divisible by p, hence T has a
complement § in £,(Z) which is normal in G; an earlier remark shows
T = Q(Z), i.e. £2,(Z°) is contained in the centre of P° and of every
conjugate of Pe. Therefore p»= exp Z > p, the minimality of G then
implies [P, Zo| < 2,(Z°), [DP(P?), Z°] = [P°, P(Z°)] = 1 (for every group
@(X) = Frattini subgroup of X) Define G* = Go/Me, G = G°/Cy(Z°)
(for every @€ G9, o*= aM° and T = 2C4(Z°)); @ is isomorphic to a
quotient group of G*. Since Lc= PoMc¢< (G, the p-Sylow subgroup
P*= Po M°/M° of G* is normal in G*, and P = PoCuo(2°)/Coe(Z°) < G;
P +£1 by our choice of G; let Q*, Q be complements of P*, P in G*,
G respectively. Since G*= 07(G*) and G@= 07(G), it follows that
P*— [P*, Q*], P =[P, Q]; moreover if H*= He/M° is a proper sub-
group of Q* then [P*, H¥] = P*, since otherwise 0?(PVH)= P\VH <
< @ would imply, by the minimality of G, [Z°¢, P?]=1; from

[@(Pu)7 ZG] =1
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follows that P is elementary abelian. Q* and @ both operate in a natural
way on 2,(Z°) and G* = Q* Coe(2,(2°)), G = QC4;(2:(Z7)), s0 0,(Z°) is
both Q*- and Q-irreducible: thus, if £,(Z°) = A9X Be with @*- (or Q-)
invariant A°, Bo, then A¢, Be are normal p-subgroups of G°, whence 4,
B are normal subgroups of G with trivial intersection both contained
in Z; an earlier remark implies that one of them is trivial. In parti-
cular U,_;(Z°) = (Z°), i.e. Z is a direct product of cyclic groups of
the same order p~. Choose now a € P°, and assume ¢ induces a power
automorphism on Z¢: then @ is in the centre of G and, as C;(Q) =1,
@=1:1i.e. if an element of P¢ induces a power automorphism on Zo,
then it centralizes Z¢; in particular Z cannot be cyclic. We shall now
prove that @* (and of course @) is a cyclic g-group for some prime
g #p; so agsume, by way of contradiction, that there is a family
{h}}:c; of elements of @* such that <(h}> < @* for every i, while
(h}lieI) = @*. By an earlier remark [P*, h}]< P*, and, if h; = h; M°
with (|k], ) =1, 0?([P°, h,JM<h,>) = [P°, b, ] M<h,> < G°, which im-
plies, by our choice of @, that [Z°, h,]<Z°N\([P°, k1 Mo(h;)) is con-
tained in the centre of PoA[Pe, h,JM°<h;), whence [Z°, h;]< Cpo([L°, h;]).
Furthermore, if {g.>°= {h;>,

Cyo(hi) = Cy(g:)°= C;(07(L{g:>))°= Cyo(0?(L¢h>)) < Coo([ L, hi]) -

It then follows that [Le h;,Z°]=1 and since <(h|icI)=Q*,
[P*, Q*, Z°]= [P*, Z°]=1, a contradiction. So assume Q= (k)
with |h|=¢%, 7>1; we have already seen that % has no invariant
subspace on either Z/®(Z°) or 0,(Z°) and that [he, P]< P; we
presently shall prove that P is h-irreducible. Thus, suppose P=P,xP,
is a proper A-factorization; if P,= P%/Ce(Z°), Q= Q°/Cqe(Z°), h=
= hCys(Z°) with pft|h|, then Zﬂ= [ZG, h]<0?(P;Q°), 80 Z is in the
centre of PAO?(P;Q), a p-Sylow subgroup of 07(P,Q), which implies
[Zo, P°\O?(P3Q°)]=1 (because 0?(P,Q) is normal and proper in G);
if now Z=2Cy(Z°) with z€ Ps is any element of P,, there exists
7= yCqo(Z°) with e P, =1y, h] and [y, k]e Pe: this means that
& = [y, h]e with ¢€ Cy(Z°), and eventually [P,, Z°]=1, again a con-
tradiction; in particular, [h%, P]=1. For the next step, we choose
yePo, y¢ Ceo(Z9), and we start with a detailed investigation of which
are the possible structures for {y)>Z°. First of all, if {@)°= (y), then
{®)N\Z #1, since otherwise for every ze Z7, <z, Yy ANZ°= {z)< <z, ¥),
i.e. y would operate on Z¢ as a non-trivial power automorphism;
further, p™= |z|<p* would imply that every z € £,(Z), 2541, has the
same height in Z as in Z{x), hence we could assume Z<{x) = Z X {x)
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and we would get the same contradiction as before. In view of the
particular structure of Z, we can find a cyclic direct factor <v,> of Z
containing <x)AZ #%1; <{x) is a direct factor of Z<{x) and for z#1
in a complement 8 of {#>AR2:,(Z) in £,(Z), the heights of z in Z{x)
and in Z are the same, so we may construct a decomposition
Z{w) = (o) X {01 X .oo X {0y X {C)y Where (0> X (V) X ... X {0y = Z and
le| < p*; we fix the notation such that <v,>°= (w,), {e}°=<{d)>. We
can also manage to get v,= *" ¢ and w,=y*" d. <{yD>Z° as a mo-
dular non-Hamiltonian group, has the form A{t>, where ¢ induces a
power automorphism on the abelian group 4 ; under our assumptions ?
can be chosen such that w'=w'**? where p*+'=expd, so that
(y>Zo)'= U (A) and {y)>Z° has class 2. Suppose first that exp 4 > p*;
in this case ((y)Z°)'= (<), <y><V<Y>Z° |Z°: Cp(y)| = p, and the
matrix of y on Z (with entries from Z/p"Z), for a suitable choice of
the basis, is either

1 4 pr1 0

0 identity

if w, is normalized but not centralized by y; or

identit 0
I v

p100..0] 1

if [w,, y]=1, in which case we may assume that [w;, y]= w2 ' and
[w:, y]=1 for 1<i<k (it is understood that to get precisely these
coefficients we may have to choose another generator for {(y»). The
exponent of A cannot be < p», for in this case Z<z>/A°" being cyeclic
implies that v,=arg with geAc”, so that 102" "= 27" e (v >A
A<v>. We now assume that exp A =p”, and remark that from
[{|<|y| and y=tru with ue A it follows that |y|= [t| and we can
substitute y for ¢. Moreover, we can replace A with U= A{y*"  »:
thus, U is abelian and u*= u'**"" for every e U; but now U has
index p in Q,({ypZc)= ULy*" "y, Z°£ U, so that |Z¢: ZeAU|= p,
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and the last k elements of a basis for Z¢ can be chosen in ZsA U (re-
member that dim Ze= k-1, and that y*" ¢ U). The missing ele-
ment of the basis of Z° has the form z=y™"" 4, with ptr, uel,
and we try to arrange the things so that " e 2,((y)>). Since 2,(Z°) =
= P XTaa(ZOAT), We have [z, y]= [u, y]=w"" = y»"wr"
with weZAU, so zw=y™" "(uw-!) is congruent to z modulo
ZsA\NU, ww-1e U, and (ww-?" "€ Q,(<y>), as required. For such a
choice of the first element 2 of the basis ¢7a_1({2>) = 2,(<¥D>) > Fn- (<®)),

so that [z, y]=[u, y]=u*""'=:2""", and the matrix of ¥ on Z¢ can
be written either as
1 0
(ITT) 0|14 pr-t
or as
1+ Ap"—l’ 0
(IV) 0 |ippm

with A0, 4 #1 (mod. p), where the right lower corner corresponds
to the action of y on UAZ°. It is easily checked that, under either
(III) or (IV), if 8= <u) X{v) is a y-invariant subgroup of Z¢ and
|u| = |v] =p", then S is also the product of two y-invariant cyclic
subgroups: if 8<C,(y) = {#z€ Z°|e*= 21+»"""} there is nothing to prove;
otherwise |§8: C(y)AS|=p, and we may assume that == w,c,
wy=we*?"" (where 2=0 under (III), 4 %0, 11 under (IV))
ceCy(y), veC(y). [u,y]= (wie)" "B, so W™= (w;" )" <
<£(8); w;’H= (woe)™ 0" and  Qy(Z°) = Q,(Cw,)) ijn—l(e1(?/))
imply that (¢v*)*" =1, r =1 (mod. p), whence [uv*, y]= wi*" "=
= (wro’)»"”, and 8 = (wv*) X (v> with both factors y-invariant.
We also remark that, if we look at the clements of P as linear
Z[p~Z maps on Zd, then their determinant is 1, otherwise we would
get 07(G°) < @°; this remark eliminates case (I). The next step is to
prove that dim Z > 2: so assume dimZ =2 and take a e P° such
that @ 1. Suppose a satisfies (II) with respect to a basis 2z, 2;
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clearly we can choose z;=2}, so a is represented by

1 0
pn 1/’

1—i—ocp”‘1 ﬁpn—l
0 1

a* by

,

deta*=1 implies « =0, f£0 (mod. p), so if a,€ P’ is such that
a,= a'a* then a; is represented by

( 1 pp?

ipn1 1 ) ((¢ # 0(mod. p))

{#52}> i8 a-invariant if there is u such that (2jz])up" = [22{, a;]=
= (2¥2,")* "-u =0 implies s=0 =7 (mod. p), i.e. Cp(a,) = D(Z°); for
u#0 we get siff = su? (mod. p), and either s =0 =r or if is a square
in F,=Z|pZ; if p #2 this leads to a contradiction, and for p =2
we check directly that a* is represented by

1 271
0o 1)’
and ae* does not normalize two independent cyclic subgroups of

order 27, again a contradiction. So if dim Z =2, then every acP°
with @ =£1 is represented, with respect to a suitable basis 2,, 21, by

1—pr1 0
0 14 prt

(i.e. case (IV) with 4A=—1; p #2; we possibly have to change the
generator of (a)). If a* is represented by

1+ap™t  ppm?
yp*t 1+ opm)’

deta*=1 implies a+ 6 =0 (mod.p); a* induces 1 p™! on some
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ety with (r,8)#(0,0), ie. [e2], a¥]= (e5%fay2l’)" "= (552",
which means that the linear system

re—1)+sy=0
rf+s80—1)=0

has a non trivial solution, and

x—1 Y
det 8 6_1)Ed6—[3y+150 (mod. p) .

Now take a,€ P° such that h:: a‘_a"; it is represented by

(1 + (o — )p-? ppr1 ) .
yp 14+ 0+ 9p)’

it has to normalize two independent cyclic subgroups of Zs, so
[2525, @] = (25 2fPeyy2i+)?" "= (2r2f)up™* must be solvable with
(r, 8) # (0, 0) for two choices of x not congruent mod. p, i.e.

a—1t f
y 6+
must have two distinct eigenvalues in #,. The characteristic polynomial

x—i— U B . .
x(p) = det v S+i—p = p?—i*—20i—1

has distinet roots in F, if and only if A(i) =144 26i— 1€ (F,— {0})?;
A(¢) = A(j) if and only if (4— j)(¢+ j+ 26) =0 (mod. p), so the par-
tition T, associated with A is {{— 6}, {j, —j—20},._s} and has (p+ 1)/2
elements; A(0)=1¢€(F,—{0})®. If 0% —J, then |4(F,—{0})|=
=(p+1)/2; if 0=—9, then |4(F,—{0})|=(p—1)/2, but 1¢4(F,—{0}):
in any case, we can find 7% 0 (mod.p) such that A(i)¢ (F,— {0})2:
for such an ¢ a; does not satisfy the conditions we asked for. This
contradiction proves dim Z > 2; we shall show that dim Z=3. Sup-
pose we can choose a € P¢ satisfying (II); since [a, Z9]A[a*, Z°]=1,
C,o(@;) = C™~(a) A Cuo(a®) has index p? in Z°: this is only possible when



On index preserving projectivities of finite groups 237

dim Z = 3, and a; satisfies (III). If there is a in Pc¢ satisfying either
(III) or (IV), C,o(a"1a?) > Cy(a) A Cy(a®), where C(y) = {z€ Zo|sV=21+2" "},
which has index p? in Z9, so: if |Z9: Cyp(a1a*)| = p, a7 *a* satisfies (II)
and we have just proved that dimZ=3 in this case; if |Z°:
Cu(a™1a)| = p?, then ala* satisfies (III) and once more dim Z = 3.
Suppose now that ae P, @ 1, a satisfies (II); with respect to a basis
%y 21, %y such that (2> > a>AZo, {2y, 2,0 D(Z%) = Cpla), {2y = {2L>,
a is represented by
i 0 0
0 10
pn—l 0 1

’

a* by
1 0 opr?
0 1 pBpr1
00 1

Two cases are possible: either <z,, 2;> A Czo(a) A Chol(a®) = {7y, 2%, i.e.
=0, %0 (mod.p); or <2y, 2> ACs(a)ACsolar) = D({2p, 2p): if we
choose 2, such that <z, ®(Z°)) = Css(a)A\Cs(a*), then a%0,5=0
(mod. p). In the former case a; is represented by

1 0 0
0o 1 Bp=
ipmt 0 1

(symbols are as usual; a; must satisfy (III)); it centralizes {2,» and
normalizes no other (independent) cyclic subgroup of Z¢ of order p*,
a contradiction. In the latter case a; is represented by

1 0 ap™?
0 1 0 ;
ipn1 0 1

it centralizes {2,y D(Z%), and it should work as a power automorphism,
1+ up! say, u#0 (mod.p), on a direct product S of two cyclic
subgroups of order p"; but (eizizi> <8 if and only if (efziel)*" =
= [#1et2t, @] = (2%72i%)*" ", i.e. if and only if (r,s,?) is a solution of

ru—it=0

su=0

ro— ut =0
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whose rank is >2: there is one independent solution at most, a con-
tradiction. So case (II) is ruled out. Now we assume ac P, @ #1,
a satisfies (III); deta=1=1- 2p** forces p = 2. C,(a) has index 2
in Ze¢; the same occurs to C(a*), so we can put C,(a)AC,(a*)=
= Cyo(aa?) = {2,y DP(Z°); aa* also satisfies (III). With respect to a
basis 2,, 21, %, let a be represented by

1 0 0
0 142+t 0
0 0 14 2n

Assume further that (z,, 2}> D(Z°) = {2,, 2,0 D(Z°); we can choose 2z,
50 that 8= (7, 2}) = {2y, 2> = (&b, 2,). 8 is <@, a*)-invariant, (2> A
A2y =1, 80 z,= (#})*2, [20, a*]=22" ', aa® is represented on § by

1 2n1

0o 1)’
s0 (22" 7> <[aa*, ZoIAg5 a1 (Csolaar)): but under (III) this intersection is
trivial. So we can assume that (Z2>A{2, 2> =1, and take 2, =2}

instead of #, in the basis (later on, we shall drop the apex); since we
can always arrange that 2} = 292, this means that a is represented by

1 0 0
02m-1 14 2n-1 0 ,
0 0 142m2
and a* by
1 + a2n-1 ‘3211—1 ,},211—1
0 1 0 ,
0 0 14201

detat=1+4 (¢+ 1)2*1=1 forces & =1 (mod. 2); a* must induce the
power 14 271 on a cyclic subgroup {z,2:2l>: (2,224 = [#,%2%, a*] =
= (2,2%24+1)?"", 80 y+t=t, y =0 (mod. 2). aa*, which should satisfy
(III), is represented by

1421 fam1 0
02m1 1421 0
0 O |

’
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it has to induce the power automorphism 1 -4- 27+! on a complement §
of (z,>; this means that (efef2l)?" "= [#j22%, aa*]= (25t927F~)2"" for
ziezizie 8, so that the system: s6 =0,78 =0, =0 has two indepen-
dent solutions; this only happens if =06 =0. So a is represented by

1 0 0
0 121 0
0 0 14 21

a* by
142%1 0 0
0 1 0 ;
0 0 14271

2EERyy D(Z°)), {21y 250" D(Z0%) = {2y, 2,0 DP(Z°). We look at the way h
operates on Zo/®(Zo): if 2 =2, (mod. H(Z°)), then

2 D(Z°) = (2, D(Z9))"
a contradiction; suppose 2! ==z, (the other possibility is 2} =2,2)
(mod. &(Z¢)): then from 2=z, (mod. &(Z°)) it follows that (2,P(Z°))*'=
=2,D(Z°), so <h3><Q, and, as () is isomorphic to a subgroup of
GL(3,2), k*=1 and h cannot be irreducible on £,(Z°) which has

dimension 3; clearly 2%z, (mod. &(Z°)), so h is represented on
Zo|D(Z°) by

01 0

0 0 1},

1 0 1
and on Z° by

0 1 0

0 0 1

A 2u v

with A =»=1 (mod.2), where we are using the basis 2,,2,= 2},
%= 2}; moreover A=deth=1. An easy calculation shows that a’
is represented by
14 2n-1 0 gn-1
0 1421 0
0 0 1
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and if bePs, b= ad” , b should satisfy (III), which contrasts to the
fact that it normalizes <{z,,2,> and <{2;», but no complement of <{z,>
in {2y, z2y. If instead 2} = 2,2, (mod. &(Z°)), a similar argument proves
that h is represented on Zo/D(Z°) by

01 0
1 01
1 00
and on Z°¢ by
0 1 0
A 2u ],
1 0 0

where we refer to the basis 2,, 2,= 2%, 2,= 2! "'; moreover y = det h = 1.
In this case a* is represented by

14 gn-1 0 0
0 14201 0
gn-1 0 1

and b as above normalizes <z,> and <z, 2>, but no complement of {z,>
in {2y, 2. So far we showed that no element a in p° satisfies (I), (II)
nor (III); but if a satisfies (IV), then a~la* should satisfy (III): this,
last contradiction proves the lemma.

COROLLARY 2.2. Let ¢: G — H be an index-preserving projectivity.
If the image Z(P)® of the centre Z(P) of the p-Sylow-subgroup P
of G is not contained in the centre of P¢, then N°4(Z(P)) has a proper
normal subgroup K such that N4 (Z(P))/K is a p-group.

ProoF. Apply lemma 2.1 to N = N4(Z(P)).

3. We shall now use the propositions proved in section 2 in order
to derive the results announced in the introduction.

THEOREM 3.1. Let G be p-normal, P a p-Sylow subgroup of G,
0: G — H an index-preserving projectivity. If the image under o of
the centre of P is not contained in the centre of Pe¢, then 0?(G) # G;
in particular G is not simple.
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ProoF. Call Z(P) the centre of P; 2.2 and the second theorem of
Griin imply that G/07(G) = N6(Z(P))[07(N4(Z(P))) # 1, q.e.d.

THEOREM 3.2. Let @ be a p-soluble group with 0?(G)= G. For
every p-Sylow subgroup P of G and every index-preserving projec-
tivity o: G — G° the image under ¢ of the centre of P is the centre of Po.

ProoF. For any group X let Z(X) be its centre. It will be enough
if we prove that, under our assumptions, Z(P)*< Z(P°): the opposite
inclusion is then proved looking at o—!. Let G be a counterexample of
least possible order. Call A4, B respectively 0,(@), 0,(G°): they are the
intersection of all subgroups of G, G¢ maximal with respect to the pro-
perty of having an order prime to p, so B= A°. Assume A #1: ¢ in-
duces an index-preserving projectivity ¢: G/A — G9/B and by the mi-
nimality of G (we now put Z = Z(P))

(ZAJA)o= Z(PA|A)e= Zo Av|As < Z((PAJA)7) = Z(Pe Ao|Av)

80 [Po, Ze]< A\ P°= 1 against our choice of G. There exists a proper
normal subgroup N of G such that pt|G: N|; put M = O*(N), and
let @ be a complement of P in N4(P). ¢ =[P, Q]QM: thus, P<N
and by the Frattini argument G = N4(P)N = QPN = QN; further-
more N = PM, whence G=PQM; but [P,Q]Q=¢" so P<
<No([P, Q1Q M), ie. [P,Q1QM = G; G/[P,Q]QM =~ P/[P,Q]QMAP
is a p-group, and eventually G =[P, Q]QM. Since M < QM and
pXQM: M|, we get PAQM = PAM; it follows that

P= PA[P,Q]1QM = [P, Q1 (PAQM) = [P, Q] (PN M) .

We shall now prove that [P, @]° centralizes Zo: thus, [P, Q]Q =
= 0*([P, Q]Q), C;(Q) is a p-group contained in the centralizer of
[P,Q]Q so by 1.1 [([P,@]Q)%, CyQ)°]=1; in particular [[P,Q],
C,(@)°] = 1. Furthermore [Z, Q1< Z([P, Q]); [P, @] is a p-Sylow sub-
group of [P, Q]Q, so by 2.1 [Z,Q]°<Z([P, Q]°); we can conclude that
[P, Q¢ centralizes C,(Q)°V[Z, Q]c= Z°. Next we prove that Z £ M;
assume Z< M: then Z<Z(PAM) and, by the minimality of @, as
PAM is a p-Sylow subgroup of M < @, Z°<Z((PAM)°): this fact,
together with an earlier statement, implies the contradiction [Z7, Ps]=1.
Let F be the Fitting subgroup of G; under our assumptions F is a
nontrivial p-group, and F > Cy4(F)[1]. We also have F<P<N and
[Z, F]=1 implies Z<Z(F)<F; whence Z% is an abelian subgroup

16



242 Federico Menegazzo

of Z(F). Let 1=V, <V:<...<V,= M be a p-series of M whose
elements are normal in @ (i.e. V,/V;_, i8 either a p-group or pf|V,/V,_,|
for ¢=1,...,k). We shall prove by induction that [V,, Z¢]=1.
V.is a p-group, so V< F and [V,, Z¢] = 1. Assume next[V,, Z9=1;
if p|V,../V,| we can write Z¢=[Z¢ V,,,1X Cue(V,.,) Where both fac-
tors are normal p-subgroups of G = 07(@); 1.1 then tells that [Z¢, V,,,]°
and C,e(V,,)¢ are both normal in G¢; if both are non-trivial by the
minimality of G [Pe, Z]<[Z% V, I°ACe(V,4,)°= 1 against our choice
of G. But if Cu(V,,,)=1, then Z<Z2°=[2%V, 1<V, , <M con-
tradicting an earlier statement, so in this case [Z% V,,]=1. In
case V, ,/V, is a p-group, V,.,,= (PAV,,)V,; for every z €@

[P/\ Vr+1’ Zc]= [(P/\ Vr+1)x_l7 Z]z’_— [(P/\ Vr+1)°, Z]z:
= [P/\ Vr+17 Z‘v_l]wz [P/\ Vr+17 Z]w: 1

for a suitable v € V,; hence in this case too [Z% V ., ]=1. It fol-
lows that [Z¢ M]=[Z% V,]=1; Z° is a p-group, M = O0?(M), so
by 1.1 [(2°)5, M°] = 1, Cgo(Z°)>[P, Q1° M°>[P, Q1" (PAM)°= Pe: this
contradiction ends the proof.

(Theorem 3.2 dealt originally with soluble groups; the author is
grateful to prof. F. Napolitani who pointed out to him that the proof
worked for p-soluble groups too).
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